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We investigate the flat holomorphic vector bundles over compact complex parallelizable 
manifolds G/�, where G is a complex connected Lie group and � is a cocompact lattice in 
it. The main result proved here is a structure theorem for flat holomorphic vector bundles 
Eρ associated with any irreducible representation ρ : � −→ GL(r, C). More precisely, we 
prove that Eρ is holomorphically isomorphic to a vector bundle of the form E⊕n , where E
is a stable vector bundle. All the rational Chern classes of E vanish, in particular, its degree 
is zero.
We deduce a stability result for flat holomorphic vector bundles Eρ of rank 2 over G/�. If 
an irreducible representation ρ : � −→ GL(2, C) satisfies the condition that the induced 
homomorphism � −→ PGL(2, C) does not extend to a homomorphism from G , then Eρ is 
proved to be stable.
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r é s u m é

Nous étudions les fibrés holomorphes plats sur les variétés parallélisables compactes G/�

(avec G un groupe de Lie connexe complexe et � un réseau cocompact). Notre résultat 
principal décrit les fibrés holomorphes plats Eρ associés à des représentations irréductibles 
ρ : � −→ GL(r, C). Nous démontrons que ces fibrés Eρ sont isomorphes à une somme 
directe E⊕n , avec E un fibré vectoriel stable de degré zéro.
Nous en déduisons un résultat de stabilité concernant les fibrés holomorphes plats Eρ de 
rang 2 sur les quotients G/�. Si ρ : � −→ GL(2, C) est une représentation irréductible 
telle que le morphisme induit ρ ′ : � −→ PGL(2, C) ne s’étend pas à G , alors Eρ est stable.
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Version française abrégée

Nous étudions les fibrés plats holomorphes sur les variétés parallélisables compactes G/�, avec G un groupe de Lie 
complexe connexe et � un réseau cocompact. Ces fibrés plats de rang r sont donnés par des représentations ρ : � −→
GL(r, C). Un tel fibré est holomorphiquement trivial si et seulement si le morphisme ρ s’étend à un morphisme de groupes 
de Lie G −→ GL(r, C) (voir, par exemple, [16, p. 801, Proposition 3.1]).

Nous nous intéressons à la notion de stabilité de ces fibrés. Même si, pour G non abélien, les quotients G/� ne sont pas 
kählériens, ces variétés portent des métriques balancées (i.e. qui ont la propriété dωm−1 = 0, avec m la dimension complexe 
de la variété) [1,3]. Par rapport à ces métriques, les notions classiques de degré, pente (= degré divisé par le rang) et 
(semi-)stabilité et polystabilité au sens des pentes se définissent comme dans le cas classique (projectif ou kählérien) [10].

Le résultat principal de cette note détermine la structure des fibrés holomorphes plats (de rang r) Eρ au-dessus de 
G/� qui sont construits à partir de représentations irréductibles ρ : � −→ GL(r, C). Nous démontrons que ces fibrés sont 
nécessairement isomorphes à un fibré de la forme E⊕n , avec E un fibré vectoriel stable de degré zéro.

Dans la preuve, nous utilisons un résultat de [3] qui donne la semistabilité de Eρ . Ensuite, nous démontrons la polysta-
bilité, qui est une étape importante de la preuve.

Une conséquence du théorème précédent est un résultat de stabilité pour les fibrés plats holomorphes de rang 2 au-
dessus de G/�. Plus précisément, si ρ : � −→ GL(2, C) est une représentation irréductible telle que la représentation 
induite ρ ′ : � −→ PGL(2, C) ne s’étend pas à G , alors Eρ est stable.

1. Introduction

An interesting class of compact non-Kähler manifolds that generalizes compact complex tori consists of those manifolds 
whose holomorphic tangent bundle is holomorphically trivial. By a result of Wang [15], those so-called parallelizable man-
ifolds are known to be biholomorphic to a quotient of a complex connected Lie group G by a cocompact lattice � in G . 
Those quotients G/� are Kähler exactly when G is abelian (and, consequently, the quotient is a complex torus).

In particular, for G nonabelian, the above quotients are not algebraic. Moreover, for G semi-simple, the corresponding 
parallelizable manifolds are known to have algebraic dimension zero (meaning that the only meromorphic functions on G/�

are the constant ones).
For those parallelizable manifolds of algebraic dimension zero, Ghys’ arguments in [8] prove that all foliations and all 

holomorphic distributions on G/� are homogeneous (i.e. they all descend from G-right invariant foliations (respectively, 
distributions) on G). In particular, any complex subbundle of the holomorphic tangent bundle is isomorphic to a trivial 
vector bundle. It was also proved in [5] that all holomorphic geometric structures in Gromov’s sense [9] (constructed from 
higher-order frame bundles) on parallelizable manifolds G/� of algebraic dimension zero are also necessarily homogeneous 
(e.g., their pull-backs on G are G-right invariant).

The simplest examples of parallelizable manifolds of algebraic dimension zero are compact quotients of SL(2, C). Those 
manifolds are closely related to the 3-hyperbolic manifolds in a natural way. Indeed, PSL(2, C) being the group of direct 
isometries of the hyperbolic 3-space, the direct orthonormal frame bundle of a compact oriented hyperbolic 3-manifold V
is diffeomorphic to a quotient PSL(2, C)/� (with the lattice � being isomorphic to the fundamental group of V ). Those 
quotients are both geometrically interesting and very abundant. In particular, they can have arbitrarily large first Betti 
number (see [14], [7, Section 6.2], or [12]), meaning that the rank of the abelianization of � (modulo torsion) can be ar-
bitrarily large. This remark was used by Ghys [7] in order to prove that the quotients of SL(2, C) with first Betti number 
≥ 1 are not rigid (as complex manifolds). Ghys constructed the corresponding deformation space using group homomor-
phisms of � into SL(2, C) × SL(2, C) that are close to the natural embedding � ⊂ SL(2, C) × {I2} ⊂ SL(2, C) × SL(2, C), 
where I2 is the identity element. The images of those homomorphisms are (up to conjugacy) graphs γ �−→ (γ , ρ(γ )), 
γ ∈ �, of homomorphisms ρ : � −→ SL(2, C) that are close to the map of � to the identity element (the trivial homomor-
phism).

As soon as the first Betti number of � is positive, there exist nontrivial group homomorphisms u : � −→ C, and one 
can consider ρ : � −→ SL(2, C) defined by γ �−→ exp(u(γ )ξ), with exp being the exponential map and ξ some fixed 
element of sl(2, C). Notice that those homomorphisms do not extend to homomorphisms from SL(2, C); indeed, SL(2, C) is 
a perfect group (meaning generated by its commutators) and hence SL(2, C) does not admit nontrivial homomorphisms into 
abelian groups. This implies that the associated flat holomorphic line bundle Eρ over SL(2, C)/� is nontrivial [16, p. 801, 
Proposition 3.1].

For any r ≥ 2, any element ξ of Lie(SL(r, C)), the previous homomorphisms u : � −→ C produce group homomor-
phisms � −→ SL(r, C), γ �−→ exp(u(γ )ξ), taking values in a one-parameter subgroup.

For cocompact lattices � with first Betti number ≥ 2, Ghys constructed in [7] group homomorphisms from � to SL(2, C)

that are close to the identity and such that the image is Zariski dense. One can also see [12] in which the author constructs 
many cocompact lattices � in SL(2, C) admitting a surjective homomorphism onto a nonabelian free group (this also implies 
that the lattices can have arbitrarily large first Betti number). Since nonabelian free groups admit many linear irreducible 
representations, we get many linear irreducible representations of those � furnishing nontrivial flat holomorphic vector 
bundles over the corresponding quotients SL(2, C)/�.
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In this note, we deal with flat holomorphic vector bundles over parallelizable manifolds G/�. Our main result (see 
Theorem 2.1 in Section 2) is a structure theorem for flat holomorphic vector bundles Eρ given by irreducible representations 
ρ : � −→ GL(r, C). We prove that Eρ is isomorphic to a direct sum E⊕n , where E is a stable vector bundle. All the rational 
Chern classes of E vanish; in particular, the degree of E is zero (see Remark 2.3).

As a consequence, we deduce in Section 4 a stability result for flat holomorphic vector bundles Eρ of rank two over G/�. 
If an irreducible homomorphism ρ : � −→ GL(2, C) has the property that the homomorphism � −→ PGL(2, C) obtained 
by composing ρ with the natural projection of GL(2, C) to PGL(2, C) does not extend to a homomorphism from G , then Eρ

is stable.
It should be mentioned that the stability of vector bundles in the previous results is slope-stability with respect to a 

balanced metric on the parallelizable manifold (see definition and explanations in Section 2).
In a further work, the authors will address the question of (semi)stability of flat holomorphic vector bundles over Ghys’ 

deformations of parallelizable manifolds SL(2, C)/� constructed in [7]. It should be mentioned that generic small deforma-
tions of SL(2, C)/� do not admit nontrivial holomorphic 2-forms (see Lemma 3.3 in [4]) and, consequently, Corollary 8 in 
[6] implies that those generic small deformations admit balanced metrics.

2. Irreducible representations and polystable bundles

Let G be a complex connected Lie group and � ⊂ G a discrete subgroup such that the quotient

M := G/� (2.1)

is a compact (complex) manifold. Such a � is called a cocompact lattice in G . The left-translation action of G on itself 
produces a holomorphic action of G on the complex manifold M . The Lie algebra of G will be denoted by g. Take a 
maximal compact subgroup K ⊂ G . Fix a Hermitian form h ∈ g∗ ⊗ g∗ on g such that the action of K on g∗ ⊗ g∗ , given by 
the adjoint action of K on g, fixes h. Consider the translations of h by the right-multiplication action of G on itself. The 
resulting Hermitian structure on G descends to a Hermitian structure on the quotient M in (2.1). The (1, 1)-form on M
corresponding to this Hermitian structure will be denoted by ω. We know that

dωm−1 = 0 , (2.2)

where m = dimC M [3, p. 277, Theorem 1.1(1)]. Such a Hermitian metric structure is called balanced (one can also see [1]).
For a torsion-free coherent analytic sheaf F on M , define

degree(F ) :=
∫
M

c1(det F ) ∧ ωm−1 ∈ R ,

where det F is the determinant line bundle for F [11, Ch. V, § 6]. From (2.1), it follows that the degree is well-defined. 
Indeed, any two first Chern forms for F differ by an exact 2-form on M , and∫

M

(dα) ∧ ωm−1 = −
∫
M

α ∧ dωm−1 = 0 .

In fact, this shows that degree is a topological invariant. Define

μ(F ) := degree(F )

rank(F )
∈ R

which is called the slope of F . A torsion-free coherent analytic sheaf F on M is called stable (respectively, semistable) if, 
for every coherent analytic subsheaf V ⊂ F such the rank(V ) ∈ [1 , rank(F ) − 1], the inequality μ(V ) < μ(F ) (respectively, 
μ(V ) ≤ μ(F )) holds (see [11, Ch. V, § 7]). Hence, throughout the paper, (semi)stability means slope-(semi)stability.

A torsion-free coherent analytic sheaf F is called polystable if the following two conditions hold:

(1) F is semistable, and
(2) F is a direct sum of stable sheaves.

Consider any homomorphism

ρ : � −→ GL(r,C) . (2.3)

Let (Eρ , ∇ρ) be the flat holomorphic vector bundle or rank r over M associated with ρ . We recall that the total space of 
Eρ is the quotient of G ×Cr , where two points (z1 , v1) , (z2 , v2) ∈ G ×Cr are identified if there is an element γ ∈ � such 
that z2 = z1γ and v2 = ρ(γ −1)(v1). We note that the fiber of Eρ over the point e� ∈ M , where e is the identity element 
of G , is identified with Cr by sending w ∈ Cr to the equivalence class of (e, w). The trivial connection on the trivial vector 
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bundle G ×Cr −→ G descends to a connection on Eρ that is denoted by ∇ρ . The left-translation action of G on G and the 
trivial action of G on Cr together define an action of G on G ×Cr . It descends to an action of G on Eρ . This action of G on 
Eρ is a lift of the left-translation action of G on M . In particular, the holomorphic vector bundle Eρ is equivariant.

A homomorphism ρ as in (2.3) is called reducible if there is no nonzero proper subspace of Cr preserved by ρ(�) for 
the standard action of GL(r, C) on Cr .

Theorem 2.1. Assume that the homomorphism ρ is irreducible. Then Eρ is isomorphic to a vector bundle of the form E⊕n, where E is 
a stable vector bundle.

Proof. Since Eρ admits a flat connection, namely ∇ρ , the rational Chern class c1(Eρ) ∈ H2(M, Q) vanishes. Hence from 
the definition of degree, it follows that degree(Eρ) = 0. Since Eρ is equivariant, it follows that Eρ is semistable [3, p. 279, 
Lemma 3.2].

We will now prove that Eρ is polystable.
Let

W ⊂ Eρ (2.4)

be the unique maximal polystable subsheaf of degree zero in Eρ given by Proposition 3.1 in Section 3. Consider the action 
of G on the equivariant bundle Eρ . From the uniqueness of W , it follows that the action of G on Eρ preserves the subsheaf 
W in (2.4); indeed, the subsheaf g · W ⊂ Eρ given by the action on W of any fixed g ∈ G is again a maximal polystable 
subsheaf of degree zero, and hence g · W coincides with W . This implies that W is a subbundle of Eρ (the subset of M over 
which W is subbundle is preserved by the action of G on M , and hence it must be entire M as the action is transitive). As 
noted earlier, the fiber of Eρ over the point e� ∈ M is identified with Cr . The isotropy subgroup for e� is � itself. Since W
is preserved by the action of G on Eρ , we conclude that the subspace We� ⊂ (Eρ)e� = Cr is preserved by the action of �
on Cr given by ρ . Since ρ is irreducible, it follows that We� = (Eρ)e� . This implies that W = Eρ . Hence, Eρ is polystable.

Let

Eρ =
n⊕

i=1

Fi

be a decomposition of the polystable bundle Eρ into a direct sum of stable bundles. Since degree(Eρ) = 0, and Eρ is 
semistable, it follows that degree(Fi) = 0 for all 1 ≤ i ≤ n.

Order the above vector bundles Fi in such a way that

(1) Fi is isomorphic to F1 for all 1 ≤ i ≤ �, and
(2) Fi is not isomorphic to F1 for every � + 1 ≤ i ≤ n.

Note that � may be 1. Let

F =
�⊕

i=1

Fi ⊂
n⊕

i=1

Fi = Eρ

be the subbundle given by the direct sum of the first � summands. We will show that the flat connection ∇ρ on Eρ

preserves F .
Let 	M denote the holomorphic cotangent bundle of M . Consider the composition

F ↪→ Eρ
∇ρ−→ Eρ ⊗ 	M −→ (Eρ/F ) ⊗ 	M ;

it is an OM -linear homomorphism known as the second fundamental form of F for ∇ρ . We will denote this second fun-
damental form by S(∇ρ, F ). Now, 	M is trivial (a trivialization is given by a right translation invariant trivialization of the 
holomorphic cotangent bundle of G). Also, we have

Eρ/F =
n⊕

i=�+1

Fi .

For any � + 1 ≤ i ≤ n, since Fi is a stable bundle of degree zero not isomorphic to the stable vector bundle F1 of degree 
zero, it follows that

H0(M, Hom(F1, Fi)) = H0(M, Fi ⊗ F ∗
1) = 0 . (2.5)

Since F is a direct sum copy of F1, and 	M is trivial, from (2.5) we conclude that S(∇ρ, F ) = 0. This implies that the 
connection ∇ρ on Eρ preserves F .

Since ∇ρ preserves F , and ρ is irreducible, it follows that F = Eρ . This completes the proof of the theorem. �
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Remark 2.2. If the homomorphism ρ extends to a homomorphism ρ̃ : G −→ GL(r, C), then the vector bundle Eρ is holo-
morphically trivial. Indeed, the map G × Cr −→ G × Cr that sends any (z, v) to (z, ρ̃(z)(v)) descends to a holomorphic 
isomorphism of Eρ with the trivial vector bundle M × Cr (recall that Eρ is a quotient of G × Cr ). Therefore, in that case, 
the integer n in Theorem 2.1 is the rank r.

Remark 2.3. Since Eρ admits a flat connection, all the rational Chern classes of Eρ of positive degree vanish [2]. Therefore, 
the condition E⊕n = Eρ in Theorem 2.1 implies that all the rational Chern classes of E of positive degree vanish.

3. Uniqueness of socle of semistable reflexive sheaves

The aim of this section is to prove the following Proposition 3.1 about semi-stable reflexive sheaves (see Definition 1.1.9 
on page 6 in [10]). The analogous (weaker) statement for bundles is needed in the proof of Theorem 2.1.

Proposition 3.1. Consider a compact complex manifold X equipped with a Gauduchon metric ω. Let E be a semistable reflexive sheaf 
on X of slope μ (with respect to ω). Then there is a unique polystable sheaf E ′ ⊂ E with μ(E ′) = μ that is maximal among all such 
subsheaves.

Proof. Let F ⊂ E be any subsheaf of slope μ(F ) = μ. Taking the double dual of the inclusion, we see that F ∗∗ embeds 
into E∗∗ = E . Moreover, since F ∗∗/F is a torsion sheaf, it follows that μ(F ) ≤ μ(F ∗∗). Indeed, by [11, Ch. V, pp. 166–167, 
Proposition 6.14] the determinant line bundle L of the torsion sheaf F ∗∗/F admits a nontrivial holomorphic section. Then 
we make use of the following Lemma (stated as Proposition 1.3.5 on page 35 in [13]), which is a consequence of Poincaré–
Lelong formula:

Lemma 3.2. If the line bundle L admits a nontrivial holomorphic section t with vanishing divisor Dt , then degree(L) = c · Volω(Dt), 
where c is a positive constant and the volume Volω(Dt) of Dt is computed with the fixed Gauduchon metric ω. In particular, if L is 
nontrivial and admits a nontrivial holomorphic section, then degree(L) > 0.

Since E is semistable, it follows that

μ(F ) = μ(F ∗∗) = μ,

so that F ∗∗ is semistable. Assume that F is stable and that V ⊂ F ∗∗ is a non-trivial subsheaf of slope μ(V ) = μ. Then 
V ∩ F is a subsheaf of the same slope and rank as V . Since F is stable, one has

rank(V ) = rank(F ) = rank(F ∗∗) .

This shows that F ∗∗ is stable as well. Therefore, every stable subsheaf of E of slope μ is contained in a reflexive stable 
subsheaf of the same rank and slope.

Let E ′ ⊂ E be the sum of all stable reflexive subsheaves of slope μ. By the argument of the first paragraph, E ′ contains 
all stable subsheaves of slope μ in E . It suffices to show that E ′ is polystable. Let

E ′′ := E1 ⊕ · · · ⊕ Es ⊂ E ′

be a polystable subsheaf of E ′ with a maximal number s of stable reflexive subsheaves Ei of slope μ. If E ′′ = E ′ , there is 
nothing to show. Otherwise, there is a reflexive stable subsheaf F ⊂ E ′ of slope μ not contained in E ′′ . If F ∩ E ′′ = 0, then 
E ′′ ⊕ F ⊂ E ′ , contradicting the maximality of s. Assume therefore that F ∩ E ′′ �= 0.

If μ(F ∩ E ′′) < μ, then μ(E ′′ + F ) = μ(E ′′ ⊕ F/(E ′′ ∩ F )) > μ, contradicting the semistability of E . Hence μ(F ∩ E ′′) = μ. 
Since F is stable, F ∩ E ′′ ⊂ F is a subsheaf of the same rank, so that F/(F ∩ E ′′) is a torsion module. Since E ′′ is reflexive, 
the inclusion F ∩ E ′′ ⊂ E ′′ extends to F ⊂ E ′′ , contradicting the assumptions on F .

This shows that E ′ = E ′′ is polystable. By construction, E ′ is unique. �
4. Rank-two flat bundles on quotients of G

We set r = 2 in (2.3). Take any irreducible ρ as in Theorem 2.1. Let ρ ′ : � −→ PGL(2, C) be the composition of ρ with 
the canonical projection of GL(2, C) to PGL(2, C).

Proposition 4.1. Assume that the homomorphism ρ ′ does not extend to a homomorphism from G. Then the vector bundle Eρ is stable.

Proof. Assume that Eρ is not stable. From Theorem 2.1, it follows that Eρ = L ⊕ L, where L is a holomorphic line bun-
dle. Hence the projective bundle P(Eρ) is holomorphically trivial. Now [16, p. 801, Proposition 3.1] contradicts the given 
condition that ρ ′ does not extend to a homomorphism from G . �
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Remark 4.2. In an earlier proof of Proposition 4.1, a longer argument was given after proving that P(Eρ) is holomorphically 
trivial. The referee pointed out that [16, p. 801, Proposition 3.1] completes the proof at this point. This also enabled us to 
remove the assumption G = SL(2, C) in the earlier version.

Let ρ, η : � −→ GL(2, C) be two irreducible homomorphisms such that

• neither of the two corresponding homomorphisms ρ ′, η′ : � −→ PGL(2, C) extends to a homomorphism from G , and
• for the action ρ ⊗ η∗ of � on End(C2) = C2 ⊗ (C2)∗ , where η∗ is the action of � on (C2)∗ corresponding to its action 

on C2 given by η, the vector space End(C2) decomposes into a direct sum of irreducible �-modules such that all the 
direct summands are nontrivial and the action of � on none of them extends to an action of G .

From Proposition 4.1, we know that the associated vector bundles Eρ and Eη are stable.

Lemma 4.3. The two stable vector bundles Eρ and Eη are not isomorphic.

Proof. It suffices to show that

H0(M, Hom(Eη, Eρ)) = 0 . (4.1)

Since End(C2) decomposes into a direct sum of irreducible �-modules, from Theorem 2.1 we know that

Hom(Eη, Eρ) =
b⊕

i=1

(Fi)
⊕di , (4.2)

where each Fi is a stable vector bundle of degree zero (here b is the number of irreducible �-modules in End(C2)). To 
prove (4.1), it is enough to show that each Fi is nontrivial, because a nontrivial stable vector bundle of degree zero does 
not admit any nonzero section.

Let V be an irreducible � module and E V the corresponding vector bundle on M . If E V is trivial, then the action of �
on V extends to an action of G [16, p. 801, Proposition 3.1]. Therefore, each Fi in (4.2) is nontrivial. �
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