Algebraic geometry/Topology

Milnor and Tjurina numbers for a hypersurface germ with isolated singularity

Nombres de Milnor et Tjurina pour les germes d'hypersurfaces à singularité isolée

Yongqiang Liu
KU Leuven, Department of Mathematics, Celestijnenlaan 200B, 3001 Leuven, Belgium

ARTICLE INFO

Article history:

Received 17 May 2018
Accepted 6 July 2018
Available online 19 July 2018
Presented by Claire Voisin

Abstract

Assume that $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is an analytic function germ at the origin with only isolated singularity. Let μ and τ be the corresponding Milnor and Tjurina numbers. We show that $\frac{\mu}{\tau} \leq n$. As an application, we give a lower bound for the Tjurina number in terms of n and the multiplicity of f at the origin.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow(\mathbf{C}, 0)$ un germe de fonction analytique au voisinage de l'origine avec une seule singularité isolée. Soient μ et τ les nombres de Milnor et Tjurina correspondants. Nous montrons que $\frac{\mu}{\tau} \leq n$. Comme application, nous donnons une minoration du nombre de Tjurina en fonction de n et de la multiplicité de f à l'origine.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Main result

Assume that $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is an analytic function germ at the origin with only isolated singularity. Set $X=f^{-1}(0)$. Let $S=\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ denote the formal power series ring. Set $J_{f}=\left(\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}\right)$ as the Jacobian ideal. Then the Milnor and Tjurina algebras are defined as

$$
M_{f}=S / J_{f}, \text { and } T_{f}=S /\left(J_{f}, f\right) .
$$

Since X has isolated singularities, M_{f} and T_{f} are finite dimensional \mathbb{C}-vector spaces. The corresponding dimension μ and τ are called the Milnor and Tjurina numbers, respectively. It is clear that $\mu \geq \tau$.

[^0]Consider the following long exact sequence of \mathbb{C}-algebras:

$$
\begin{equation*}
0 \rightarrow \operatorname{Ker}(f) \rightarrow M_{f} \stackrel{f}{\rightarrow} M_{f} \rightarrow T_{f} \rightarrow 0 \tag{1}
\end{equation*}
$$

where the middle map is multiplication by f, and $\operatorname{Ker}(f)$ is the kernel of this map. Then $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker}(f)=\tau$.
Recall a well-known result given by J. Briançon and H. Skoda in [1],

$$
f^{n} \in J_{f},
$$

which shows that $f^{n}=0$ in M_{f}, i.e. $\left(f^{n-1}\right) \subset \operatorname{Ker}(f)$. Here $\left(f^{n-1}\right)$ is the ideal in M_{f} generated by f^{n-1}. The following theorem is a direct application of this result.

Theorem 1.1. Assume that $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is an analytic function germ at the origin with only isolated singularity. Then,

$$
\frac{\mu}{\tau} \leq n
$$

Moreover, $\frac{\mu}{\tau}=n$, if and only if, $\operatorname{Ker}(f)=\left(f^{n-1}\right)$.
Proof. Since $f^{n}=0$ in M_{f}, we have the following finite decreasing filtration:

$$
M_{f} \supset(f) \supset\left(f^{2}\right) \supset \cdots \supset\left(f^{n-1}\right) \supset\left(f^{n}\right)=0
$$

where $\left(f^{i}\right)$ is the ideal in M_{f} generated by f^{i}.
Consider the following long exact sequence:

$$
\begin{equation*}
0 \rightarrow \operatorname{Ker}(f) \cap\left(f^{i}\right) \rightarrow\left(f^{i}\right) \xrightarrow{f}\left(f^{i}\right) \rightarrow\left(f^{i}\right) /\left(f^{i+1}\right) \rightarrow 0 \tag{2}
\end{equation*}
$$

where the middle map is multiplication by f. Then,

$$
\operatorname{dim}_{\mathbb{C}}\left\{\left(f^{i}\right) /\left(f^{i+1}\right)\right\}=\operatorname{dim}_{\mathbb{C}}\left\{\operatorname{Ker}(f) \cap\left(f^{i}\right)\right\} \leq \operatorname{dim}_{\mathbb{C}} \operatorname{Ker}(f)=\tau
$$

Therefore,

$$
\mu=\operatorname{dim}_{\mathbb{C}} M_{f}=\operatorname{dim}_{\mathbb{C}} T_{f}+\sum_{i=1}^{n-1} \operatorname{dim}_{\mathbb{C}}\left\{\left(f^{i}\right) /\left(f^{i+1}\right)\right\} \leq n \cdot \tau
$$

$\frac{\mu}{\tau}=n$ if and only if, for any $1 \leq i \leq n-1, \operatorname{Ker}(f) \cap\left(f^{i}\right)=\operatorname{Ker}(f)$, i.e. $\operatorname{Ker}(f) \subset\left(f^{i}\right)$. On the other hand, $\left(f^{n-1}\right) \subset \operatorname{Ker}(f)$. Hence, $\operatorname{Ker}(f)=\left(f^{n-1}\right)$.
K. Saito showed ([8]) that $\frac{\mu}{\tau}=1$ holds, if and only if, f is weighted homogeneous, i.e. analytically equivalent to such a polynomial. It leads to the following natural question.

Question 1.2. Is this upper bound of $\frac{\mu}{\tau}$ optimal? When can the optimal upper bound be obtained?
Remark 1.3. Recently, A. Dimca and G.-M. Greuel showed ([3, Theorem 1.1]) that the upper bound $\frac{\mu}{\tau} \leq 2$ can never be achieved for the isolated plane curve singularity case unless f is smooth at the origin. Moreover, they gave ([3, Example 4.1]) a sequence of isolated plane curve singularity with the ratio $\frac{\mu}{\tau}$ strictly increasing towards $4 / 3$. In particular, the singularities can be chosen to be all either irreducible, or consisting of smooth branches with distinct tangents. Based on these computations, they asked ([3, Question 4.2]) whether

$$
\frac{\mu}{\tau}<4 / 3
$$

for any isolated plane curve singularity.
Example 1.4. It is clear that $\frac{\mu}{\tau}>n-1$ implies that $f^{n-1} \notin J_{f}$.
Consider the function germ:

$$
f=\left(x_{1} \cdots x_{n}\right)^{2}+x_{1}^{2 n+2}+\cdots+x_{n}^{2 n+2}
$$

which defines an isolated singularity at the origin. B. Malgrange showed ([7]) that the monodromy on the ($n-1$)-th cohomology of the Milnor fibre has a Jordan block with size n. Coupled with the theorem by J. Scherk ([9, Theorem]), it gives us that $f^{n-1} \notin J_{f}$. It can be checked with the software SINGULAR that $\frac{\mu}{\tau}<1.5$ for $n \leq 7$, which is far away from our upper bound n.

2. Applications

Theorem 1.1 implies a well-known result in complex singularity theory, which states that the Milnor number of an analytic function germ is finite (or non-zero) if and only if the Tjurina number is so (see [4, Lemma 2.3, Lemma 2.44]).

2.1. A lower bound for the Tjurina number

First we recall a well-known lower bound for μ in terms of n and the multiplicity m of f at the origin. The following description can be found in [5].

The sectional Milnor numbers associated with the germ X are introduced by Teissier [10]. The i-th sectional Milnor number of the germ X, denoted μ^{i}, is the Milnor number of the intersection of X with a general i-dimensional plane passing through the origin (it does not depend on the choice of the generic planes). Then $\mu=\mu^{n}$. The Minkowski inequality for mixed multiplicities says that the sectional Milnor numbers always form a log-convex sequence [11]. In other words, we have

$$
\frac{\mu^{n}}{\mu^{n-1}} \geq \frac{\mu^{n-1}}{\mu^{n-2}} \geq \cdots \geq \frac{\mu^{1}}{\mu^{0}}
$$

where $\mu^{0}=1$ and $\mu^{1}=m-1$. Then

$$
\begin{equation*}
\mu \geq(m-1)^{n} \tag{3}
\end{equation*}
$$

Moreover, the equality holds if and only if f is a semi-homogeneous function (i.e. $f=f_{m}+g$, where f_{m} is a homogeneous polynomial of degree m defining an isolated singularity at the origin and g consists of terms of degree at least $m+1$) after a biholomorphic change of coordinates. For a detailed proof, see [13, Proposition 3.1].

The next corollary is a direct consequence of Theorem 1.1 and (3).

Corollary 2.1. Assume that $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is an analytic function germ at the origin with only isolated singularity. Then,

$$
\tau \geq \frac{(m-1)^{n}}{n}
$$

It is clear that, even for the homogeneous polynomial case, this lower bound can never be obtained when $n>1$. In fact, in this case, $\tau=\mu=(m-1)^{n}>\frac{(m-1)^{n}}{n}$.

2.2. Another lower bound for the Tjurina number

Another lower bound for μ is given by A. G. Kushnirenko using the Newton number ([6]). Let Γ be the boundary of the Newton polyhedron of f, i.e. Γ is a polyhedron of dimension $n-1$ in \mathbb{N}^{n} (where $\mathbb{N}=\{0,1,2, \cdots\}$) determined in the usual way by the non-zero coefficients in f. Then f is said to be convenient if Γ meets each of the coordinate axes of \mathbb{R}^{n}. Let S be the union of all line segments in \mathbb{R}^{n} joining the origin to points of Γ. For a convenient f, the Newton number $v(f)$ is defined as:

$$
v=n!V_{n}-(n-1)!V_{n-1}+\cdots+(-1)^{n-1} 1!V_{1}+(-1)^{n}
$$

where V_{n} is the n-dimensional volume of S and for $1 \leq q \leq n-1, V_{q}$ is the sum of the q-dimensional volumes of the intersection of S with the coordinate planes of dimension q. A. G. Kushnirenko showed that, if f is convenient, then,

$$
\mu \geq v
$$

Moreover, $\mu=v$ holds, if f is non-degenerate. (For the definition of non-degenerate, see [6, Definition 1.19].) Again, this gives us a corresponding lower bound for the Tjurina number.

Corollary 2.2. Assume that $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is an analytic function germ at the origin with only isolated singularity, which is convenient. Then,
$\tau \geq \frac{v}{n}$,
where v is the Newton number.
Question 2.3. Are the lower bounds of τ in Corollary 2.1 and 2.2 optimal? When can the optimal lower bounds be obtained?
For some special class of polynomials, the bound for the ratio $\frac{\mu}{\tau}$ can be improved. For example, A. Dimca showed that $f^{2} \in J_{f}$ for semi-weighted homogeneous polynomials ([2, Example 3.5]), hence $\frac{\mu}{\tau} \leq 2$ and $\tau \geq \frac{(m-1)^{n}}{2}$ in this case.

Example 2.4. Choose $f=x^{m}+y^{m}+z^{m}+g$, where g has degree at least $m+1$. Then $\mu=(m-1)^{3}$. It is shown in [12, Example 4.7] that $\tau_{\min }=(2 m-3)(m+1)(m-1) / 3$, when g varies.

Acknowledgements

The author is grateful to Alexandru Dimca for useful discussions. The author is partially supported by Nero Budur's research project GOB2115N from the Research Foundation of Flanders.

References

[1] J. Briançon, H. Skoda, Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de \mathbb{C}^{n}, C. R. Acad. Sci. Paris, Ser. A 278 (1974) 949-951 (in French).
[2] A. Dimca, Differential forms and hypersurface singularities, Singularity theory and its applications, Part I, in: Coventry, 1988/1989, in: Lecture Notes in Mathematics, vol. 1462, Springer, Berlin, 1991, pp. 122-153.
[3] A. Dimca, G.-M. Greuel, On 1-forms on isolated complete intersection curve singularities, arXiv:1709.01451v2.
[4] G.-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007.
[5] J. Huh, Milnor numbers of projective hypersurfaces with isolated singularities, Duke Math. J. 163 (2014) 1525-1548.
[6] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1) (1976) 1-31.
[7] B. Malgrange, Letter to the editors, Invent. Math. 20 (1973) 171-172.
[8] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971) 123-142 (in German).
[9] J. Scherk, On the monodromy theorem for isolated hypersurface singularities, Invent. Math. 58 (3) (1980) 289-301.
[10] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse. Asterisque, vol. 7 et 8 , Société mathématique de France, Paris, 1973, pp. 285-362.
[11] B. Teissier, Sur une inégalité à la Minkowski pour les multiplicités, Ann. of Math. (2) 106 (1) (1977) 38-44.
[12] J. Wahl, A characterization of quasihomogeneous Gorenstein surface singularities, Compos. Math. 55 (3) (1985) 269-288.
[13] S.S.-T. Yau, H. Zuo, Complete characterization of isolated homogeneous hypersurface singularities, Pac. J. Math. 273 (1) (2015) 213-224.

[^0]: E-mail address: liuyq1117@gmail.com.
 https://doi.org/10.1016/j.crma.2018.07.004
 1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

