

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations

Self-adjoint and skew-symmetric extensions of the Laplacian with singular Robin boundary condition

Extensions self-adjointes et anti-symétriques du laplacien, avec condition à la frontière de type Robin singulière

Sergei A. Nazarov^{a,b}, Nicolas Popoff^c

^a Saint-Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russia

^b Institute of Problems of Mechanical Engineering, Bolshoi pr., 61, St. Petersburg, 199178, Russia

^c Institut de mathématique de Bordeaux, Université Bordeaux-1, UMR 5251, 33405 Talence cedex, France

ARTICLE INFO

Article history: Received 11 December 2017 Accepted 2 July 2018 Available online 17 July 2018

Presented by the Editorial Board

ABSTRACT

We study the Laplacian in a bounded domain, with a varying Robin boundary condition singular at one point. The associated quadratic form is not semi-bounded from below, and the corresponding Laplacian is not self-adjoint, it has a residual spectrum covering the whole complex plane. We describe its self-adjoint extensions and exhibit a physically relevant skew-symmetric one. We approximate the boundary condition, giving rise to a family of self-adjoint operators, and we describe its spectrum by the method of matched asymptotic expansions. A part of the spectrum acquires a strange behavior when the small perturbation parameter $\varepsilon > 0$ tends to zero, namely it becomes almost periodic in the logarithmic scale $|\ln \varepsilon|$, and in this way "wanders" along the real axis at a speed $O(\varepsilon^{-1})$. © 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

RÉSUMÉ

Nous étudions le laplacien dans un domaine borné, avec une condition à la frontière de type Robin, variable et singulière en un point. La forme quadratique associée n'est pas bornée inférieurement, et le laplacien correspondant n'est pas self-adjoint; son spectre résiduel couvre entièrement le plan complexe. Nous décrivons ses extensions self-adjointes et nous en montrons une anti-symétrique, pertinente en physique. Nous approchons la condition de frontière à l'aide d'une famille d'opérateurs self-adjoints et nous décrivons son spectre par la méthode d'appariement des développements asymptotiques. Une partie du spectre adopte un comportement étrange quand le paramètre $\varepsilon > 0$ de petite perturbation tend vers zéro; précisément, il devient presque périodique en échelle logarithmique $|\log(\varepsilon)|$, et ainsi « erre » le long de l'axe réel à une vitesse $O(\varepsilon^{-1})$.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.crma.2018.07.001

E-mail addresses: srgnazarov@yahoo.co.uk (S.A. Nazarov), nicolas.popoff@math.u-bordeaux1.fr (N. Popoff).

¹⁶³¹⁻⁰⁷³X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Description of the singular problem

In a domain $\Omega \subset \mathbb{R}^2$ enveloped by a smooth simple contour $\partial \Omega$, we consider the Laplacian with a Robin-type boundary condition $a\partial_n u - u = 0$. Here, *a* is a continuous function defined on $\partial \Omega$, and ∂_n denotes the outward normal derivative to $\partial \Omega$.

If *a* is positive on $\partial\Omega$, the quadratic form $H^1(\Omega) \ni u \mapsto \|\nabla u; L^2(\Omega)\|^2 - \|a^{-1/2}u, L^2(\partial\Omega)\|^2$ is naturally associated with this problem and, in view of the compact imbedding $H^1(\Omega) \subset L^2(\partial\Omega)$, this form is semi-bounded and closed, and thus defines a self-adjoint operator with compact resolvent. Therefore, the spectrum is an unbounded sequence of real eigenvalues accumulating at $+\infty$. Note that the first eigenvalue is negative, and goes to $-\infty$ if *a* is a small positive constant, see [5].

Let *a* become zero at a point $x_0 \in \partial \Omega$. In this note, we will mainly consider the case where *a* vanishes at order one, i.e. admits the Taylor formula

$$a(s) = a_0 s + O(s^2), \ s \to 0 \quad \text{with } a_0 > 0,$$
 (1)

where *s* is a curvilinear abscissa starting at x_0 . For convenience, we denote $b_0 := a_0^{-1}$.

Since we assume *a* to be continuous, there should exist at least one other point where *a* vanishes. However, several points of vanishing do not bring any new effect, and we replace the problem by another one: we assume that $\partial \Omega$ is the union of two smooth curves Γ_1 and Γ_2 which meet perpendicularly, with x_0 in the interior of Γ_1 , and that *a* vanishes only at x_0 , according to (1). We complete the Robin boundary condition on Γ_1 by a Neumann boundary condition on Γ_2 . Therefore, our spectral problem is

$$\begin{cases} -\Delta u = \lambda u \text{ on } \Omega, \\ a\partial_n u - u = 0 \text{ on } \Gamma_1, \text{ and } \partial_n u = 0 \text{ on } \Gamma_2. \end{cases}$$
(2)

The associated quadratic form is defined on $D(q) := \{u \in H^1(\Omega), a^{-\frac{1}{2}}u_{|\Gamma_1|} \in L^2(\Gamma_1)\}$ as follows

$$D(q) \ni u \mapsto \int_{\Omega} |\nabla u|^2 \mathrm{d}x - \int_{\Gamma_1} a^{-1} |u|^2 \mathrm{d}s.$$

It is not semi-bounded anymore. Thus, there is no canonical way for defining a self-adjoint operator associated with problem (2). The natural definition becomes the operator A_0 acting as $-\Delta$ on the domain

$$D(A_0) := \{ u \in D(q), \Delta u \in L^2(\Omega), a\partial_n u - u = 0 \text{ on } \Gamma_1, \partial_n u = 0 \text{ on } \Gamma_2 \}.$$
(3)

Such a problem was studied in [1,6] in a model half-disk, for which the eigenvalue equation had the advantage to decouple in polar coordinates. The authors found that A_0 is non-self-adjoint. In [6], they clarified the "paradox" from [1] stating that, for any $\lambda \in \mathbb{C}$, problem (2) has a nontrivial solution, by showing that the spectrum of A_0^* is residual and coincides with the complex plane.

A three-dimensional version of this spectral problem appears also in the modeling of a spinless particle moving in two thin films with a one-contact point, and has been studied in a model domain in [3].

2. Goal and results

In this note, we explain how to find extensions of A_0 and give a better understanding of their spectrum, arguing with an asymptotic approach. We also exhibit a relevant skew-symmetric extension using a physical argument.

The domain of A_0^* is

$$D(A_0^*) := \{ u \in L^2(\Omega), \Delta u \in L^2(\Omega), a\partial_n u - u = 0 \text{ on } \Gamma_1, \partial_n u = 0 \text{ on } \Gamma_2 \}.$$

To understand how different $D(A_0^*)$ is from $D(A_0)$, we exhibit two possible singular behaviors for functions in $D(A_0^*)$ at the point x_0 . Using Kondratiev's theory [4], we investigate a model problem in a half-plane and, as a result, describe $D(A_0^*)$. We deduce, going over the domain Ω , that the deficiency indices of A_0 are (1,1), and we classify its self-adjoint extensions using a parametrization $\theta \mapsto e^{i\theta}$ of the unit circle $\mathbb{S}^1 \subset \mathbb{C}$. The description of A_0^* allows us also to introduce a natural skew-symmetric extension of A_0 corresponding to a Sommerfeld radiation condition at x_0 .

Next, we approach our problem by a family of self-adjoint operators by choosing a suitable perturbation of the Robin coefficient *a*. This is done by means of the non-vanishing discontinuous function

$$a_{\varepsilon}(s) = a_0 \operatorname{sign}(s)\varepsilon + a(s) \tag{4}$$

satisfying $\inf_{\Gamma_1} |a_{\varepsilon}| = \varepsilon$, and we study the discrete spectrum of the associated Robin Laplacian as $\varepsilon \to 0$. Using the method of matched asymptotic expansions, we find that its spectrum is related to the eigenvalues of self-adjoint extensions, with a parameter θ_{ε} oscillating in the logarithmic scale as $\varepsilon \to 0$.

Finally, we describe the differences when the weight function satisfies $a(s) = a_0|s| + O(s^2)$ near the singular point, with $a_0 > 0$. In particular, the number of singularities of functions in $D(A_0^*)$ is now two or four, depending on whether $a_0 > \frac{\pi}{2}$ or not.

A similar result has been obtained in [2], where an operator of the type $div(\sigma \nabla)$ is considered in a bounded domain, where σ is piecewise constant and changes sign along an interface crossing the boundary.

3. Description of the adjoint operator

In this section, we investigate the following model problem in the half-plane \mathbb{R}^2_+ : find $\mathfrak{u} \in L^2_{loc}(\mathbb{R}^2_+)$ such that

$$\begin{cases} -\Delta \mathfrak{u} = 0 \text{ on } \mathbb{R}^2_+, \\ \mathfrak{a} \partial_n \mathfrak{u} - \mathfrak{u} = 0 \text{ on } \partial \mathbb{R}^2_+, \end{cases}$$
(5)

where a is the first-order approximation of a near x_0 : $a(s) = a_0 s$. Let $(r, \varphi) \in (0, +\infty) \times (-\frac{\pi}{2}, \frac{\pi}{2})$ be the associated polar coordinates, the normal derivative reads $\partial_n \mathfrak{u}(s,0) = \mp r^{-1} \partial_{\omega} \mathfrak{u}(r,\pm\frac{\pi}{2})$. The boundary condition is decoupled: The problem becomes, in polar coordinates:

$$\begin{cases} -\partial_r^2 \mathfrak{u} - r^{-1} \partial_r \mathfrak{u} - r^{-2} \partial_{\varphi}^2 \mathfrak{u} = 0 \text{ on } (0, +\infty) \times (-\frac{\pi}{2}, \frac{\pi}{2}), \\ \forall r > 0: \quad -a_0 \partial_{\varphi} \mathfrak{u} - \mathfrak{u} = 0 \text{ at } \varphi = \pm \frac{\pi}{2}. \end{cases}$$

The spectrum of the transverse operator $-\partial_{\omega}^2$ is given by solving the eigenvalue problem:

$$-g''(\varphi) = \mu g(\varphi), \quad -a_0 g'(\pm \frac{\pi}{2}) - g(\pm \frac{\pi}{2}) = 0.$$
(6)

Its eigenvalues are $\{\mu_k, k \ge 0\} := \{-b_0^2\} \cup \{k^2, k = 1, 2, ...\}$. The eigenspace associated with $-b_0^2$ is generated by $g_0(\varphi) = e^{-b_0\varphi}$, and the one associated with k^2 by

$$g_k(\varphi) = \sin(k(\varphi + \frac{\pi}{2})) - ka_0 \cos(k(\varphi + \frac{\pi}{2})).$$

We introduce two singular solutions to (5):

$$\mathfrak{s}^{\pm}(r,\varphi) = \mathfrak{c} r^{\pm ib_0} \mathrm{e}^{-b_0 \varphi} \quad \text{with} \quad \mathfrak{c} = (2\sinh(b_0 \pi))^{-1/2} \tag{7}$$

where the choice for the normalizing factor \mathfrak{c} will become clear in Proposition 2. Note that $\mathfrak{s}^{\pm} \notin H^1_{loc}(\mathbb{R}^2_+)$.

Let χ be a smooth cut-off function that has a small support and equals one near the point x_0 , and let S^{\pm} be the functions deduced in Ω from \mathfrak{s}^{\pm} : $S^{\pm}(x) = \chi(x)\mathfrak{s}^{\pm}(r,\theta)$ through local polar coordinates $\Omega \ni x \mapsto (r,\theta) \in \mathbb{R}^2_+$ near x_0 . As a consequence of the Kondratiev theorem on asymptotics (see [4] and, e.g., [9, Ch. 3]), we get

Proposition 1. Let $u \in D(A_0^*)$, then there exists $(c_{in}, c_{out}) \in \mathbb{C}^2$ such that

$$u = c_{\rm in}(u)S^- + c_{\rm out}(u)S^+ + \widetilde{u} \tag{8}$$

where $\widetilde{u} \in H^2(\Omega) \cap D(q)$. Moreover, there exists C > 0 such that, for all $u \in D(A_0^*)$, we have

$$|c_{in}(u)| + |c_{out}(u)| + \|\widetilde{u}\|_{L^{2}(\Omega)} \le C(\|u\|_{L^{2}(\Omega)} + \|\Delta u\|_{L^{2}(\Omega)}).$$
(9)

This decomposition of the operator domain is sufficient to deduce the deficiency indices of the operator. On the one hand, since the operator has real coefficient, $\dim(\ker(A_0^* + i)) = \dim(\ker(A_0^* - i))$. On the other hand, the standard decomposition together with the last proposition implies $\dim(\ker(A_0^* + i)) + \dim(\ker(A_0^* - i)) = \dim(D(A_0^*)/D(A_0)) = 2$. Therefore, $\dim(\ker(A_0^* \pm i)) = 1$, and the deficiency indices are (1,1). As a corollary, the spectrum of A_0 covers the whole complex plane.

4. Self-adjoint extensions

Once the domain of the adjoint is explicit, it is standard, see [7,10] and others, to find all self-adjoint extensions of A_0 by the use of the symplectic form

 $\psi : (u, v) \mapsto \langle A_0^* u, v \rangle - \langle u, A_0^* v \rangle$, defined on $D(A_0^*)$.

As a consequence of integration by parts and symplectic algebra, we verify Proposition 2.

Proposition 2. Let u and v in $D(A_0^*)$, written in the form (8). Then

 $\psi(u, v) = \mathrm{i}\left(c_{\mathrm{in}}(u)\overline{c_{\mathrm{in}}(v)} - c_{\mathrm{out}}(u)\overline{c_{\mathrm{out}}(v)}\right).$

As a consequence of Proposition 2, for any $u \in D(A_0^*)$, we obtain

 $\psi(u, u) = i(|c_{in}|^2 - |c_{out}|^2).$

Therefore, the self-adjoint extensions are the restrictions of A_0^* onto linear spaces of the functions $u \in D(A_0^*)$, for which $|c_{in}(u)| = |c_{out}(u)|$. We conclude with Theorem 3.

Theorem 3. Let $\theta \in \mathbb{R}$, and let $A_0(\theta)$ be the restriction of A_0^* to the domain

 $D(A_0(\theta)) = \{ u \in D(A_0^*), c_{\text{in}}(u) = e^{i\theta} c_{\text{out}}(u) \}.$

Then A^{sa} is a self-adjoint extension of A_0 if and only if there exists $\theta \in \mathbb{R}$ such that $A^{sa} = A_0(\theta)$.

Each domain of these extensions has compact injection in $L^2(\Omega)$ because a function $u \in D(A_0(\theta))$ differs from $\tilde{u} \in H^2(\Omega)$ by a linear combination of two functions $S^{\pm} \in L^2(\Omega)$. Therefore, each of these extensions has compact resolvent. Moreover, it is not semi-bounded from below, and we denote by $(\lambda_k(\theta))_{k \in \mathbb{Z}}$ the increasing sequence of eigenvalues of $A_0(\theta)$.

5. The physical radiation condition and a skew-symmetric extension

In link with the wave equation $-\partial_t^2 W = -\Delta W$, analyzing the propagation of the wave

$$W^{\pm}(t, x) := e^{-i\sqrt{\lambda}t} S^{\pm}(x) = e^{-i\sqrt{\lambda}(t \mp \lambda^{-1/2} b_0 \ln r)} g_0(\varphi),$$

in the framework of the Sommerfeld or Mandelstam principles, cf. [9, Ch. 5], we can interpret S^- as propagating from x_0 , whereas S^+ would propagate toward x_0 . Notice that any other radiation principle leads to the same conclusion.

For a fixed $\lambda \in \mathbb{R}$, the scattering theory (cf. [9, Ch. 5]) provides a solution to (2) in the form

$$\zeta_{\lambda} = S^{+} + e^{i\theta_{\lambda}}S^{-} + \widetilde{\zeta}_{\lambda}, \quad \text{with } \widetilde{\zeta}_{\lambda} \in D(q) \cap H^{2}(\Omega).$$
(10)

This solution is interpreted as the scattering wave initiated with the incident (entering) wave S^+ , and $e^{i\theta_{\lambda}}$ is the reflection coefficient, with $|e^{i\theta_{\lambda}}| = 1$, according to the conservation of energy.

Moreover, a natural skew-symmetric extension \mathfrak{A}_0 of A_0 can be defined in the domain

 $D(\mathfrak{A}_0) = \{ u \in D(A_0^*), c_{in}(u) = 0 \}.$

This extension corresponds to the natural radiation condition, excluding entering waves.

6. Wandering of the eigenvalues

Assume that $\lambda_k(\theta)$ is a simple eigenvalue of $A_0(\theta)$, and denote by $C_0(S^+ + e^{i\theta}S^-) + \tilde{u}$ an associated eigenfunction normalized in $L^2(\Omega)$. Then standard computations show that $\partial_{\theta}\lambda_k(\theta) = -|C_0|^2$. Therefore, an eigenvalue $\lambda_k(\cdot)$ is a nonincreasing function of $\theta \in \mathbb{R}$ wherever it is simple; moreover, it is decreasing if $C_0 \neq 0$. If $C_0 = 0$ for some k and θ , then the constant eigenvalue $\lambda_k(\theta) = \lambda$ is associated with a trapped mode, that is a non-trivial solution to problem (2) belonging to $D(q) \cap H^2(\Omega)$, which is in $D(A(\theta))$ for any $\theta \in \mathbb{R}$.

The functions $\lambda_k(\cdot)$ are piecewise analytic; moreover, they cannot be all constant, indeed in that case the range of all the eigenvalues $\lambda_k(\theta)$ would be a discrete set, which contradicts the existence of the physical solution in the form (10) for any $\lambda \in \mathbb{R}$.

Therefore, there exists at least one branch $\lambda_k(\cdot)$ which is decreasing where it is regular. This, combined with the periodicity of the spectrum, shows that

$$\bigcup_{(k,\theta)\in\mathbb{Z}\times\mathbb{R}}\lambda_k(\theta)=\mathbb{R}.$$
(11)

7. The method of matched asymptotic expansions

For $\varepsilon > 0$, we recall that a_{ε} was defined in (4) as an approximation of *a*. Now the quadratic form

$$u\mapsto \int_{\Omega} |\nabla u|^2 - \int_{\Gamma_1} a_{\varepsilon}^{-1}(s)|u|^2$$

is well defined and bounded from below in $H^1(\Omega)$. We denote by A^{ε} the corresponding self-adjoint operator. The strategy is now to construct quasi-modes for A^{ε} through eigenfunctions of an extension $A_0(\theta_{\varepsilon})$, where θ_{ε} is to be chosen. The result is given by Theorem 4.

Theorem 4. For all $k \ge 0$ and for ε small enough, there exists $\theta_{\varepsilon} \in \mathbb{R}$ such that dist $(\lambda_k(\theta_{\varepsilon}), \sigma(A^{\varepsilon})) \to 0$ as $\varepsilon \to 0$. Moreover, the mapping $\varepsilon \mapsto \theta_{\varepsilon}$ is periodic with respect to $\ln \varepsilon$, and

$$\mathbb{R} = \bigcup_{\varepsilon \downarrow 0} \sigma(A^{\varepsilon}).$$
⁽¹²⁾

The procedure is as follows.

• *Far-field expansion:* outside a fixed neighborhood of x_0 , take a function u^{out} as an eigenfunction of $A_0(\theta_{\varepsilon})$, where θ_{ε} is to be chosen. Therefore, it behaves near x_0 as follows:

$$u^{\text{out}}: (r, \varphi) \mapsto C(r^{ib_0} + e^{i\theta_{\varepsilon}}r^{-ib_0})e^{a_0^{-1}\varphi} + \widetilde{u}^{\text{out}},$$

where \widetilde{u}^{out} is regular and small near 0.

• *Near-field expansion.* In local coordinates near x_0 , we perform the scaling $x = \varepsilon \xi$, and considering bounded eigenvalues, we get to solve (5) with $a(\xi_1) := a_0(\operatorname{sign}(\xi_1) + \xi_1)$. In order to investigate the behavior of solutions to this problem at infinity, we perform the inversion $\xi \mapsto \eta = |\xi|^{-2}\xi$, which leads to the behavior at the origin $\eta = 0$ of (5), but with the weight function $a_0 : \eta_1 \mapsto \eta_1 + \operatorname{sign}(\eta_1)\eta_1^2$ in the boundary condition. Near the origin $\eta = 0$, we can neglect the part $\operatorname{sign}(\eta_1)\eta_1^2$, and according to Kondratiev's theory [4], there exists a solution to such a problem that behaves as

$$\eta \mapsto \mathfrak{s}^{-}(\eta) + \mathrm{e}^{\mathrm{i}\theta}\mathfrak{s}^{+}(\eta) + O(|\eta|), \ \theta \in \mathbb{R} \text{ fixed.}$$

Therefore, we obtain a solution to (5) with weight \mathfrak{a} , which produces after rescaling a solution to the Laplace equation in Ω that behaves in a neighborhood of x_0 as

$$u^{\text{in}}: (r, \varphi) \mapsto \widetilde{C}(\varepsilon^{ib_0}r^{-ib_0} + e^{i\theta}\varepsilon^{-ib_0}r^{ib_0})e^{a_0^{-1}\varphi} + \widetilde{u}^{\text{in}}$$

where \tilde{u}^{in} is decaying outside the neighborhood, and \tilde{C} is a normalization factor.

• Matching expansions and conclusion. Matching the two previous expansions, we obtain:

$$\theta_{\varepsilon} = \theta - 2 b_0 \ln \varepsilon \pmod{2\pi}$$
.

This formal approach is validated by constructing the quasi-mode from the previous ansätze using cut-off functions: define

$$u^{as} = \chi^{in}u^{in} + \chi^{out}u^{out} - \chi^{in}\chi^{out}C(\mathfrak{s}^+ + e^{i\theta_{\varepsilon}}\mathfrak{s}^-),$$

where χ^{in} (respectively, χ^{out}) is localized in a bounded neighborhood of x_0 (respectively, outside a neighborhood of x_0 of size $O(\varepsilon)$). Evaluating $(A^{\varepsilon} - \lambda_k(\theta_{\varepsilon}))u^{\text{as}}$, we get that $\lambda_k(\theta_{\varepsilon})$ is close to the spectrum of A^{ε} for ε small enough. Note that θ_{ε} is periodic with respect to $\ln \varepsilon$ and $e^{i\theta_{\varepsilon}}$ runs over $\mathbb{S}^1 \subset \mathbb{C}$ at the rate $O(\varepsilon^{-1})$ as $\varepsilon \to 0$. Then, (12) follows from (11).

8. Further questions

When the weight function satisfies $a(s) = a_0|s| + O(s^2)$, with $a_0 > 0$, the situation depends on the parameter a_0 , as described here: The transverse operator in the angular variable in the model half-plane \mathbb{R}^2_+ is still $-\partial_{\varphi}^2$, but the boundary condition at $\varphi = \frac{\pi}{2}$ in (6) now becomes $a_0g'(\frac{\pi}{2}) - g(\frac{\pi}{2}) = 0$. The negative spectrum of this operator depends on a_0 as follows.

1° If $a_0 > \frac{\pi}{2}$, then there is one negative eigenvalue, and the other ones are positive. It produces two oscillatory solutions.

(13)

- 2° If $a_0 = \frac{\pi}{2}$, there is one negative eigenvalue, and null is also an eigenvalue. There are two additional solutions for the model problem, one has the form $g_0(\varphi) \ln r$, and the other is constant with respect to *r*.
- 3° If $a_0 < \frac{\pi}{2}$, then there are two negative eigenvalues. They produce four oscillatory solutions.

Situation 1° can be analyzed exactly in the same way as that we described here. However, situations 2° and 3° are much more different. In particular, the deficiency indices are (2,2), and the self-adjoint extensions are parameterized by two-by-two unitary matrices. The method of the matched asymptotic expansions does not provide an explicit parameter extension as in (13), but a family of unitary matrices depending on ε , cf [8]. This family does not always coincide with the set of all unitary matrices as $\varepsilon \rightarrow 0$, but it is sufficient for the construction of approximations.

Acknowledgements

This work is supported by grant 17-11-01003 of the Russian Science Foundation. It is also supported by the Chair BOLIDE funded by the IDEX Bordeaux and by the project PEPS JC 2017.

References

- [1] M.V. Berry, M. Dennis, Boundary-condition-varying circle billiards and gratings: the Dirichlet singularity, J. Phys. A 41 (13) (2008) 135203.
- [2] X. Claeys, L. Chesnel, S. Nazarov, Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner, ESAIM: Math. Model. Numer. Anal. (2016), https://doi.org/10.1051/m2an/2016080, in press.
- [3] P. Exner, P. Seba, A simple model of thin-film point contact in two and three dimensions, Czechoslov. J. Phys. 38 (10) (1988) 1095–1110.
- [4] V.A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Tr. Mosk. Mat. Obŝ. 16 (1967) 209-292.
- [5] M. Levitin, L. Parnovski, On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr. 281 (2) (2008) 272-281.
- [6] M. Marlettta, G. Rozenblum, A Laplace operator with boundary conditions singular at one point, J. Phys. A 42 (12) (2009) 125204.
- [7] S.A. Nazarov, Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces, Math. USSR Sb. 65 (1) (1990) 229.
- [8] S.A. Nazarov, Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions, in: Proceedings of the St. Petersburg Mathematical Society, Vol. V, in: Amer. Math. Soc. Transl. Ser. 2, vol. 193, American Mathematical Society, Providence, RI, USA, 1999, pp. 77–125.
- [9] S.A. Nazarov, B. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994.
- [10] F.S. Rofe-Beketov, Selfadjoint extensions of differential operators in a space of vector-valued functions, Dokl. Akad. Nauk SSSR 184 (1969) 1034–1037.