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In this note, we study quasi-ergodicity for one-dimensional diffusions on (0, ∞), where 0 
is an exit boundary and +∞ is an entrance boundary. Our main aim is to improve some 
results obtained by He and Zhang (2016) [3]. In simple terms, the same main results of the 
above paper are obtained with more relaxed conditions.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions la quasi-ergodicité des diffusions unidimensionnelles sur ]0, ∞[, où 0 est 
une frontière de sortie et ∞ une frontière d’entrée. Notre but est d’améliorer des résultats 
obtenus par He and Zhang (2016) [3]. Ainsi, nous retrouvons les résultats principaux de ce 
texte sous des hypothèses moins restrictives.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X = (Xt , t ≥ 0) be a one-dimensional drifted Brownian motion on (0, ∞), i.e.

dXt = dBt − α(Xt)dt, X0 = x > 0, (1.1)

where (Bt, t ≥ 0) is a standard one-dimensional Brownian motion and α ∈ C1(0, ∞). In this paper, α can explode at the 
origin. There exists a pathwise unique solution to the stochastic differential equation (1.1) up to the explosion time τ .

Associated with α, we consider the following two functions

�(x) =
x∫

1

eQ (y) dy and κ(x) =
x∫

1

eQ (y)

⎛
⎝

y∫

1

e−Q (z)dz

⎞
⎠ dy, (1.2)

where Q (y) := 2 
∫ y

1 α(x) dx. Note that � is the scale function of the process X .
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The other important role will be played by the following measure μ, which is not necessarily finite in this paper, defined 
on (0, ∞):

μ(dy) := e−Q (y)dy. (1.3)

Note that μ is the speed measure of the process X .
Let Ta := inf{0 ≤ t < τ : Xt = a} be the hitting time of a ∈ (0, ∞) for the process X . We denote by T∞ = lim

n→∞ Tn and 
T0 = lim

n→∞ T1/n . Since α is regular in (0, ∞), then τ = min{T0, T∞}. Let Px be the probability measure under which the 
process X starts at x. For any distribution π on (0, ∞), we will use the notation

Pπ(·) :=
∞∫

0

Px(·)π(dx).

We shall denote by Ex (resp. Eπ) the expectation corresponding to Px (resp. Pπ). We denote by B(0, ∞) the Borel σ -algebra 
on (0, ∞), P(0, ∞) the set of all probability measures on (0, ∞) and 1A the indicator function of A. We define the inner 
product

〈 f , g〉μ =
∞∫

0

f (u)g(u)μ(du).

In this paper, we will use the following hypothesis (H).

Definition 1.1. We say that hypothesis (H) holds if the following explicit conditions on α, all together, are satisfied:

(H1) for all x > 0, Px(τ = T0 < T∞) = 1;
(H2) for any ε > 0, μ(0, ε) = ∞;

(H3) S = ∫ ∞
1 eQ (y)

(∫ ∞
y e−Q (z)dz

)
dy < ∞.

It is well known (see, e.g., [4], Chapter VI, Theorem 3.2) that (H1) is equivalent to �(∞) = ∞ and κ(0+) < ∞. According 
to Feller’s classification (see [5, Chapter 15]), if (H1) and (H2) are satisfied, then 0 is an exit boundary; if (H1) and (H3) are 
satisfied, then +∞ is an entrance boundary.

One of the fundamental problems for a killed Markov process conditioned on survival is to study its long-term asymptotic 
behavior. In order to understand the behavior of the process before extinction, a relevant object to look at is a so-called 
quasi-ergodic distribution (see [1]). In this paper, we will study the existence and uniqueness of quasi-ergodic distributions 
for the one-dimensional diffusion process X satisfying hypothesis (H).

Recently, under the conditions that hypothesis (H) holds and the killed semigroup satisfies intrinsic ultracontractivity, 
He and Zhang [3] proved that there exists a unique quasi-ergodic distribution for the one-dimensional diffusion process X . 
The main aim of this note is to show that this conclusion still holds only under hypothesis (H) without the intrinsic 
ultracontractivity. Our main result is Theorem 3.1 (see Section 3).

2. Preliminaries

Before going to our main result, we give some preliminaries. We denote by L := 1
2 ∂xx − α∂x the infinitesimal generator 

of the one-dimensional diffusion process X . From [6], we know that L is the generator of a strongly continuous symmetric 
semigroup of contractions on L2(μ) denoted by (Pt)t≥0. This semigroup is sub-Markovian, that is, 0 ≤ Pt f ≤ 1 μ-a.e. if 
0 ≤ f ≤ 1. Also from [6], we get that when (H1) holds, the semigroup of the process X killed at 0 can be given by

Pt f (x) = Ex[ f (Xt), T0 > t].
In this paper, we study quasi-ergodicity for one-dimensional diffusions on (0, ∞), where 0 is an exit boundary and 

+∞ is an entrance boundary. More formally, the main object of interest of this work would be captured by the following 
definition.

Definition 2.1. We say that m ∈ P(0, ∞) is a quasi-ergodic distribution if there exists a π ∈ P(0, ∞) such that, for any 
A ∈ B(0, ∞),

lim
t→∞Eπ

⎛
⎝1

t

t∫

0

1A(Xs)ds|T0 > t

⎞
⎠ = m(A).
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We remark that the above limiting distribution is substantially different from the quasi-limiting distribution ρ (see, e.g., 
[1,3]), i.e. there exists π ∈ P(0, ∞) such that, for all A ∈ B(0, ∞),

lim
t→∞Pπ(Xt ∈ A|T0 > t) = ρ(A).

However, it is well known that, for a conservative Markov process X = (Xt , t ≥ 0) satisfying some irreducibility conditions, 
if ρ is the stationary distribution, then starting from any initial distribution π, both Eπ

(
1
t

∫ t
0 1A(Xs)ds

)
and Pπ(Xt ∈ A)

converge to ρ(A), when t tends to infinity. This difference is worth further investigation for us. Note that if ρ is a quasi-
limiting distribution, then it is a quasi-stationary distribution, i.e. a probability measure ρ ∈ P(0, ∞) such that for all t ≥ 0
and all A ∈ B(0, ∞),

Pρ(Xt ∈ A|T0 > t) = ρ(A).

Under hypothesis (H), the following proposition has been obtained by Littin [6]. This proposition plays an important role 
in our following arguments.

Proposition 2.2. ([6]) Assume that hypothesis (H) holds. Then we have

(i) −L has purely discrete spectrum. The eigenvalues 0 < λ1 < λ2 < · · · are simple, limn→∞ λn = +∞, and the eigenfunction ηn

associated with λn has exactly n roots belonging to (0, ∞). The sequence (ηn)n≥1 is an orthonormal basis of L2(μ). In particular, 
η1 can be chosen to be strictly positive in (0, ∞);

(ii) for any n ≥ 1, ηn ∈ L1(μ);
(iii) for all x > 0 and all t > 0, there exists some density r(t, x, ·) that satisfies

Ex[ f (Xt), T0 > t] =
∞∫

0

r(t, x, y) f (y)μ(dy) (2.1)

for all bounded Borel function f . Moreover, for all x > 0 and t > 0, the density r(t, x, ·) ∈ L2(μ).
(iv) there exists a unique quasi-stationary distribution

ν(dx) = η1(x)

〈η1,1〉μ μ(dx) (2.2)

for the process X.

Also, for any x > 0 and any A ∈B(0, ∞),

lim
t→∞ eλ1tPx(T0 > t) = η1(x)〈η1,1〉μ, (2.3)

lim
t→∞ eλ1tPx(Xt ∈ A, T0 > t) = ν(A)η1(x)〈η1,1〉μ. (2.4)

This implies that

lim
t→∞Px(Xt ∈ A|T0 > t) = ν(A), (2.5)

that is, ν is the Yaglom limit distribution. Moreover, any probability measure  with compact support in (0, ∞) satisfies

lim
t→∞ eλ1tP(T0 > t) = 〈η1,1〉μ

∞∫

0

η1(x)(dx), (2.6)

lim
t→∞ eλ1tP(Xt ∈ A, T0 > t) = ν(A)〈η1,1〉μ

∞∫

0

η1(x)(dx), (2.7)

lim
t→∞P(Xt ∈ A|T0 > t) = ν(A). (2.8)
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3. Main result

For general Markov processes satisfying positive (Harris) λ-recurrence, Breyer and Roberts established a quasi-ergodic 
theorem (see [1, Theorem 1]). However, for a general Markov process, checking whether it is positive λ-recurrent is not an 
easy thing to do. When the reference measure is an infinite measure, it will be more difficult to prove that the λ-invariant 
measure is a finite measure. Compared to [1], from the proof of our main result, we can see that we not only establish 
a fractional Yaglom limit, i.e. there exists π ∈ P(0, ∞) such that, for any 0 < q < 1 and all A ∈ B(0, ∞), lim

t→∞Pπ(Xqt ∈
A|T0 > t) = m(A), but also give a relationship between the existence of quasi-limiting distributions and the existence of 
quasi-ergodic distributions. From the fractional Yaglom limit to the quasi-limiting distribution, we can see that a phase 
transition occurs.

The following theorem is our main result.

Theorem 3.1. Assume that hypothesis (H) holds. Then, for any π ∈ P(0, ∞) and any bounded measurable function f on (0, ∞), we 
have

lim
t→∞Eπ

⎛
⎝1

t

t∫

0

f (Xs)ds|T0 > t

⎞
⎠ =

∞∫

0

f (y)m(dy),

where m is given by

m(dx) = η2
1(x)μ(dx).

In particular, m is the unique stationary distribution of the Q -process.

Proof. (i) We know from part (i) of Proposition 2.2 that ‖η1‖L2(μ) = 1, then m is a probability distribution on (0, ∞). Next, 
we first assume that f is positive and bounded. For fixed u, we set

hu(x) = inf{eλ1rPx(T0 > r)/η1(x)〈η1,1〉μ : r ≥ u}.
From (2.3), we can see that hu(x) ↑ 1, as u → ∞. Let 0 < q < 1. When (1 − q)t ≥ u, by the Markov property, we obtain

Eπ( f (Xqt)|T0 > t) = Eπ( f (Xqt), T0 > t)

Pπ(T0 > t)

= Eπ[ f (Xqt)1{T0>qt}PXqt (T0 > (1 − q)t)]
Pπ(T0 > t)

= eλ1qtEπ[ f (Xqt)1{T0>qt}eλ1(1−q)tPXqt (T0 > (1 − q)t)]
eλ1tPπ(T0 > t)

≥ eλ1qtEπ[ f (Xqt)hu(Xqt)η1(Xqt)〈η1,1〉μ1{T0>qt}]
eλ1tPπ(T0 > t)

.

From [3, Proposition 2.3], we know that η1 is bounded. Moreover, based on (2.3), we have

| f (x)hu(x)η1(x)〈η1,1〉μ| ≤ 〈η1,1〉μ‖ f ‖∞‖η1‖∞.

Thus, the function f huη1 is bounded and measurable.
If (H) is satisfied, the same proof as in [2, Theorem 7.3] works, we can deduce that, for any π ∈ P(0, ∞) and any 

bounded measurable function g on (0, ∞),

lim
t→∞Eπ(g(Xt)|T0 > t) =

∞∫

0

g(x)ν(dx), (3.1)

where ν is defined in (2.2). This is because the key elements of the proof of [2, Theorem 7.3] only need to know that 
the process can reach 0 in finite time with probability 1, −L has purely discrete spectrum, η1 ∈ L1(μ), r(t, x, y) exists and 
part (iv) of Proposition 2.2 holds. If (H) is satisfied, from Proposition 2.2 we know that all these requirements are fulfilled. 
Moreover, under hypothesis (H), we also have for any π ∈ P(0, ∞),

lim
t→∞ eλ1tPπ(T0 > t) = 〈η1,1〉μ

∞∫
η1(x)π(dx). (3.2)
0
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The proof of this property is similar to that of [2, Theorem 7.3], since it only uses the same properties above. So, by (3.1)
and (3.2), we get

lim inf
t→∞ Eπ( f (Xqt)|T0 > t) ≥ lim

t→∞
eλ1qtEπ[ f (Xqt)hu(Xqt)η1(Xqt)〈η1,1〉μ1{T0>qt}]

eλ1tPπ(T0 > t)

=
∞∫

0

f (x)hu(x)η1(x)〈η1,1〉μν(dx)

=
∞∫

0

f (x)hu(x)m(dx).

Based on the monotone convergence theorem, by letting u → ∞ in the above formula, we have

lim inf
t→∞ Eπ( f (Xqt)|T0 > t) ≥

∞∫

0

f (x)m(dx). (3.3)

On the other hand, since f is bounded, we can repeat the argument, replacing f by ‖ f ‖∞ − f , which gives

lim sup
t→∞

Eπ( f (Xqt)|T0 > t) ≤
∞∫

0

f (x)m(dx). (3.4)

Combining (3.3) and (3.4), for positive and bounded function f , we have

lim
t→∞Eπ

(
f (Xqt)|T0 > t

) =
∞∫

0

f (x)m(dx). (3.5)

For (3.5), we can extend it to arbitrary bounded f by subtraction.
So, by change of variable in the Lebesgue integral and the dominated convergence theorem, we obtain

lim
t→∞Eπ

⎛
⎝1

t

t∫

0

f (Xs)ds|T0 > t

⎞
⎠ = lim

t→∞Eπ

⎛
⎝

1∫

0

f (Xqt)dq|T0 > t

⎞
⎠

= lim
t→∞

1∫

0

Eπ( f (Xqt)|T0 > t)dq

=
∞∫

0

f (x)m(dx).

(ii) If (H) is satisfied, the same proof as in [2, Corollary 6.1] works, we can deduce that the Q -process exists (the reason 
is as described above). More precisely, if (H) is satisfied, then the family (Qx)x>0 of probability measures on � defined by

Qx(A) = lim
t→∞Px(A|T0 > t), ∀A ∈ Fs, ∀s ≥ 0,

is well defined, and the process (�, (Ft)t≥0, (Xt)t≥0, (Qx)x>0) is a diffusion process on (0, ∞) with transition probability 
densities (w.r.t. the Lebesgue measure) given by

q(s, x, y) = eλ1s η1(y)

η1(x)
r(s, x, y)e−Q (y).

So, from [2, Corollary 6.2], we know that the Q -process admits a unique invariant probability measure

ϑ(dx) = η2
1(x)μ(dx).

Thus, m coincides with the unique stationary distribution ϑ of the Q -process. This shows the result. �
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Finally, let us remark that the proof developed in [1, Theorem 1] could be used here in order to prove the same result 
with π = δx for any x ∈ (0, ∞), where δx denotes the Dirac measure at x. Indeed, it only uses the fact that

lim
t→∞Qx( f (Xt)) =

∞∫

0

f (y)m(dy),

for all bounded measurable function f .
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