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We study the Laplacian in a bounded domain, with a varying Robin boundary condition 
singular at one point. The associated quadratic form is not semi-bounded from below, 
and the corresponding Laplacian is not self-adjoint, it has a residual spectrum covering 
the whole complex plane. We describe its self-adjoint extensions and exhibit a physically 
relevant skew-symmetric one. We approximate the boundary condition, giving rise to a 
family of self-adjoint operators, and we describe its spectrum by the method of matched 
asymptotic expansions. A part of the spectrum acquires a strange behavior when the small 
perturbation parameter ε > 0 tends to zero, namely it becomes almost periodic in the 
logarithmic scale | lnε|, and in this way “wanders” along the real axis at a speed O (ε−1).

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
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r é s u m é

Nous étudions le laplacien dans un domaine borné, avec une condition à la frontière de 
type Robin, variable et singulière en un point. La forme quadratique associée n’est pas 
bornée inférieurement, et le laplacien correspondant n’est pas self-adjoint ; son spectre 
résiduel couvre entièrement le plan complexe. Nous décrivons ses extensions self-adjointes 
et nous en montrons une anti-symétrique, pertinente en physique. Nous approchons la 
condition de frontière à l’aide d’une famille d’opérateurs self-adjoints et nous décrivons son 
spectre par la méthode d’appariement des développements asymptotiques. Une partie du 
spectre adopte un comportement étrange quand le paramètre ε > 0 de petite perturbation 
tend vers zéro ; précisément, il devient presque périodique en échelle logarithmique 
| log(ε)|, et ainsi « erre » le long de l’axe réel à une vitesse O (ε−1).
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(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Description of the singular problem

In a domain � ⊂ R
2 enveloped by a smooth simple contour ∂�, we consider the Laplacian with a Robin-type boundary 

condition a∂nu − u = 0. Here, a is a continuous function defined on ∂�, and ∂n denotes the outward normal derivative to 
∂�.

If a is positive on ∂�, the quadratic form H1(�) � u �→ ‖∇u; L2(�)‖2 − ‖a−1/2u, L2(∂�)‖2 is naturally associated with 
this problem and, in view of the compact imbedding H1(�) ⊂ L2(∂�), this form is semi-bounded and closed, and thus de-
fines a self-adjoint operator with compact resolvent. Therefore, the spectrum is an unbounded sequence of real eigenvalues 
accumulating at +∞. Note that the first eigenvalue is negative, and goes to −∞ if a is a small positive constant, see [5].

Let a become zero at a point x0 ∈ ∂�. In this note, we will mainly consider the case where a vanishes at order one, i.e. 
admits the Taylor formula

a(s) = a0s + O (s2), s → 0 with a0 > 0, (1)

where s is a curvilinear abscissa starting at x0. For convenience, we denote b0 := a−1
0 .

Since we assume a to be continuous, there should exist at least one other point where a vanishes. However, several 
points of vanishing do not bring any new effect, and we replace the problem by another one: we assume that ∂� is the 
union of two smooth curves �1 and �2 which meet perpendicularly, with x0 in the interior of �1, and that a vanishes 
only at x0, according to (1). We complete the Robin boundary condition on �1 by a Neumann boundary condition on �2. 
Therefore, our spectral problem is{ − �u = λu on �,

a∂nu − u = 0 on �1, and ∂nu = 0 on �2.
(2)

The associated quadratic form is defined on D(q) := {u ∈ H1(�), a− 1
2 u|�1 ∈ L2(�1)} as follows

D(q) � u �→
∫
�

|∇u|2dx −
∫
�1

a−1|u|2ds.

It is not semi-bounded anymore. Thus, there is no canonical way for defining a self-adjoint operator associated with problem 
(2). The natural definition becomes the operator A0 acting as −� on the domain

D(A0) := {u ∈ D(q),�u ∈ L2(�),a∂nu − u = 0 on �1, ∂nu = 0 on �2}. (3)

Such a problem was studied in [1,6] in a model half-disk, for which the eigenvalue equation had the advantage to decouple 
in polar coordinates. The authors found that A0 is non-self-adjoint. In [6], they clarified the “paradox” from [1] stating that, 
for any λ ∈C, problem (2) has a nontrivial solution, by showing that the spectrum of A∗

0 is residual and coincides with the 
complex plane.

A three-dimensional version of this spectral problem appears also in the modeling of a spinless particle moving in two 
thin films with a one-contact point, and has been studied in a model domain in [3].

2. Goal and results

In this note, we explain how to find extensions of A0 and give a better understanding of their spectrum, arguing with 
an asymptotic approach. We also exhibit a relevant skew-symmetric extension using a physical argument.

The domain of A∗
0 is

D(A∗
0) := {u ∈ L2(�),�u ∈ L2(�),a∂nu − u = 0 on �1, ∂nu = 0 on �2}.

To understand how different D(A∗
0) is from D(A0), we exhibit two possible singular behaviors for functions in D(A∗

0) at the 
point x0. Using Kondratiev’s theory [4], we investigate a model problem in a half-plane and, as a result, describe D(A∗

0). 
We deduce, going over the domain �, that the deficiency indices of A0 are (1,1), and we classify its self-adjoint extensions 
using a parametrization θ �→ eiθ of the unit circle S1 ⊂ C. The description of A∗

0 allows us also to introduce a natural 
skew-symmetric extension of A0 corresponding to a Sommerfeld radiation condition at x0.

Next, we approach our problem by a family of self-adjoint operators by choosing a suitable perturbation of the Robin 
coefficient a. This is done by means of the non-vanishing discontinuous function

aε(s) = a0 sign(s)ε + a(s) (4)

satisfying inf�1 |aε| = ε, and we study the discrete spectrum of the associated Robin Laplacian as ε → 0. Using the method 
of matched asymptotic expansions, we find that its spectrum is related to the eigenvalues of self-adjoint extensions, with a 
parameter θε oscillating in the logarithmic scale as ε → 0.
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Finally, we describe the differences when the weight function satisfies a(s) = a0|s| + O (s2) near the singular point, with 
a0 > 0. In particular, the number of singularities of functions in D(A∗

0) is now two or four, depending on whether a0 > π
2 or 

not.
A similar result has been obtained in [2], where an operator of the type div(σ∇) is considered in a bounded domain, 

where σ is piecewise constant and changes sign along an interface crossing the boundary.

3. Description of the adjoint operator

In this section, we investigate the following model problem in the half-plane R2+: find u ∈ L2
loc(R

2+) such that{ − �u= 0 on R
2+,

a ∂nu− u = 0 on ∂R2+,
(5)

where a is the first-order approximation of a near x0: a(s) = a0s. Let (r, ϕ) ∈ (0, +∞) × (− π
2 , π2 ) be the associated polar 

coordinates, the normal derivative reads ∂nu(s, 0) = ∓r−1∂ϕu(r, ± π
2 ). The boundary condition is decoupled: The problem 

becomes, in polar coordinates:{ − ∂2
r u− r−1∂ru− r−2∂2

ϕu = 0 on (0,+∞) × (− π
2 , π

2 ),

∀r > 0 : −a0∂ϕu− u = 0 at ϕ = ± π
2 .

The spectrum of the transverse operator −∂2
ϕ is given by solving the eigenvalue problem:

−g′′(ϕ) = μg(ϕ), −a0 g′(± π
2 ) − g(± π

2 ) = 0. (6)

Its eigenvalues are {μk, k ≥ 0} := {−b2
0} ∪ {k2, k = 1, 2, . . .}. The eigenspace associated with −b2

0 is generated by g0(ϕ) =
e−b0ϕ , and the one associated with k2 by

gk(ϕ) = sin(k(ϕ + π
2 )) − ka0 cos(k(ϕ + π

2 )).

We introduce two singular solutions to (5):

s±(r,ϕ) = c r±ib0 e−b0ϕ with c= (2 sinh(b0π))−1/2 (7)

where the choice for the normalizing factor c will become clear in Proposition 2. Note that s± /∈ H1
loc(R

2+).
Let χ be a smooth cut-off function that has a small support and equals one near the point x0 , and let S± be the 

functions deduced in � from s±: S±(x) = χ(x)s±(r, θ) through local polar coordinates � � x �→ (r, θ) ∈ R
2+ near x0.

As a consequence of the Kondratiev theorem on asymptotics (see [4] and, e.g., [9, Ch. 3]), we get

Proposition 1. Let u ∈ D(A∗
0), then there exists (cin, cout) ∈ C

2 such that

u = cin(u)S− + cout(u)S+ + ũ (8)

where ̃u ∈ H2(�) ∩ D(q). Moreover, there exists C > 0 such that, for all u ∈ D(A∗
0), we have

|cin(u)| + |cout(u)| + ‖̃u‖L2(�) ≤ C(‖u‖L2(�) + ‖�u‖L2(�)). (9)

This decomposition of the operator domain is sufficient to deduce the deficiency indices of the operator. On the one 
hand, since the operator has real coefficient, dim(ker(A∗

0 + i)) = dim(ker(A∗
0 − i)). On the other hand, the standard decom-

position together with the last proposition implies dim(ker(A∗
0 + i)) + dim(ker(A∗

0 − i)) = dim(D(A∗
0)/D(A0)) = 2. Therefore, 

dim(ker(A∗
0 ± i)) = 1, and the deficiency indices are (1,1). As a corollary, the spectrum of A0 covers the whole complex 

plane.

4. Self-adjoint extensions

Once the domain of the adjoint is explicit, it is standard, see [7,10] and others, to find all self-adjoint extensions of A0

by the use of the symplectic form

ψ : (u, v) �→ 〈A∗
0u, v〉 − 〈u, A∗

0 v〉, defined on D(A∗
0).

As a consequence of integration by parts and symplectic algebra, we verify Proposition 2.
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Proposition 2. Let u and v in D(A∗
0), written in the form (8). Then

ψ(u, v) = i
(

cin(u)cin(v) − cout(u)cout(v)
)

.

As a consequence of Proposition 2, for any u ∈ D(A∗
0), we obtain

ψ(u, u) = i(|cin|2 − |cout|2).
Therefore, the self-adjoint extensions are the restrictions of A∗

0 onto linear spaces of the functions u ∈ D(A∗
0), for which 

|cin(u)| = |cout(u)|. We conclude with Theorem 3.

Theorem 3. Let θ ∈R, and let A0(θ) be the restriction of A∗
0 to the domain

D(A0(θ)) = {u ∈ D(A∗
0), cin(u) = eiθ cout(u)}.

Then Asa is a self-adjoint extension of A0 if and only if there exists θ ∈ R such that Asa = A0(θ).

Each domain of these extensions has compact injection in L2(�) because a function u ∈ D(A0(θ)) differs from ̃u ∈ H2(�)

by a linear combination of two functions S± ∈ L2(�). Therefore, each of these extensions has compact resolvent. Moreover, 
it is not semi-bounded from below, and we denote by (λk(θ))k∈Z the increasing sequence of eigenvalues of A0(θ).

5. The physical radiation condition and a skew-symmetric extension

In link with the wave equation −∂2
t W = −�W , analyzing the propagation of the wave

W ±(t, x) := e−i
√

λ t S±(x) = e−i
√

λ(t∓λ−1/2b0 ln r)g0(ϕ),

in the framework of the Sommerfeld or Mandelstam principles, cf. [9, Ch. 5], we can interpret S− as propagating from x0, 
whereas S+ would propagate toward x0. Notice that any other radiation principle leads to the same conclusion.

For a fixed λ ∈R, the scattering theory (cf. [9, Ch. 5]) provides a solution to (2) in the form

ζλ = S+ + eiθλ S− + ζ̃λ, with ζ̃λ ∈ D(q) ∩ H2(�). (10)

This solution is interpreted as the scattering wave initiated with the incident (entering) wave S+ , and eiθλ is the reflection 
coefficient, with |eiθλ | = 1, according to the conservation of energy.

Moreover, a natural skew-symmetric extension A0 of A0 can be defined in the domain

D(A0) = {u ∈ D(A∗
0), cin(u) = 0}.

This extension corresponds to the natural radiation condition, excluding entering waves.

6. Wandering of the eigenvalues

Assume that λk(θ) is a simple eigenvalue of A0(θ), and denote by C0(S+ + eiθ S−) + ũ an associated eigenfunction 
normalized in L2(�). Then standard computations show that ∂θ λk(θ) = −|C0|2. Therefore, an eigenvalue λk(·) is a non-
increasing function of θ ∈R wherever it is simple; moreover, it is decreasing if C0 �= 0. If C0 = 0 for some k and θ , then the 
constant eigenvalue λk(θ) = λ is associated with a trapped mode, that is a non-trivial solution to problem (2) belonging to 
D(q) ∩ H2(�), which is in D(A(θ)) for any θ ∈R.

The functions λk(·) are piecewise analytic; moreover, they cannot be all constant, indeed in that case the range of all the 
eigenvalues λk(θ) would be a discrete set, which contradicts the existence of the physical solution in the form (10) for any 
λ ∈R.

Therefore, there exists at least one branch λk(·) which is decreasing where it is regular. This, combined with the period-
icity of the spectrum, shows that⋃

(k,θ)∈Z×R

λk(θ) = R. (11)
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7. The method of matched asymptotic expansions

For ε > 0, we recall that aε was defined in (4) as an approximation of a. Now the quadratic form

u �→
∫
�

|∇u|2 −
∫
�1

a−1
ε (s)|u|2

is well defined and bounded from below in H1(�). We denote by Aε the corresponding self-adjoint operator. The strategy 
is now to construct quasi-modes for Aε through eigenfunctions of an extension A0(θε), where θε is to be chosen. The result 
is given by Theorem 4.

Theorem 4. For all k ≥ 0 and for ε small enough, there exists θε ∈ R such that dist (λk(θε), σ(Aε)) → 0 as ε → 0. Moreover, the 
mapping ε �→ θε is periodic with respect to lnε, and

R =
⋃
ε↓0

σ(Aε). (12)

The procedure is as follows.

• Far-field expansion: outside a fixed neighborhood of x0, take a function uout as an eigenfunction of A0(θε), where θε is to 
be chosen. Therefore, it behaves near x0 as follows:

uout : (r,ϕ) �→ C(rib0 + eiθε r−ib0)ea−1
0 ϕ + ũout,

where ̃uout is regular and small near 0.

• Near-field expansion. In local coordinates near x0, we perform the scaling x = ε ξ , and considering bounded eigenvalues, we 
get to solve (5) with a(ξ1) := a0(sign(ξ1) + ξ1). In order to investigate the behavior of solutions to this problem at infinity, 
we perform the inversion ξ �→ η = |ξ |−2ξ , which leads to the behavior at the origin η = 0 of (5), but with the weight 
function a0 : η1 �→ η1 + sign(η1)η

2
1 in the boundary condition. Near the origin η = 0, we can neglect the part sign(η1)η

2
1, 

and according to Kondratiev’s theory [4], there exists a solution to such a problem that behaves as

η �→ s−(η) + eiθs+(η) + O (|η|), θ ∈R fixed.

Therefore, we obtain a solution to (5) with weight a, which produces after rescaling a solution to the Laplace equation in �
that behaves in a neighborhood of x0 as

uin : (r,ϕ) �→ C̃(εib0 r−ib0 + eiθ ε−ib0 rib0)ea−1
0 ϕ + ũin

where ̃uin is decaying outside the neighborhood, and C̃ is a normalization factor.

• Matching expansions and conclusion. Matching the two previous expansions, we obtain:

θε = θ − 2 b0 lnε (mod 2π). (13)

This formal approach is validated by constructing the quasi-mode from the previous ansätze using cut-off functions: define

uas = χ inuin + χoutuout − χ inχoutC(s+ + eiθεs−),

where χ in (respectively, χout) is localized in a bounded neighborhood of x0 (respectively, outside a neighborhood of x0 of 
size O (ε)). Evaluating (Aε − λk(θε))uas, we get that λk(θε) is close to the spectrum of Aε for ε small enough. Note that θε

is periodic with respect to lnε and eiθε runs over S1 ⊂C at the rate O (ε−1) as ε → 0. Then, (12) follows from (11).

8. Further questions

When the weight function satisfies a(s) = a0|s| + O (s2), with a0 > 0, the situation depends on the parameter a0, as 
described here: The transverse operator in the angular variable in the model half-plane R2+ is still −∂2

ϕ , but the boundary 
condition at ϕ = π

2 in (6) now becomes a0 g′( π
2 ) − g( π

2 ) = 0. The negative spectrum of this operator depends on a0 as 
follows.

1◦ If a0 > π , then there is one negative eigenvalue, and the other ones are positive. It produces two oscillatory solutions.
2
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2◦ If a0 = π
2 , there is one negative eigenvalue, and null is also an eigenvalue. There are two additional solutions for the 

model problem, one has the form g0(ϕ) ln r, and the other is constant with respect to r.
3◦ If a0 < π

2 , then there are two negative eigenvalues. They produce four oscillatory solutions.

Situation 1◦ can be analyzed exactly in the same way as that we described here. However, situations 2◦ and 3◦ are much 
more different. In particular, the deficiency indices are (2,2), and the self-adjoint extensions are parameterized by two-by-
two unitary matrices. The method of the matched asymptotic expansions does not provide an explicit parameter extension 
as in (13), but a family of unitary matrices depending on ε, cf [8]. This family does not always coincide with the set of all 
unitary matrices as ε → 0, but it is sufficient for the construction of approximations.
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