Partial differential equations

Self-adjoint and skew-symmetric extensions of the Laplacian with singular Robin boundary condition

Extensions self-adjointes et anti-symétriques du laplacien, avec condition à la frontière de type Robin singulière

Sergei A. Nazarov ${ }^{\mathrm{a}, \mathrm{b}}$, Nicolas Popoff ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Saint-Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russia
${ }^{\text {b }}$ Institute of Problems of Mechanical Engineering, Bolshoi pr., 61, St. Petersburg, 199178, Russia
${ }^{\text {c }}$ Institut de mathématique de Bordeaux, Université Bordeaux-1, UMR 5251, 33405 Talence cedex, France

A R T I CLE I N F O

Article history:

Received 11 December 2017
Accepted 2 July 2018
Available online 17 July 2018
Presented by the Editorial Board

Abstract

We study the Laplacian in a bounded domain, with a varying Robin boundary condition singular at one point. The associated quadratic form is not semi-bounded from below, and the corresponding Laplacian is not self-adjoint, it has a residual spectrum covering the whole complex plane. We describe its self-adjoint extensions and exhibit a physically relevant skew-symmetric one. We approximate the boundary condition, giving rise to a family of self-adjoint operators, and we describe its spectrum by the method of matched asymptotic expansions. A part of the spectrum acquires a strange behavior when the small perturbation parameter $\varepsilon>0$ tends to zero, namely it becomes almost periodic in the logarithmic scale $|\ln \varepsilon|$, and in this way "wanders" along the real axis at a speed $O\left(\varepsilon^{-1}\right)$. © 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

RÉS U M É

Nous étudions le laplacien dans un domaine borné, avec une condition à la frontière de type Robin, variable et singulière en un point. La forme quadratique associée n'est pas bornée inférieurement, et le laplacien correspondant n'est pas self-adjoint; son spectre résiduel couvre entièrement le plan complexe. Nous décrivons ses extensions self-adjointes et nous en montrons une anti-symétrique, pertinente en physique. Nous approchons la condition de frontière à l'aide d'une famille d'opérateurs self-adjoints et nous décrivons son spectre par la méthode d'appariement des développements asymptotiques. Une partie du spectre adopte un comportement étrange quand le paramètre $\varepsilon>0$ de petite perturbation tend vers zéro; précisément, il devient presque périodique en échelle logarithmique $|\log (\varepsilon)|$, et ainsi «erre» le long de l'axe réel à une vitesse $O\left(\varepsilon^{-1}\right)$.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

[^0]
1. Description of the singular problem

In a domain $\Omega \subset \mathbb{R}^{2}$ enveloped by a smooth simple contour $\partial \Omega$, we consider the Laplacian with a Robin-type boundary condition $a \partial_{n} u-u=0$. Here, a is a continuous function defined on $\partial \Omega$, and ∂_{n} denotes the outward normal derivative to $\partial \Omega$.

If a is positive on $\partial \Omega$, the quadratic form $H^{1}(\Omega) \ni u \mapsto\left\|\nabla u ; L^{2}(\Omega)\right\|^{2}-\left\|a^{-1 / 2} u, L^{2}(\partial \Omega)\right\|^{2}$ is naturally associated with this problem and, in view of the compact imbedding $H^{1}(\Omega) \subset L^{2}(\partial \Omega)$, this form is semi-bounded and closed, and thus defines a self-adjoint operator with compact resolvent. Therefore, the spectrum is an unbounded sequence of real eigenvalues accumulating at $+\infty$. Note that the first eigenvalue is negative, and goes to $-\infty$ if a is a small positive constant, see [5].

Let a become zero at a point $x_{0} \in \partial \Omega$. In this note, we will mainly consider the case where a vanishes at order one, i.e. admits the Taylor formula

$$
\begin{equation*}
a(s)=a_{0} s+O\left(s^{2}\right), s \rightarrow 0 \quad \text { with } a_{0}>0 \tag{1}
\end{equation*}
$$

where s is a curvilinear abscissa starting at x_{0}. For convenience, we denote $b_{0}:=a_{0}^{-1}$.
Since we assume a to be continuous, there should exist at least one other point where a vanishes. However, several points of vanishing do not bring any new effect, and we replace the problem by another one: we assume that $\partial \Omega$ is the union of two smooth curves Γ_{1} and Γ_{2} which meet perpendicularly, with x_{0} in the interior of Γ_{1}, and that a vanishes only at x_{0}, according to (1). We complete the Robin boundary condition on Γ_{1} by a Neumann boundary condition on Γ_{2}. Therefore, our spectral problem is

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u \text { on } \Omega, \tag{2}\\
a \partial_{n} u-u=0 \text { on } \Gamma_{1}, \text { and } \partial_{n} u=0 \text { on } \Gamma_{2} .
\end{array}\right.
$$

The associated quadratic form is defined on $D(q):=\left\{u \in H^{1}(\Omega), a^{-\frac{1}{2}} u_{\mid \Gamma_{1}} \in L^{2}\left(\Gamma_{1}\right)\right\}$ as follows

$$
D(q) \ni u \mapsto \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x-\int_{\Gamma_{1}} a^{-1}|u|^{2} \mathrm{~d} s
$$

It is not semi-bounded anymore. Thus, there is no canonical way for defining a self-adjoint operator associated with problem (2). The natural definition becomes the operator A_{0} acting as $-\Delta$ on the domain

$$
\begin{equation*}
D\left(A_{0}\right):=\left\{u \in D(q), \Delta u \in L^{2}(\Omega), a \partial_{n} u-u=0 \text { on } \Gamma_{1}, \partial_{n} u=0 \text { on } \Gamma_{2}\right\} . \tag{3}
\end{equation*}
$$

Such a problem was studied in $[1,6]$ in a model half-disk, for which the eigenvalue equation had the advantage to decouple in polar coordinates. The authors found that A_{0} is non-self-adjoint. In [6], they clarified the "paradox" from [1] stating that, for any $\lambda \in \mathbb{C}$, problem (2) has a nontrivial solution, by showing that the spectrum of A_{0}^{*} is residual and coincides with the complex plane.

A three-dimensional version of this spectral problem appears also in the modeling of a spinless particle moving in two thin films with a one-contact point, and has been studied in a model domain in [3].

2. Goal and results

In this note, we explain how to find extensions of A_{0} and give a better understanding of their spectrum, arguing with an asymptotic approach. We also exhibit a relevant skew-symmetric extension using a physical argument.

The domain of A_{0}^{*} is

$$
D\left(A_{0}^{*}\right):=\left\{u \in L^{2}(\Omega), \Delta u \in L^{2}(\Omega), a \partial_{n} u-u=0 \text { on } \Gamma_{1}, \partial_{n} u=0 \text { on } \Gamma_{2}\right\} .
$$

To understand how different $D\left(A_{0}^{*}\right)$ is from $D\left(A_{0}\right)$, we exhibit two possible singular behaviors for functions in $D\left(A_{0}^{*}\right)$ at the point x_{0}. Using Kondratiev's theory [4], we investigate a model problem in a half-plane and, as a result, describe $D\left(A_{0}^{*}\right)$. We deduce, going over the domain Ω, that the deficiency indices of A_{0} are (1,1), and we classify its self-adjoint extensions using a parametrization $\theta \mapsto \mathrm{e}^{\mathrm{i} \theta}$ of the unit circle $\mathbb{S}^{1} \subset \mathbb{C}$. The description of A_{0}^{*} allows us also to introduce a natural skew-symmetric extension of A_{0} corresponding to a Sommerfeld radiation condition at x_{0}.

Next, we approach our problem by a family of self-adjoint operators by choosing a suitable perturbation of the Robin coefficient a. This is done by means of the non-vanishing discontinuous function

$$
\begin{equation*}
a_{\varepsilon}(s)=a_{0} \operatorname{sign}(s) \varepsilon+a(s) \tag{4}
\end{equation*}
$$

satisfying $\inf _{\Gamma_{1}}\left|a_{\varepsilon}\right|=\varepsilon$, and we study the discrete spectrum of the associated Robin Laplacian as $\varepsilon \rightarrow 0$. Using the method of matched asymptotic expansions, we find that its spectrum is related to the eigenvalues of self-adjoint extensions, with a parameter θ_{ε} oscillating in the logarithmic scale as $\varepsilon \rightarrow 0$.

Finally, we describe the differences when the weight function satisfies $a(s)=a_{0}|s|+O\left(s^{2}\right)$ near the singular point, with $a_{0}>0$. In particular, the number of singularities of functions in $D\left(A_{0}^{*}\right)$ is now two or four, depending on whether $a_{0}>\frac{\pi}{2}$ or not.

A similar result has been obtained in [2], where an operator of the type $\operatorname{div}(\sigma \nabla)$ is considered in a bounded domain, where σ is piecewise constant and changes sign along an interface crossing the boundary.

3. Description of the adjoint operator

In this section, we investigate the following model problem in the half-plane \mathbb{R}_{+}^{2} : find $\mathfrak{u} \in L_{\text {loc }}^{2}\left(\mathbb{R}_{+}^{2}\right)$ such that

$$
\left\{\begin{array}{l}
-\Delta \mathfrak{u}=0 \text { on } \mathbb{R}_{+}^{2} \tag{5}\\
\mathfrak{a} \partial_{n} \mathfrak{u}-\mathfrak{u}=0 \text { on } \partial \mathbb{R}_{+}^{2}
\end{array}\right.
$$

where \mathfrak{a} is the first-order approximation of a near $x_{0}: \mathfrak{a}(s)=a_{0} s$. Let $(r, \varphi) \in(0,+\infty) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be the associated polar coordinates, the normal derivative reads $\partial_{n} \mathfrak{u}(s, 0)=\mp r^{-1} \partial_{\varphi} \mathfrak{u}\left(r, \pm \frac{\pi}{2}\right)$. The boundary condition is decoupled: The problem becomes, in polar coordinates:

$$
\left\{\begin{array}{l}
-\partial_{r}^{2} \mathfrak{u}-r^{-1} \partial_{r} \mathfrak{u}-r^{-2} \partial_{\varphi}^{2} \mathfrak{u}=0 \text { on }(0,+\infty) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\
\forall r>0: \quad-a_{0} \partial_{\varphi} \mathfrak{u}-\mathfrak{u}=0 \text { at } \varphi= \pm \frac{\pi}{2}
\end{array}\right.
$$

The spectrum of the transverse operator $-\partial_{\varphi}^{2}$ is given by solving the eigenvalue problem:

$$
\begin{equation*}
-g^{\prime \prime}(\varphi)=\mu g(\varphi), \quad-a_{0} g^{\prime}\left(\pm \frac{\pi}{2}\right)-g\left(\pm \frac{\pi}{2}\right)=0 \tag{6}
\end{equation*}
$$

Its eigenvalues are $\left\{\mu_{k}, k \geq 0\right\}:=\left\{-b_{0}^{2}\right\} \cup\left\{k^{2}, k=1,2, \ldots\right\}$. The eigenspace associated with $-b_{0}^{2}$ is generated by $g_{0}(\varphi)=$ $\mathrm{e}^{-b_{0} \varphi}$, and the one associated with k^{2} by

$$
g_{k}(\varphi)=\sin \left(k\left(\varphi+\frac{\pi}{2}\right)\right)-k a_{0} \cos \left(k\left(\varphi+\frac{\pi}{2}\right)\right)
$$

We introduce two singular solutions to (5):

$$
\begin{equation*}
\mathfrak{s}^{ \pm}(r, \varphi)=\mathfrak{c} r^{ \pm i b_{0}} \mathrm{e}^{-b_{0} \varphi} \text { with } \mathfrak{c}=\left(2 \sinh \left(b_{0} \pi\right)\right)^{-1 / 2} \tag{7}
\end{equation*}
$$

where the choice for the normalizing factor \mathfrak{c} will become clear in Proposition 2 . Note that $\mathfrak{s}^{ \pm} \notin H_{\text {loc }}^{1}\left(\overline{\mathbb{R}_{+}^{2}}\right)$.
Let χ be a smooth cut-off function that has a small support and equals one near the point x_{0}, and let $S^{ \pm}$be the functions deduced in Ω from $\mathfrak{s}^{ \pm}: S^{ \pm}(x)=\chi(x) \mathfrak{s}^{ \pm}(r, \theta)$ through local polar coordinates $\Omega \ni x \mapsto(r, \theta) \in \mathbb{R}_{+}^{2}$ near x_{0}.

As a consequence of the Kondratiev theorem on asymptotics (see [4] and, e.g., [9, Ch. 3]), we get

Proposition 1. Let $u \in D\left(A_{0}^{*}\right)$, then there exists $\left(c_{\text {in }}, c_{\text {out }}\right) \in \mathbb{C}^{2}$ such that

$$
\begin{equation*}
u=c_{\text {in }}(u) S^{-}+c_{\text {out }}(u) S^{+}+\tilde{u} \tag{8}
\end{equation*}
$$

where $\tilde{u} \in H^{2}(\Omega) \cap D(q)$. Moreover, there exists $C>0$ such that, for all $u \in D\left(A_{0}^{*}\right)$, we have

$$
\begin{equation*}
\left|c_{\text {in }}(u)\right|+\left|c_{\text {out }}(u)\right|+\|\widetilde{u}\|_{L^{2}(\Omega)} \leq C\left(\|u\|_{L^{2}(\Omega)}+\|\Delta u\|_{L^{2}(\Omega)}\right) \tag{9}
\end{equation*}
$$

This decomposition of the operator domain is sufficient to deduce the deficiency indices of the operator. On the one hand, since the operator has real coefficient, $\operatorname{dim}\left(\operatorname{ker}\left(A_{0}^{*}+\mathrm{i}\right)\right)=\operatorname{dim}\left(\operatorname{ker}\left(A_{0}^{*}-\mathrm{i}\right)\right)$. On the other hand, the standard decomposition together with the last proposition implies $\operatorname{dim}\left(\operatorname{ker}\left(A_{0}^{*}+\mathrm{i}\right)\right)+\operatorname{dim}\left(\operatorname{ker}\left(A_{0}^{*}-\mathrm{i}\right)\right)=\operatorname{dim}\left(D\left(A_{0}^{*}\right) / D\left(A_{0}\right)\right)=2$. Therefore, $\operatorname{dim}\left(\operatorname{ker}\left(A_{0}^{*} \pm \mathrm{i}\right)\right)=1$, and the deficiency indices are (1,1). As a corollary, the spectrum of A_{0} covers the whole complex plane.

4. Self-adjoint extensions

Once the domain of the adjoint is explicit, it is standard, see $[7,10]$ and others, to find all self-adjoint extensions of A_{0} by the use of the symplectic form

$$
\psi:(u, v) \mapsto\left\langle A_{0}^{*} u, v\right\rangle-\left\langle u, A_{0}^{*} v\right\rangle, \text { defined on } D\left(A_{0}^{*}\right)
$$

As a consequence of integration by parts and symplectic algebra, we verify Proposition 2.

Proposition 2. Let u and v in $D\left(A_{0}^{*}\right)$, written in the form (8). Then

$$
\psi(u, v)=\mathrm{i}\left(c_{\mathrm{in}}(u) \overline{c_{\mathrm{in}(}(v)}-c_{\mathrm{out}}(u) \overline{c_{\mathrm{out}}(v)}\right) .
$$

As a consequence of Proposition 2, for any $u \in D\left(A_{0}^{*}\right)$, we obtain

$$
\psi(u, u)=\mathrm{i}\left(\left|c_{\text {in }}\right|^{2}-\left|c_{\text {out }}\right|^{2}\right)
$$

Therefore, the self-adjoint extensions are the restrictions of A_{0}^{*} onto linear spaces of the functions $u \in D\left(A_{0}^{*}\right)$, for which $\left|c_{\text {in }}(u)\right|=\left|c_{\text {out }}(u)\right|$. We conclude with Theorem 3.

Theorem 3. Let $\theta \in \mathbb{R}$, and let $A_{0}(\theta)$ be the restriction of A_{0}^{*} to the domain

$$
D\left(A_{0}(\theta)\right)=\left\{u \in D\left(A_{0}^{*}\right), c_{\text {in }}(u)=\mathrm{e}^{\mathrm{i} \theta} c_{\text {out }}(u)\right\} .
$$

Then $A^{\text {sa }}$ is a self-adjoint extension of A_{0} if and only if there exists $\theta \in \mathbb{R}$ such that $A^{\text {sa }}=A_{0}(\theta)$.

Each domain of these extensions has compact injection in $L^{2}(\Omega)$ because a function $u \in D\left(A_{0}(\theta)\right)$ differs from $\tilde{u} \in H^{2}(\Omega)$ by a linear combination of two functions $S^{ \pm} \in L^{2}(\Omega)$. Therefore, each of these extensions has compact resolvent. Moreover, it is not semi-bounded from below, and we denote by $\left(\lambda_{k}(\theta)\right)_{k \in \mathbb{Z}}$ the increasing sequence of eigenvalues of $A_{0}(\theta)$.

5. The physical radiation condition and a skew-symmetric extension

In link with the wave equation $-\partial_{t}^{2} W=-\Delta W$, analyzing the propagation of the wave

$$
W^{ \pm}(t, x):=\mathrm{e}^{-\mathrm{i} \sqrt{\lambda} t} S^{ \pm}(x)=\mathrm{e}^{-\mathrm{i} \sqrt{\lambda}\left(t \mp \lambda^{-1 / 2} b_{0} \ln r\right)} g_{0}(\varphi)
$$

in the framework of the Sommerfeld or Mandelstam principles, cf. [9, Ch. 5], we can interpret S^{-}as propagating from x_{0}, whereas S^{+}would propagate toward x_{0}. Notice that any other radiation principle leads to the same conclusion.

For a fixed $\lambda \in \mathbb{R}$, the scattering theory (cf. [9, Ch. 5]) provides a solution to (2) in the form

$$
\begin{equation*}
\zeta_{\lambda}=S^{+}+\mathrm{e}^{\mathrm{i} \theta_{\lambda}} S^{-}+\widetilde{\zeta}_{\lambda}, \quad \text { with } \tilde{\zeta}_{\lambda} \in D(q) \cap H^{2}(\Omega) \tag{10}
\end{equation*}
$$

This solution is interpreted as the scattering wave initiated with the incident (entering) wave S^{+}, and $\mathrm{e}^{\mathrm{i} \theta_{\lambda}}$ is the reflection coefficient, with $\left|\mathrm{e}^{\mathrm{i} \theta_{\lambda}}\right|=1$, according to the conservation of energy.

Moreover, a natural skew-symmetric extension \mathfrak{A}_{0} of A_{0} can be defined in the domain

$$
D\left(\mathfrak{A}_{0}\right)=\left\{u \in D\left(A_{0}^{*}\right), c_{\text {in }}(u)=0\right\} .
$$

This extension corresponds to the natural radiation condition, excluding entering waves.

6. Wandering of the eigenvalues

Assume that $\lambda_{k}(\theta)$ is a simple eigenvalue of $A_{0}(\theta)$, and denote by $C_{0}\left(S^{+}+\mathrm{e}^{\mathrm{i} \theta} S^{-}\right)+\widetilde{u}$ an associated eigenfunction normalized in $L^{2}(\Omega)$. Then standard computations show that $\partial_{\theta} \lambda_{k}(\theta)=-\left|C_{0}\right|^{2}$. Therefore, an eigenvalue $\lambda_{k}(\cdot)$ is a nonincreasing function of $\theta \in \mathbb{R}$ wherever it is simple; moreover, it is decreasing if $C_{0} \neq 0$. If $C_{0}=0$ for some k and θ, then the constant eigenvalue $\lambda_{k}(\theta)=\lambda$ is associated with a trapped mode, that is a non-trivial solution to problem (2) belonging to $D(q) \cap H^{2}(\Omega)$, which is in $D(A(\theta))$ for any $\theta \in \mathbb{R}$.

The functions $\lambda_{k}(\cdot)$ are piecewise analytic; moreover, they cannot be all constant, indeed in that case the range of all the eigenvalues $\lambda_{k}(\theta)$ would be a discrete set, which contradicts the existence of the physical solution in the form (10) for any $\lambda \in \mathbb{R}$.

Therefore, there exists at least one branch $\lambda_{k}(\cdot)$ which is decreasing where it is regular. This, combined with the periodicity of the spectrum, shows that

$$
\begin{equation*}
\bigcup_{(k, \theta) \in \mathbb{Z} \times \mathbb{R}} \lambda_{k}(\theta)=\mathbb{R} \tag{11}
\end{equation*}
$$

7. The method of matched asymptotic expansions

For $\varepsilon>0$, we recall that a_{ε} was defined in (4) as an approximation of a. Now the quadratic form

$$
u \mapsto \int_{\Omega}|\nabla u|^{2}-\int_{\Gamma_{1}} a_{\varepsilon}^{-1}(s)|u|^{2}
$$

is well defined and bounded from below in $H^{1}(\Omega)$. We denote by A^{ε} the corresponding self-adjoint operator. The strategy is now to construct quasi-modes for A^{ε} through eigenfunctions of an extension $A_{0}\left(\theta_{\varepsilon}\right)$, where θ_{ε} is to be chosen. The result is given by Theorem 4.

Theorem 4. For all $k \geq 0$ and for ε small enough, there exists $\theta_{\varepsilon} \in \mathbb{R}$ such that dist $\left(\lambda_{k}\left(\theta_{\varepsilon}\right), \sigma\left(A^{\varepsilon}\right)\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Moreover, the mapping $\varepsilon \mapsto \theta_{\varepsilon}$ is periodic with respect to $\ln \varepsilon$, and

$$
\begin{equation*}
\mathbb{R}=\bigcup_{\varepsilon \downarrow 0} \sigma\left(A^{\varepsilon}\right) \tag{12}
\end{equation*}
$$

The procedure is as follows.

- Far-field expansion: outside a fixed neighborhood of x_{0}, take a function $u^{\text {out }}$ as an eigenfunction of $A_{0}\left(\theta_{\varepsilon}\right)$, where θ_{ε} is to be chosen. Therefore, it behaves near x_{0} as follows:

$$
u^{\text {out }}:(r, \varphi) \mapsto C\left(r^{\mathrm{i} b_{0}}+\mathrm{e}^{\mathrm{i} \theta_{\varepsilon}} r^{-\mathrm{i} b_{0}}\right) \mathrm{e}^{a_{0}^{-1} \varphi}+\widetilde{u}^{\text {out }}
$$

where $\widetilde{u}^{\text {out }}$ is regular and small near 0 .

- Near-field expansion. In local coordinates near x_{0}, we perform the scaling $x=\varepsilon \xi$, and considering bounded eigenvalues, we get to solve (5) with $\mathfrak{a}\left(\xi_{1}\right):=a_{0}\left(\operatorname{sign}\left(\xi_{1}\right)+\xi_{1}\right)$. In order to investigate the behavior of solutions to this problem at infinity, we perform the inversion $\xi \mapsto \eta=|\xi|^{-2} \xi$, which leads to the behavior at the origin $\eta=0$ of (5), but with the weight function $a_{0}: \eta_{1} \mapsto \eta_{1}+\operatorname{sign}\left(\eta_{1}\right) \eta_{1}^{2}$ in the boundary condition. Near the origin $\eta=0$, we can neglect the part $\operatorname{sign}\left(\eta_{1}\right) \eta_{1}^{2}$, and according to Kondratiev's theory [4], there exists a solution to such a problem that behaves as

$$
\eta \mapsto \mathfrak{s}^{-}(\eta)+\mathrm{e}^{\mathrm{i} \theta} \mathfrak{s}^{+}(\eta)+O(|\eta|), \quad \theta \in \mathbb{R} \text { fixed. }
$$

Therefore, we obtain a solution to (5) with weight \mathfrak{a}, which produces after rescaling a solution to the Laplace equation in Ω that behaves in a neighborhood of x_{0} as

$$
u^{\mathrm{in}}:(r, \varphi) \mapsto \widetilde{C}\left(\varepsilon^{\mathrm{i} b_{0}} r^{-\mathrm{i} b_{0}}+\mathrm{e}^{\mathrm{i} \theta} \varepsilon^{-\mathrm{i} b_{0}} r^{\mathrm{i} b_{0}}\right) \mathrm{e}^{a_{0}^{-1} \varphi}+\widetilde{u}^{\mathrm{in}}
$$

where $\widetilde{u}^{\text {in }}$ is decaying outside the neighborhood, and \widetilde{C} is a normalization factor.

- Matching expansions and conclusion. Matching the two previous expansions, we obtain:

$$
\begin{equation*}
\theta_{\varepsilon}=\theta-2 b_{0} \ln \varepsilon \quad(\bmod 2 \pi) \tag{13}
\end{equation*}
$$

This formal approach is validated by constructing the quasi-mode from the previous ansätze using cut-off functions: define

$$
u^{\text {as }}=\chi^{\text {in }} u^{\text {in }}+\chi^{\text {out }} u^{\text {out }}-\chi^{\text {in }} \chi^{\text {out }} C\left(\mathfrak{s}^{+}+\mathrm{e}^{\mathrm{i} \theta_{\varepsilon} \mathfrak{s}^{-}}\right)
$$

where $\chi^{\text {in }}$ (respectively, $\chi^{\text {out }}$) is localized in a bounded neighborhood of x_{0} (respectively, outside a neighborhood of x_{0} of size $O(\varepsilon)$). Evaluating $\left(A^{\varepsilon}-\lambda_{k}\left(\theta_{\varepsilon}\right)\right) u^{\text {as }}$, we get that $\lambda_{k}\left(\theta_{\varepsilon}\right)$ is close to the spectrum of A^{ε} for ε small enough. Note that θ_{ε} is periodic with respect to $\ln \varepsilon$ and $\mathrm{e}^{\mathrm{i} \theta_{\varepsilon}}$ runs over $\mathbb{S}^{1} \subset \mathbb{C}$ at the rate $O\left(\varepsilon^{-1}\right)$ as $\varepsilon \rightarrow 0$. Then, (12) follows from (11).

8. Further questions

When the weight function satisfies $a(s)=a_{0}|s|+O\left(s^{2}\right)$, with $a_{0}>0$, the situation depends on the parameter a_{0}, as described here: The transverse operator in the angular variable in the model half-plane \mathbb{R}_{+}^{2} is still $-\partial_{\varphi}^{2}$, but the boundary condition at $\varphi=\frac{\pi}{2}$ in (6) now becomes $a_{0} g^{\prime}\left(\frac{\pi}{2}\right)-g\left(\frac{\pi}{2}\right)=0$. The negative spectrum of this operator depends on a_{0} as follows.
1° If $a_{0}>\frac{\pi}{2}$, then there is one negative eigenvalue, and the other ones are positive. It produces two oscillatory solutions.
2° If $a_{0}=\frac{\pi}{2}$, there is one negative eigenvalue, and null is also an eigenvalue. There are two additional solutions for the model problem, one has the form $g_{0}(\varphi) \ln r$, and the other is constant with respect to r.
3° If $a_{0}<\frac{\pi}{2}$, then there are two negative eigenvalues. They produce four oscillatory solutions.
Situation 1° can be analyzed exactly in the same way as that we described here. However, situations 2° and 3° are much more different. In particular, the deficiency indices are (2,2), and the self-adjoint extensions are parameterized by two-bytwo unitary matrices. The method of the matched asymptotic expansions does not provide an explicit parameter extension as in (13), but a family of unitary matrices depending on ε, cf [8]. This family does not always coincide with the set of all unitary matrices as $\varepsilon \rightarrow 0$, but it is sufficient for the construction of approximations.

Acknowledgements

This work is supported by grant 17-11-01003 of the Russian Science Foundation. It is also supported by the Chair BOLIDE funded by the IDEX Bordeaux and by the project PEPS JC 2017.

References

[1] M.V. Berry, M. Dennis, Boundary-condition-varying circle billiards and gratings: the Dirichlet singularity, J. Phys. A 41 (13) (2008) 135203.
[2] X. Claeys, L. Chesnel, S. Nazarov, Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner, ESAIM: Math. Model. Numer. Anal. (2016), https://doi.org/10.1051/m2an/2016080, in press.
[3] P. Exner, P. Seba, A simple model of thin-film point contact in two and three dimensions, Czechoslov. J. Phys. 38 (10) (1988) 1095-1110.
[4] V.A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Tr. Mosk. Mat. Obŝ. 16 (1967) $209-292$.
[5] M. Levitin, L. Parnovski, On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr. 281 (2) (2008) 272-281.
[6] M. Marlettta, G. Rozenblum, A Laplace operator with boundary conditions singular at one point, J. Phys. A 42 (12) (2009) 125204.
[7] S.A. Nazarov, Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces, Math. USSR Sb. 65 (1) (1990) 229.
[8] S.A. Nazarov, Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions, in: Proceedings of the St. Petersburg Mathematical Society, Vol. V, in: Amer. Math. Soc. Transl. Ser. 2, vol. 193, American Mathematical Society, Providence, RI, USA, 1999, pp. 77-125.
[9] S.A. Nazarov, B. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter \& Co., Berlin, 1994.
[10] F.S. Rofe-Beketov, Selfadjoint extensions of differential operators in a space of vector-valued functions, Dokl. Akad. Nauk SSSR 184 (1969) $1034-1037$.

[^0]: E-mail addresses: srgnazarov@yahoo.co.uk (S.A. Nazarov), nicolas.popoff@math.u-bordeaux1.fr (N. Popoff).
 https://doi.org/10.1016/j.crma.2018.07.001
 1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

