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For ε > 0, we consider the Ginzburg–Landau functional for RN -valued maps defined in the 
unit ball B N ⊂R

N with the vortex boundary data x on ∂ BN . In dimensions N ≥ 7, we prove 
that, for every ε > 0, there exists a unique global minimizer uε of this problem; moreover, 
uε is symmetric and of the form uε(x) = fε(|x|) x

|x| for x ∈ B N .

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons la fonctionnelle de Ginzburg–Landau pour les applications à valeurs dans 
R

N définies dans la boule unité BN ⊂ R
N avec la donnée de tourbillon x au bord ∂ BN . En 

dimension N ≥ 7, nous montrons que, pour tout ε > 0, il existe un unique minimiseur 
global uε à ce problème ; de plus, uε est symétrique de la forme uε(x) = fε(|x|) x

|x| pour 
x ∈ B N .
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1. Introduction and main results

In this note, we consider the following Ginzburg–Landau-type energy functional

Eε(u) =
∫

B N

[1

2
|∇u|2 + 1

2ε2
W (1 − |u|2)

]
dx,

where ε > 0, B N is the unit ball in RN , N ≥ 2, and the potential W ∈ C1((−∞, 1];R) satisfies

W (0) = 0, W (t) > 0 for all t ∈ (−∞,1] \ {0}, and W is convex. (1)

We investigate the global minimizers of the energy Eε in the set

A := {u ∈ H1(B N ;RN) : u(x) = x on ∂ B N = S
N−1}.

The requirement that u(x) = x on SN−1 is sometimes referred to in the literature as the vortex boundary condition.
We note that, in our analysis, the convexity of W needs not be strict; compare [7] where strict convexity is assumed.
The direct method in the calculus of variations yields the existence of a global minimizer uε of Eε over A for all range 

of ε > 0. Moreover, any minimizer uε belongs to C1(B N ; RN ) and satisfies |uε | ≤ 1 and the system of PDEs (in the sense of 
distributions):

−�uε = 1

ε2
uε W ′(1 − |uε|2) in B N . (2)

The goal of this note is to give a short proof of the uniqueness and symmetry of the global minimizer of Eε in A for 
all ε > 0 in dimensions N ≥ 7. We prove that, in these dimensions, the global minimizer is unique and given by the unique 
radially symmetric critical point of Eε defined by

uε(x) = fε(|x|) x

|x| for all x ∈ B N , (3)

where the radial profile fε : [0, 1] →R+ is the unique solution to
{ − f ′′

ε − N−1
r f ′

ε + N−1
r2 fε = 1

ε2 fε W ′(1 − f 2
ε ) for r ∈ (0,1),

fε(0) = 0, fε(1) = 1.
(4)

Moreover, fε > 0 and f ′
ε > 0 in (0, 1) (see, e.g., [5]).

Theorem 1. Assume that W satisfies (1). If N ≥ 7, then for every ε > 0, uε given in (3) is the unique global minimizer of Eε in A .

To our knowledge, the question about the uniqueness of minimizers/critical points of Eε in A for any ε > 0 was raised 
in dimension N = 2 in the book of Bethuel, Brézis and Hélein [1, Problem 10, page 139], and in general dimensions N ≥ 2
and also for the blow-up limiting problem around the vortex (when the domain is the whole space RN and by rescaling, 
ε can be assumed equal to 1) in an article of Brézis [2, Section 2].

It is well known that uniqueness is present for large enough ε > 0 for any N ≥ 2. Indeed, for any ε > (W ′(1)/λ1)
1/2

where λ1 is the first eigenvalue of −� in B N with zero Dirichlet boundary condition, Eε is strictly convex in A and thus 
has a unique critical point in A (that is the global minimizer of our problem).

For sufficiently small ε > 0, all results regarding uniqueness question available in the literature are in the affirmative. In 
particular, we have:

(i) Pacard and Rivière [12, Theorem 10.2] showed in dimension N = 2 that, for small ε > 0, Eε has in fact a unique critical 
point in A ;

(ii) Mironescu [11] showed in dimension N = 2 that, when B2 is replaced by R2 and ε = 1, a local minimizer of Eε

subjected to a degree-one boundary condition at infinity is unique (up to translation and suitable rotation). This was 
generalized to dimension N = 3 by Millot and Pisante [10] and dimensions N ≥ 4 by Pisante [13], also in the case of 
the blow-up limiting problem on RN and ε = 1.

These results should be compared to those for the limit problem on the unit ball obtained by sending ε → 0. In this limit, 
the Ginzburg–Landau problem ‘converges’ to the harmonic map problem from B N to SN−1. It is well known that the vortex 
boundary condition gives rise to a unique minimizing harmonic map x 
→ x

|x| if N ≥ 3; see Brezis, Coron and Lieb [3] in 
dimension N = 3, Jäger and Kaul [8] in dimensions N ≥ 7, and Lin [9] in dimensions N ≥ 3 (see also [4]).

We highlight that, in contrast to the above, our result holds for all ε > 0, provided that N ≥ 7. The method of our 
proof deviates somewhat from that in the aforementioned works. In fact, it is reminiscent of our recent work [7] on 
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the (non-)uniqueness and symmetry of minimizers of the Ginzburg–Landau functionals for RM -valued maps defined on 
N-dimensional domains, where M is not necessarily the same as N . However, we note that the results in [7] do not directly 
apply to the present context, as in [7] it is required that W be strictly convex. Furthermore, a priori, it is not clear why 
non-strict convexity of the potential W is sufficient to ensure uniqueness of global minimizers.

We exploit the convexity of W to lower estimate the ‘excess’ energy by a suitable quadratic energy that can be handled 
by the factorization trick à la Hardy. Indeed, the positivity of the excess energy is then related to the validity of a Hardy-type 
inequality, which explains our restriction of N ≥ 7. This echoes our observation made in [7] that a result of Jäger and Kaul 
[8] on the minimality of the equator map (for the harmonic map problem) in these dimensions is related to a certain 
inequality involving the sharp constant in the Hardy inequality; see Remark 3.

We expect that our result remains valid in dimensions 2 ≤ N ≤ 6, but this goes beyond the scope of this note and 
remains for further investigation.

2. Proof of Theorem 1

Theorem 1 will be obtained as a consequence of a stronger result on the uniqueness of global minimizers of the 
R

M -valued Ginzburg–Landau functional with M ≥ N . By a slight abuse of notation, we consider the energy functional

Eε(u) =
∫

B N

[1

2
|∇u|2 + 1

2ε2
W (1 − |u|2)

]
dx,

where u belongs to

A := {u ∈ H1(B N ;RM) : u(x) = x on ∂ B N = S
N−1 ⊂ R

M}.

Theorem 2. Assume that W satisfies (1). If M ≥ N ≥ 7, then for every ε > 0, uε given in (3) is the unique global minimizer of Eε

in A .

When W is strictly convex, the above theorem is proved in [7]; see [7, Theorem 1.7]. The argument therein uses the 
strict convexity in a crucial way.

Proof. The proof will be done in several steps. First, we consider the difference between the energies of the critical point uε , 
defined in (3), and an arbitrary competitor uε + v and show that this difference is controlled from below by some quadratic 
energy functional Fε(v). Second, we employ the positivity of the radial profile fε in (4) and apply the Hardy decomposi-
tion method in order to show that Fε(v) ≥ 0, which proves in particular that uε is a global minimizer of Eε . Finally, we 
characterise the situation when this difference is zero and conclude to the uniqueness of the global minimizer uε .

Step 1: Lower bound for energy difference. For any v ∈ H1
0(B N ; RM), we have

Eε(uε + v) − Eε(uε) =
∫

B N

[
∇uε · ∇v + 1

2
|∇v|2

]
dx + 1

2ε2

∫

B N

[
W (1 − |uε + v|2) − W (1 − |uε|2)

]
dx.

Using the convexity of W , we have

W (1 − |uε + v|2) − W (1 − |uε|2) ≥ −W ′(1 − |uε|2)(|uε + v|2 − |uε|2).
The last two relations imply that

Eε(uε + v) − Eε(uε) ≥
∫

B N

[
∇uε · ∇v − 1

ε2
W ′(1 − f 2

ε )uε · v
]

dx +
∫

B N

[1

2
|∇v|2 − 1

2ε2
W ′(1 − f 2

ε )|v|2
]

dx.

Moreover, by (2), we obtain

Eε(uε + v) − Eε(uε) ≥
∫

B N

[1

2
|∇v|2 − 1

2ε2
W ′(1 − f 2

ε )|v|2
]

dx =: 1

2
Fε(v) (5)

for all v ∈ H1
0(B N ; RM). (In the sequel, for simplicity, we will also write Fε(v) for scalar v ∈ H1

0(B N ; R).)

Step 2: A rewriting of Fε(v) using the decomposition v = fε w for every scalar test function v ∈ C∞
c (B N \ {0}; R). We consider the 

operator

Lε := 1∇L2 Fε = −� − 1
2

W ′(1 − f 2
ε ).
2 ε
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Using the decomposition

v = fε w

for the scalar function v ∈ C∞
c (B N \ {0}; R), we have (see, e.g., [6, Lemma A.1]):

Fε(v) =
∫

B N

Lε v · v dx =
∫

B N

w2Lε fε · fε dx +
∫

B N

f 2
ε |∇w|2 dx

=
∫

B N

f 2
ε

(
|∇w|2 − N − 1

r2
w2

)
dx,

because (4) yields Lε fε · fε = − N−1
r2 f 2

ε in B N .

Step 3: We prove that Fε(v) ≥ 0 for every scalar test function v ∈ C∞
c (B N \ {0}; R). Within the notation v = fε w of Step 2 with 

v, w ∈ C∞
c (B N \ {0}; R), we use the decomposition

w = ϕg

with ϕ = |x|− N−2
2 being the first eigenfunction of the Hardy’s operator −� − (N−2)2

4|x|2 in RN \ {0} and g ∈ C∞
c (B N \ {0}; R). 

We compute

|∇w|2 = |∇ϕ|2 g2 + |∇g|2ϕ2 + 1

2
∇(ϕ2) · ∇(g2).

As |∇ϕ|2 = (N−2)2

4|x|2 ϕ2 and ϕ2 is harmonic in B N \ {0}, integration by parts yields

Fε(v) =
∫

B N

f 2
ε

(
|∇g|2ϕ2 + (N − 2)2

4r2
ϕ2 g2 − N − 1

r2
ϕ2 g2

)
dx − 1

2

∫

B N

∇(ϕ2) · ∇( f 2
ε )g2 dx

≥
∫

B N

f 2
ε |∇g|2ϕ2 dx +

(
(N − 2)2

4
− (N − 1)

)∫

B N

f 2
ε

r2
ϕ2 g2 dx

≥
(

(N − 2)2

4
− (N − 1)

)∫

B N

v2

r2
dx ≥ 0, (6)

where we have used N ≥ 7 and 1
2 ∇(ϕ2) · ∇( f 2

ε ) = 2ϕϕ′ fε f ′
ε ≤ 0 in B N \ {0}.

Step 4: We prove that Fε(v) ≥ 0 for every v ∈ H1
0(B N ; RM), meaning that uε is a global minimizer of Eε over A ; moreover, Fε(v) = 0

if and only if v = 0. Let v ∈ H1
0(B N ; RM). As a point has zero H1 capacity in RN , a standard density argument implies the 

existence of a sequence vk ∈ C∞
c (B N \ {0}; RM) such that vk → v in H1(B N , RM) and a.e. in B N . On the one hand, by 

definition (5) of Fε , since W ′(1 − f 2
ε ) ∈ L∞ , we deduce that Fε(vk) → Fε(v) as k → ∞. On the other hand, by (6) and 

Fatou’s lemma, we deduce

lim inf
k→∞

Fε(vk) ≥
(

(N − 2)2

4
− (N − 1)

)
lim inf
k→∞

∫

B N

v2
k

r2
dx

≥
(

(N − 2)2

4
− (N − 1)

)∫

B N

v2

r2
dx.

Therefore, we conclude that

Fε(v) ≥
(

(N − 2)2

4
− (N − 1)

)∫

B N

v2

r2
dx ≥ 0, ∀v ∈ H1

0(B N ;RM),

implying by (5) that uε is a minimizer of Eε over A . Moreover, Fε(v) = 0 if and only if v = 0.

Step 5: Conclusion. We have shown that uε is a global minimizer. Assume that ũε is another global minimizer of Eε over A . 
If v := ũε − uε , then v ∈ H1

0(B N ; RM) and by steps 1 and 4, we have that 0 = Eε(ũε) − Eε(uε) ≥ Fε(v) ≥ 0, which yields 
Fε(v) = 0. Step 4 implies that v = 0, i.e. ũε = uε . �
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Remark 3. Recall that, in the case M ≥ N ≥ 7, Jäger and Kaul [8] proved the uniqueness of global minimizer for harmonic 
map problem

min
u∈A∗

∫

B N

|∇u|2 dx,

where A∗ = {u ∈ H1(B N ; SM−1) : u(x) = x on ∂ B N = S
N−1 ⊂ S

M−1}. This can also be seen by the method above, as observed 
in our earlier paper [7]. We give the argument here for readers’ convenience: take a perturbation v ∈ H1

0(B N , RM) of the 
harmonic map u∗(x) = x

|x| such that |u∗(x) + v(x)| = 1 a.e. in B N . Then, by [7, Proof of Theorem 5.1],

∫

B N

[
|∇(u∗ + v)|2 − |∇u∗|2

]
dx =

∫

B N

[
|∇v|2 − |∇u∗|2|v|2

]
dx =

∫

B N

[
|∇v|2 − (N − 1)

|v|2
|x|2

]
dx.

Using Hardy’s inequality in dimension N , we arrive at
∫

B N

[
|∇(u∗ + v)|2 − |∇u∗|2

]
dx ≥

(
(N − 2)2

4
− (N − 1)

)∫

B N

|v|2
|x|2 dx.

The result follows since N ≥ 7.
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