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Assume that f : (Cn, 0) → (C, 0) is an analytic function germ at the origin with only 
isolated singularity. Let μ and τ be the corresponding Milnor and Tjurina numbers. We 
show that μ

τ
≤ n. As an application, we give a lower bound for the Tjurina number in 

terms of n and the multiplicity of f at the origin.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit f : (Cn, 0) → (C, 0) un germe de fonction analytique au voisinage de l’origine avec une 
seule singularité isolée. Soient μ et τ les nombres de Milnor et Tjurina correspondants. 
Nous montrons que μ

τ ≤ n. Comme application, nous donnons une minoration du nombre 
de Tjurina en fonction de n et de la multiplicité de f à l’origine.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Main result

Assume that f : (Cn, 0) → (C, 0) is an analytic function germ at the origin with only isolated singularity. Set X = f −1(0). 
Let S = C{x1, . . . , xn} denote the formal power series ring. Set J f = (∂ f /∂x1, . . . , ∂ f /∂xn) as the Jacobian ideal. Then the 
Milnor and Tjurina algebras are defined as

M f = S/ J f , and T f = S/( J f , f ).

Since X has isolated singularities, M f and T f are finite dimensional C-vector spaces. The corresponding dimension μ and 
τ are called the Milnor and Tjurina numbers, respectively. It is clear that μ ≥ τ .
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Consider the following long exact sequence of C-algebras:

0 → Ker( f ) → M f
f→ M f → T f → 0 (1)

where the middle map is multiplication by f , and Ker( f ) is the kernel of this map. Then dimC Ker( f ) = τ .
Recall a well-known result given by J. Briançon and H. Skoda in [1],

f n ∈ J f ,

which shows that f n = 0 in M f , i.e. ( f n−1) ⊂ Ker( f ). Here ( f n−1) is the ideal in M f generated by f n−1. The following 
theorem is a direct application of this result.

Theorem 1.1. Assume that f : (Cn, 0) → (C, 0) is an analytic function germ at the origin with only isolated singularity. Then,

μ

τ
≤ n.

Moreover, 
μ

τ
= n, if and only if, Ker( f ) = ( f n−1).

Proof. Since f n = 0 in M f , we have the following finite decreasing filtration:

M f ⊃ ( f ) ⊃ ( f 2) ⊃ · · · ⊃ ( f n−1) ⊃ ( f n) = 0

where ( f i) is the ideal in M f generated by f i .
Consider the following long exact sequence:

0 → Ker( f ) ∩ ( f i) → ( f i)
f→ ( f i) → ( f i)/( f i+1) → 0 (2)

where the middle map is multiplication by f . Then,

dimC{( f i)/( f i+1)} = dimC{Ker( f ) ∩ ( f i)} ≤ dimC Ker( f ) = τ .

Therefore,

μ = dimC M f = dimC T f +
n−1∑

i=1

dimC{( f i)/( f i+1)} ≤ n · τ .

μ

τ
= n if and only if, for any 1 ≤ i ≤ n − 1, Ker( f ) ∩ ( f i) = Ker( f ), i.e. Ker( f ) ⊂ ( f i). On the other hand, ( f n−1) ⊂ Ker( f ). 

Hence, Ker( f ) = ( f n−1). �
K. Saito showed ([8]) that 

μ

τ
= 1 holds, if and only if, f is weighted homogeneous, i.e. analytically equivalent to such a 

polynomial. It leads to the following natural question.

Question 1.2. Is this upper bound of 
μ

τ
optimal? When can the optimal upper bound be obtained?

Remark 1.3. Recently, A. Dimca and G.-M. Greuel showed ([3, Theorem 1.1]) that the upper bound 
μ

τ
≤ 2 can never be 

achieved for the isolated plane curve singularity case unless f is smooth at the origin. Moreover, they gave ([3, Example 
4.1]) a sequence of isolated plane curve singularity with the ratio 

μ

τ
strictly increasing towards 4/3. In particular, the 

singularities can be chosen to be all either irreducible, or consisting of smooth branches with distinct tangents. Based on 
these computations, they asked ([3, Question 4.2]) whether

μ

τ
< 4/3

for any isolated plane curve singularity.

Example 1.4. It is clear that 
μ

τ
> n − 1 implies that f n−1 /∈ J f .

Consider the function germ:

f = (x1 · · · xn)
2 + x2n+2 + · · · + x2n+2

n ,
1
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which defines an isolated singularity at the origin. B. Malgrange showed ([7]) that the monodromy on the (n − 1)-th coho-
mology of the Milnor fibre has a Jordan block with size n. Coupled with the theorem by J. Scherk ([9, Theorem]), it gives us 
that f n−1 /∈ J f . It can be checked with the software SINGULAR that 

μ

τ
< 1.5 for n ≤ 7, which is far away from our upper 

bound n.

2. Applications

Theorem 1.1 implies a well-known result in complex singularity theory, which states that the Milnor number of an 
analytic function germ is finite (or non-zero) if and only if the Tjurina number is so (see [4, Lemma 2.3, Lemma 2.44]).

2.1. A lower bound for the Tjurina number

First we recall a well-known lower bound for μ in terms of n and the multiplicity m of f at the origin. The following 
description can be found in [5].

The sectional Milnor numbers associated with the germ X are introduced by Teissier [10]. The i-th sectional Milnor 
number of the germ X , denoted μi , is the Milnor number of the intersection of X with a general i-dimensional plane 
passing through the origin (it does not depend on the choice of the generic planes). Then μ = μn . The Minkowski inequality 
for mixed multiplicities says that the sectional Milnor numbers always form a log-convex sequence [11]. In other words, we 
have

μn

μn−1 ≥ μn−1

μn−2
≥ · · · ≥ μ1

μ0
,

where μ0 = 1 and μ1 = m − 1. Then

μ ≥ (m − 1)n. (3)

Moreover, the equality holds if and only if f is a semi-homogeneous function (i.e. f = fm + g , where fm is a homogeneous 
polynomial of degree m defining an isolated singularity at the origin and g consists of terms of degree at least m + 1) after 
a biholomorphic change of coordinates. For a detailed proof, see [13, Proposition 3.1].

The next corollary is a direct consequence of Theorem 1.1 and (3).

Corollary 2.1. Assume that f : (Cn, 0) → (C, 0) is an analytic function germ at the origin with only isolated singularity. Then,

τ ≥ (m − 1)n

n
.

It is clear that, even for the homogeneous polynomial case, this lower bound can never be obtained when n > 1. In fact, 

in this case, τ = μ = (m − 1)n >
(m − 1)n

n
.

2.2. Another lower bound for the Tjurina number

Another lower bound for μ is given by A. G. Kushnirenko using the Newton number ([6]). Let � be the boundary of the 
Newton polyhedron of f , i.e. � is a polyhedron of dimension n − 1 in Nn (where N = {0, 1, 2, · · · }) determined in the usual 
way by the non-zero coefficients in f . Then f is said to be convenient if � meets each of the coordinate axes of Rn . Let S
be the union of all line segments in Rn joining the origin to points of �. For a convenient f , the Newton number ν( f ) is 
defined as:

ν = n!Vn − (n − 1)!Vn−1 + · · · + (−1)n−11!V 1 + (−1)n,

where Vn is the n-dimensional volume of S and for 1 ≤ q ≤ n − 1, Vq is the sum of the q-dimensional volumes of the 
intersection of S with the coordinate planes of dimension q. A. G. Kushnirenko showed that, if f is convenient, then,

μ ≥ ν.

Moreover, μ = ν holds, if f is non-degenerate. (For the definition of non-degenerate, see [6, Definition 1.19].) Again, this 
gives us a corresponding lower bound for the Tjurina number.

Corollary 2.2. Assume that f : (Cn, 0) → (C, 0) is an analytic function germ at the origin with only isolated singularity, which is 
convenient. Then,
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τ ≥ ν

n
,

where ν is the Newton number.

Question 2.3. Are the lower bounds of τ in Corollary 2.1 and 2.2 optimal? When can the optimal lower bounds be obtained?

For some special class of polynomials, the bound for the ratio 
μ

τ
can be improved. For example, A. Dimca showed that 

f 2 ∈ J f for semi-weighted homogeneous polynomials ([2, Example 3.5]), hence 
μ

τ
≤ 2 and τ ≥ (m − 1)n

2
in this case.

Example 2.4. Choose f = xm + ym + zm + g , where g has degree at least m + 1. Then μ = (m − 1)3. It is shown in [12, 
Example 4.7] that τmin = (2m − 3)(m + 1)(m − 1)/3, when g varies.
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