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Let E be a rational elliptic curve and let p be an odd prime of additive reduction. Let K
be an imaginary quadratic field and fix a positive integer c prime to the conductor of E . 
The main goal of the present article is to define an anticyclotomic p-adic L-function L
attached to E/K when E/Qp attains semistable reduction over an abelian extension. We 
prove that L satisfies the expected interpolation properties; namely, we show that if χ is 
an anticyclotomic character of conductor cpn , then χ(L ) is equal (up to explicit constants) 
to L(E, χ, 1) or L′(E, χ, 1).

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit E une courbe elliptique rationnelle et p un premier impair de réduction additive. Soit 
K un corps quadratique imaginaire et c un entier positif, premier au conducteur de E . 
Le but de cette Note est de définir une fonction L p-adique, anti-cyclotomique, notée L , 
attachée à E/K lorsque E/Qp atteint la réduction semi-stable sur une extension abélienne. 
Nous montrons que L satisfait les propriétés d’interpolation escomptées. Précisément, 
nous montrons que, si χ est un caractère anti-cyclotomique de conducteur cpn , alors χ(L )

est égal (à des constantes explicites près) à L(E, χ, 1) ou L′(E, χ, 1).
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Introduction

The theorem of Mordell states that the rank of a rational elliptic curve E is finite. It is a hard and interesting problem to 
determine it and, furthermore, to compute a set of generators for E(Q). By Weil’s generalization of Mordell’s result, the rank 
is still finite over number fields L. Although the rank cannot be bounded over arbitrary algebraic extensions, sometimes this 
is still the case; for example, Mazur ([21]) proved that if � is a finite set of primes, then E(Qab

� ) is finitely generated, where 
Qab

� denotes the maximal abelian extension of Q unramified outside �.
The techniques used to bound the rank of E/L involve a detailed analysis of the Selmer group. If L is the Zp-extension 

of Q, that is, a Galois extension with Galois group isomorphic to Zp , a deep conjecture of Iwasawa relates the dual of the 
p-primary part of this Selmer group to a p-adic analytic object called the cyclotomic p-adic L-function of E . The study and 
definition of such p-adic L-function was considered by many authors ([22,1,30,23]).

A natural variation of the problem is to start with a base field K , and study the rank of E over a Zp-extension L/K . When 
K is an imaginary quadratic field, any such extension is contained in the compositum of the Zp -cyclotomic extension (lying 
inside the extension obtained by adjoining the pn-th roots of unity for every n ∈ N) and the so-called Zp -anticyclotomic 
extension (a generalized dihedral extension of Q). These two extensions are the only ones that are Galois over Q. A good 
reason to study the anticyclotomic Zp -extension is that if χ is an anticyclotomic character, then the L-function L(E, χ, s)
satisfies a functional equation and its central value holds important arithmetic information. The p-adic L-function L is 
a p-adic analytic function that should encode the central values L(E, χ, 1) (or its derivative L′(E, χ, 1)) for finite order 
anticyclotomic characters χ .

The study of the rank behavior over the anticyclotomic extension, and the generalization of Iwasawa’s conjecture to 
this setting was pioneered by Bertolini and Darmon (see for example the breakthrough papers [2,3]), where they prove 
(among many important properties) one divisibility of the anticyclotomic Iwasawa’s main conjecture. The strategy in this 
setting is to construct special geometric objects (CM points) arising from orders in the imaginary quadratic field K satisfying 
compatibility relations. More precisely, let N be the conductor of E , let c be a positive integer prime to N , and let Gn :=
Gal(Hn/K ), where Hn denotes the ring class field of conductor cpn . The special points allow us to construct a p-adic 
measure on the Galois group G∞ := lim←− Gn (such measure is naturally defined in the characteristic functions of the sets Gn
for each n and extended by continuity to locally constant p-adic functions). To ensure the additive property of the measure 
a suitable normalization of the geometric points is needed. In [23] a normalization is presented using the action of the 
U p operator and its eigenvalues. This imposes an extra condition at p, namely the curve must be semistable ordinary at p
(the supersingular case was considered by Pollack [25] and Darmon–Iovita [8] in the cyclotomic and anticyclotomic setting 
respectively).

Perrin–Riou ([24]) gave a very general construction of the p-adic L-function once a local condition at p is imposed 
(see Theorem 16.4 of [16]) from the data of an Euler system, and Kato constructed such an Euler system for modular 
forms. The local condition at p for the p-adic L-function can be understood as choosing a “canonical” direction to project 
such cohomological classes. In the multiplicative reduction case, one can take the submodule given by the line fixed by 
inertia, while in the good ordinary reduction case the natural choice is to take the same submodule of the p-stabilized form 
attached to E . The problem is that when p2 | N , there is no canonical choice! This obstruction continues to hold in the 
anticyclotomic scenario considered by Bertolini–Darmon. Nevertheless, even when E has additive reduction at p, there are 
some instances where a natural normalization can be taken, namely when E/Qp attains semistable reduction over an abelian 
extension (SRAE) of Qp . This approach was carried over by Delbourgo [9] in the cyclotomic case and the main contribution 
of this article is to make an analogous construction in the anticyclotomic scenario.

To keep the statement as simple as possible, we state our main result with some extra hypotheses: let E be an elliptic 
curve of conductor N , with p a SRAE prime of additive reduction that is not a quadratic twist of an elliptic curve semistable 
at p, and let χ be a family of anticyclotomic characters of conductor cpn , with n ≥ 1. The sign of the functional equation of 
L(E, χ, s) is constant on this family; suppose it equals +1.

Theorem. With the above hypotheses, there exists an antyciclotomic p-adic L-function L ∈ Zp[[G∞]] that satisfies the 
following interpolation properties:

χ(L ) = pn

α2n
· L(1, E,χ)

�′
E

· u2
n

√
Dc

2−#�D
,

where �′
E is a period, �D is the set of places dividing both N/p2 and the discriminant D of K , un is half the number of 

units of the order of conductor cpn , and α is a p-adic unit that depends only on E .

We prove a stronger result valid for any elliptic curve E for which p is a SRAE prime and including a slightly more 
general class of characters χ . Furthermore, when the functional equation sign in the family equals −1, we have a similar 
theorem, but replacing L(E, χ, 1) with the special values of the derivative L′(E, χ, 1). See Theorems 3.6 and 4.1 for the 
precise statements.

Our strategy is as follows: the modularity of rational elliptic curves (due to Wiles et al. [31,4]) implies that there exists 
an automorphic representation πE of GL2(AQ) with trivial central character whose L-series coincides with that of E . The 
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SRAE at p hypothesis (for p ≥ 3) is equivalent to πE being a Steinberg representation or a ramified principal series at p. 
Then there exists a Dirichlet character ψ and an automorphic form πg whose level has valuation at most 1 at p (with 
non-trivial Nebentypus in general) such that πg ⊗ ψ = πE . Following the general philosophy, the restriction of the p-adic 
Galois representation attached to πg (by Deligne) to the local Galois group Gal(Qp/Qp) does have a stable line (hence a 
natural submodule).

Concretely, the form πg has an abelian surface Ag attached to it (of GL2-type, whose endomorphism ring EndQ(Ag) ⊗Q is 
isomorphic to Q, Q(

√−1) or Q(
√−3)) [17, Section 2.1], where we make a classical construction of CM points on A g (as we 

did in [18] for constructing Heegner points for SRAE primes ramifying in K ), and use them to define the p-adic L-function 
of E . Clearly, the p-adic L-function of E and that of Ag should be related by a “shift” on the analytic functions space 
(corresponding to the twist by ψ ). The main novelty of the present article is that the special points used to construct the 
p-adic L-function of E are in Ag (not in E); still their existence and properties are enough to define the p-adic L-function.

The second goal of the article is to prove the interpolation properties of the p-adic L-function. In order to prove it, we 
make heavy use of the fact that the CM points used to define the p-adic L-function have heights related to central values, 
as proved by Waldspurger and by Gross–Zagier (in our setting the explicit formulas are due to Cai–Shu–Tian [5]). Note that 
special values L(E, χ, 1) are related to L(Ag, ψχ, 1), which justifies working with Ag instead of E . The results we obtained 
are similar in spirit to the ones by Chida–Hsieh [6] and Van Order [28], but they only consider the case where the reduction 
at p is semistable.

In addition, Disegni on [12] deals with a much more general situation but under the hypothesis that the prime p splits in 
K (in that case, our result can be obtained by plugging the corresponding test vector in his formula). We want to stress that 
we do not make any assumptions on the factorization of p in K : it could be split, inert, or ramified. The ramified case is of 
special interest as it is widely overlooked in the literature (in the semistable case, see the very recent paper of Longo–Pati 
[19]). In a sequel article, we will use the present construction to prove one divisibility of Iwasawa’s main conjecture.

To ease the exposition, we assume that the level of πg is divisible by p (i.e. E is not the quadratic twist of an elliptic 
curve with good reduction at p). In the last section, we explain the changes needed to handle this case.

The method described in the present article can be used to handle the case of newforms in Sk(�0(N)), for arbitrary 
weights k, whose level N is exactly divisible by p2 with the conditions:

(1) the local component at p is not supercuspidal,
(2) the L-series L( f , χ, s) has functional equation sign +1 (so as to work with definite quaternion algebras).

The techniques are developed in [6] in the semistable case, and our technique can be applied with the natural modifications.

Setting and notation

We fix the following hypotheses and notation throughout the article:

• let p be a fixed odd prime number;
• let E/Q be an elliptic curve of conductor N with SRAE at p. Let πE be the automorphic representation of GL2(AQ)

attached to E;
• as explained in the Introduction, πg denotes an automorphic representation with v p(cond(πg)) ≤ 1, and ψ denotes a 

character of conductor p such that πg ⊗ ψ = πE . We assume in all sections but the last one that v p(cond(πg)) = 1;
• let K be an imaginary quadratic field and let η be the quadratic Hecke character in correspondence with K via class 

field theory;
• let c be a positive integer relatively prime to N (in particular p � c);
• for d ∈N, let Od := Z + dOK be the order in K of conductor d;

• let Hn be the ring class field of conductor cpn and let H̃n = Hn

(
Q

ker(ψ)
)

. We define the Galois groups Gn := Gal(Hn/K )

and G̃n := Gal(H̃n/K ) and their respective limits G∞ := lim←− Gn , G̃∞ := lim←− G̃n;

• χ will denote a finite order anticyclotomic character of K , i.e. χ : K ×\A×
K → C× denotes a finite-order Hecke character 

whose restriction to A×
Q

is trivial;

• for � a finite set of places, L(�)(E, χ, s) denotes the classical L-series, with the factors at primes in � removed;
• Lε(E, χ, s) denotes the L-series for ε = 0 and its derivative for ε = 1;
• if M is a Z-module, we denote by Mp the extension of scalars to Zp , namely Mp = M ⊗Z Zp ;
• Ẑ denotes the profinite integers, namely Ẑ := lim←−Z/NZ = ∏

p Zp . If M is a Z-module, we write M̂ := M ⊗ Ẑ;

• B will denote a rational quaternion algebra, and B̂ = B ⊗Q Q̂;
• R will denote an order in B , and consistently R̂ = R ⊗Z Ẑ;
• if B is a rational quaternion algebra split at p, and M ∈ M2(Qp) ∼= B p , M(p) denotes the element in B̂ whose p-th entry 

equals M and the others equal 1.
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1. Quaternion algebras and CM points

From now on, we will let E be a fixed elliptic curve of conductor N with SRAE at p, and πg the automorphic repre-
sentation with v p(cond(πg)) = 1. Let K be an imaginary quadratic field, corresponding via class field theory to a quadratic 
character η.

Let χ be an anticyclotomic character of K whose conductor divides cpn; this corresponds to a character of Gal(K ab/K )

factoring through Gn . The anticyclotomic assumption implies that the twisted L-function L(πE , χ, s) satisfies a functional 
equation,

L(πE ,χ, s) = ε(πE ,χ, s)L(πE ,χ,2 − s),

where ε(πE , χ, s) is the so-called epsilon factor (for definitions and facts regarding such L-series, consult [15, Chapter IV]). 
The global root number ε(πE , χ, 1) can be computed as the product of local root numbers ε(πE v , χv , 1), each of them being 
±1 (see [10]). Consider the set

S(χ) := {v : ε(πE v ,χv ,1) �= χv(−1)ηv(−1)} .

By Theorem 1.3 of [32], ε(πE , χ, 1) = (−1)#S(χ) and thus the parity of the size of S(χ) determines the parity of the order 
of vanishing of L(πE , χ, s) at s = 1.

Proposition 1.1. The set S(χ) satisfies the following properties:

(1) the Archimedean prime ∞ belongs to S(χ);
(2) if v �= p is a non-Archimedean prime, then the condition “v ∈ S(χ)” depends only on K , i.e. is independent of χ ;
(3) the prime p does not belong to S(χ) if either

• the local Weil–Deligne representation of E at p is a principal series,
• the prime p splits in K ,
• the prime p is inert in K and χp is not equal to the quadratic character modulo p,
• the prime p is ramified in K and χp is not trivial.

Proof. The first statement follows from [13, Proposition 6.5], while the second one follows from the assumption that 
gcd(c, N) = 1. Regarding the last one, the assumption on p being a SRAE prime implies that the local representation of 
E at p is either a twist of Steinberg or a principal series. The result then follows from [27, Propositions 1.6 and 1.7]. �

In particular, for all but finitely many characters χ of conductor cpn (with p � c), the set S(χ) is constant. Let S denote 
such generic common set. Let ε ∈ {0, 1} be such that ε ≡ #S (mod 2). By Lε(πE , χ, s) we denote the L-series L(πE , χ, 1) if 
ε = 0 and its derivative L′(πE , χ, s) if ε = 1. Our main goal is to interpolate the special values Lε(πE , χ, 1).

To relate the central values of πE to those of πg , let

χ̃ := χ · (ψ ◦ NmA×
K /A×

Q
) : K ×\A×

K →C×.

Since χ̃ |A×
Q
= ψ2, L(πg, ̃χ, s) is self dual and clearly L(πE , χ, s) = L({p})(πg, ̃χ, s).

Definition 1.2. The character χ is good if the conductor of χ̃ is divisible by p.

If χ̃ has conductor cpn (with p � c), we will see that the central value Lε(πg , ̃χ, 1) is related to the height of a linear 
combination of CM points of conductor cpn . Varying the character’s conductor involves constructing CM points of different 
conductors and good characters correspond to good CM points in the sense of Cornut–Vatsal [7, Definition 1.6], which 
will give the distribution relations needed to define a p-adic measure. Note that Proposition 1.1 implies that if χ is good, 
p /∈ S(χ). From now on, we will only work with good characters.

Let B/Q be the quaternion algebra ramified at the places of S if ε = 0 (the definite case) and at all places of S but the 
infinite one if ε = 1 (the indefinite case).

Lemma 1.3. There exists an embedding ι : K �→ B.

Proof. Proposition 1.1 implies that if v splits in K , then v /∈ S . The result then follows from Theorem 3.8 of [29]. �
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1.1. Quaternionic level

Given a good character χ as before, we seek for an order R in B and an embedding ι : K → B with the properties that 
πg transfers to an automorphic form of level R and, at the same time, R contains CM points.

Definition 1.4. Let ι : K → B be an embedding, n a positive integer divisible by p with gcd(n, N/p2) = 1 and R ⊂ B be an 
order. We say that R is admissible for (πg, n, ι) if R p is an Eichler order of level pZp and ι is an optimal embedding of On

into R , that is, ι(K ) ∩ R = ι(On).

Remark 1.5. If χ̃ is a character whose conductor is divisible by p, then our admissibility condition for (πg , cond(χ̃ ), ι)
implies admissibility in the sense of [5, Definition 1.3].

Given an embedding ι and a good character χ̃ , there always exists an admissible order R for (πg, cond(χ̃ ), ι) by [13, 
Propositions 3.2, 3.4], [5, Lemma 3.2] and the local-global principle. Still, for explicit computations, it is useful to choose R
such that its completion R p matches the standard Eichler order. This can be achieved, allowing one to change the embedding 
to an equivalent one.

Lemma 1.6. Let c be a positive integer prime to p. Then, there exists an embedding ι : K → B and an order R ⊂ B that is admissible 
for (πg, cp, ι) whose completion at p is the standard Eichler order of level pZp.

Proof. Let R be any admissible order for (πg , cp, ι). Locally, R p is conjugate to the standard Eichler order, but by weak 
approximation we can find a global element that sends this order to the standard one. Conjugating both ι and the order the 
result follows. �

Fix once and for all R and ι as in the lemma. For n ≥ 1, let δn :=
(

pn−1 0
0 1

)(p) ∈ B̂× (see the notations section).

Lemma 1.7. Let n ≥ 1 be a positive integer. The order Rn := δnR̂δ−1
n ∩ B is admissible for (πg, cpn, ι).

Proof. Let ω′ ∈ K be such that Oc = Z + ω′Z. Then, Ocp = Z + ωZ, where ω := pω′ . Since the order R is admissible for 
(πg, cp, ι), the p-th component of the image of ω under ι is a matrix 

(
a b
c d

)
∈ M2(Zp) such that p divides a, c, d and does 

not divide b. Moreover, Ocpn = Z + pn−1ωZ and(
pn−1 0

0 1

)−1
pn−1

(
a b
c d

)(
pn−1 0

0 1

)
is a matrix whose entries are p-integers and its (1, 2) entry is not divisible by p. This shows that ι is an optimal embedding 
of Ocpn into the order Rn , as stated. �

Let U be an open compact subgroup of B̂× . If B is definite, let

XU := B×\B̂×/U ,

where U acts on B̂× by right multiplication and B× acts on B̂× by left multiplication. If B is indefinite, let

XU := B×\(C−R) × B̂×/U ,

where U acts trivially on C −R, while B× acts on C −R by Möbius transformations under the identification B∞ ∼= M2(R). 
If R is an order in B , we write XR := XR̂× .

Remark 1.8. In the definite case, the curves XU are 0-dimensional (i.e. are finite sets) while in the indefinite case, they have 
dimension 1. In the latter case, we denote by J U its Jacobian variety.

Let X := lim−→U
XU and J := lim−→U

J U , where the limit is induced by the natural projection arising from the inclusion 
of level structures. Since Rp ⊂ B p ∼= M2(Qp), we can regard ψ as a character on R̂× by the reduction modulo p of the 
(2, 2)-entry of Rp . Recall that in the introduction we defined the abelian variety A g/Q associated with πg . (See Section 6.6 
of [11] for more details, in particular Theorem 6.6.6.)

Theorem 1.9 (Jacquet–Langlands). With the same notations as before, there is an automorphic transfer of the form πg to the algebra 
B̂× . Furthermore,



978 D. Kohen, A. Pacetti / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 973–983
(1) if B is definite, there exists an automorphic form gB : B×\B̂× →C, such that

r · gB(x) := gB(xr) = ψ−2(r)gB(x) for all r ∈ R̂×;
(2) if B is indefinite, there exists gB ∈ Hom( J , Ag) ⊗Z Q such that

r · gB = ψ−2(r)gB for all r ∈ R̂×,

where Hom( J , Ag) ⊗Z Q is endowed with the right Hecke action of ̂B× inherited from X.

Moreover, if all primes q �= p such that q2 | N are unramified in K , the form gB is unique up to a constant.

Proof. The existence of the form gB and its uniqueness follow from [14, Proposition 2.6] and [5, Propositions 3.7 and 3.8]) 
combined with the Jacquet–Langlands philosophy. �
1.2. CM points

The embedding ι : K ↪→ B induces an embedding ̂ι : K̂ × ↪→ B̂× . If B is indefinite, let z0 be the unique fixed point on the 
upper half plane under the action of K × . Define

P = [(z0,1)] ∈ X,

where if B is definite, abusing notation, the point [(z0, b)] denotes the class of b ∈ B̂× in X . Let

U :=
{
(x�)� ∈ R̂× : xp ≡ ( ∗ ∗

0 a

)
mod p with ψ2(a) = 1

}
.

Note that from Theorem 1.9 we immediately obtain that the form gB is invariant under the action of U (so we can 
think of gB as a form with “trivial Nebentypus” with respect to the level U ). The inclusion U ⊆ R̂× induces a quotient 
map β : XU → XR .

Definition 1.10.

• A CM point of conductor cpn on XR is a pair [z0, b] ∈ XR , where b ∈ B̂× is such that ι is an optimal embedding of Ocpn

into bR̂b−1 ∩ B .
• For n ≥ 1, the CM points of conductor cpn on XU are the pre-images under β of CM points of conductor cpn on XR .

Let

zn := δn · P =
[(

z0,
(

pn−1 0
0 1

)(p)
)]

∈ XR.

Proposition 1.11. The points zn (for n ≥ 1) are CM points of conductor cpn on XR . In particular, their pre-images under β are CM 
points on XU .

Proof. This follows immediately from Lemma 1.7. �
There is a natural action of Gal(K ab/K ) ∼= K ×\K̂ × on CM points given by

a · [(z0,b)] := [(z0, ι̂(a)b)].
In the indefinite case, the Galois action is the natural one on algebraic points. However, in the definite scenario, we do not 
have a similar interpretation.

Consider the operator U p whose action on both Div(XR) and Div(XU ) is given by

U p([(z0,b)]) =
p−1∑
i=0

[(z0,b
(

p i
0 1

)(p)

)].

The interplay between the Galois action and the U p action on CM points is as follows.

Proposition 1.12. Let n ≥ 1.

(1) If B is definite zn ∈ H0(GalH̃ , XU ) and if B is indefinite zn ∈ XU (H̃n).

n
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(2)
∑

σ∈Gal(H̃n+1/H̃n) z
σ
n+1 = U p(zn).

Proof. This is essentially proved by Longo and Vigni in [20, Propositions 3.2, 3.3, 3.4 and Section 4.4], with the remark that 
for n ≥ 1, the second condition in their definition of Heegner points [20, Definition 3.1] is redundant, hence it coincides 
with our definition of CM points. The only difference is that they work with a full �1(p) structure and thus their points are 
defined over the extension Hn(μp). But proceeding as in [18, Proposition 2.12], we see that the points for U are defined 
over H̃n . �
2. Waldspurger and Gross–Zagier formulas

The CM points defined in the previous section are related to the central values of Lε(πg, ̃χ, s) via the Waldspurger 
formula for ε = 0 (the definite case) and the Gross–Zagier formula for ε = 1 (the indefinite case). We follow the more 
general formulas by Yuan–Zhang–Zhang [32] and the explicit formulation given by Cai–Shu–Tian in [5].

Recall the choice of the ramification algebra B and the ramification set S(χ) given in Section 1. By results of Tunnel and 
Saito ([27, Propositions 1.6 and 1.7] and [26, Propositions 6.3 and 6.5]) the space HomK × (πgB , ̃χ) is 1-dimensional.

Definition 2.1. A vector v ∈ πgB is called a test vector for χ̃ if �χ̃ (v) �= 0 for any nonzero �χ̃ ∈ HomK × (πgB , ̃χ).

Proposition 2.2. Suppose that for every prime q �= p such that q2 | N, q is unramified in K . Let χ be a good character such that χ̃ is of 
conductor cpn. Then the space πgB

δ−1
n U δn is one-dimensional. Moreover, every non-zero vector of it is a test vector for χ̃ .

Proof. The follows from [14, Proposition 2.6] and [5, Propositions 3.7 and 3.8]. �
Remark 2.3. In the case when there are primes q ramified in K such that q2 | N , the local space (πgB )

Rq
q has dimension 2, 

but there is a canonical fixed line to consider, as explained in [14, Remark 2.7]. For the general construction, we take an 
element in such line as the test vector gB . Note that this small technical issue is not important, as we will only be varying 
the test vectors at the prime p, which is different from any such q.

For n ≥ 1, consider the vector φn := δn · gB ∈ πgB .

Lemma 2.4. The vector φn is a non-zero test vector for χ̃ . The complex conjugate of φn viewed as an element of π∨
gB

is a non-zero test 
vector for χ̃−1 .

Proof. The statement follows from the fact that gB ∈ πgB is invariant under the action of U . �
Let Z be Z in the definite case and Ag(Q) in the indefinite one. The projection of P = [(z0, 1)] to the χ̃ -isotypical 

component in Z is given by

P χ̃ (φn) :=
∑

σ∈Gal(H̃n/K )

φn(Pσ )χ̃ (σ ) =
∑

σ∈Gal(H̃n/K )

gB(zσn )χ̃ (σ ) ∈ (Z ⊗C)χ̃ .

Let �D be the set of places dividing both N/p2 and the discriminant D of K and let un := #Ocpn
×/2. Let 〈−,−〉 denote the 

natural pairing in Z , i.e. multiplication in the definite case and the Néron–Tate pairing in the indefinite one. We are now 
able to state the explicit version of the Gross–Zagier and Waldspurger formulas.

Theorem 2.5. Let χ a good character, and let cpn be the conductor of χ̃ . Then

Lε,{p}(1,πg, χ̃ ) :=
2−#�D 8π2

〈
g, g

〉
U0(N/p)

u2
n

√
Dcpn

〈
P χ̃ (φn), P χ̃−1(φn)

〉
〈
φn, φn

〉
δ−1

n U δn

.

Proof. See [5] Theorem 1.8 for ε = 0 and Theorem 1.5 for ε = 1. �
3. Anticyclotomic p-adic L-function

The p-adic L-function is a functional on locally constant functions attached to a p-adic measure μE , i.e. if h is a locally 
constant function, Lp(h) = ∫

h dμE . We will construct it using the C M points we defined. Once the p-adic L-function is 
defined, we will use the results of the previous sections to relate its values at characters χ with the values Lε(πE , χ, 1).
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A crucial hypothesis in the classical constructions is that πE has an eigenvalue for the U p operator with small slope. 
Since E has additive reduction at p, its unique eigenvalue for U p is 0. However, under our working assumptions, E has 
SRAE at p, so we can bypass this considering the abelian variety A g . Let α be the eigenvalue of the U p-operator acting on 
gB . If f is Steinberg at p, α = ±1; otherwise, the coefficient field M of gB is a quadratic extension of Q (either Q(i) or 
Q(

√−3)) in which p splits ([17, Section 2.1]), so there exists a prime p | p such that p � α. Then α ∈ O×
Mp

∼= Z×
p . Since the 

space of modular forms has an integral basis and the modular form g has eigenvalues lying in Zp , we can always normalize 
gB such that the images of the CM points lie in Zp :=Z ⊗Zp .

Definition 3.1. For n ≥ 1 the regularized CM points on Zp are

ζσ
n := gB(zσn )α−n.

Proposition 3.2 (Distribution relation). If n ≥ 1, the regularized CM points satisfy the relation∑
σ∈Gal(H̃n+1/H̃n)

ζ σ
n+1 = ζn.

Proof. This is an immediate consequence of Proposition 1.12. �
For n ≥ 1 let

θ̃n :=
∑

σ∈Gal(H̃n/K )

ζ σ
n σ ∈ Zp[G̃n]. (1)

The compatibility relation allows one to attach a p-adic measure to gB , since it gives a well-defined element

θ̃ := lim←−
n

θ̃n ∈ Zp[[G̃∞]].

Its twisted version (that will give rise to the p-adic L-function of πE ) is defined by

θn :=
∑

σ∈Gal(H̃n/K )

ψ(σ )ζσ
n σ ∈ Zp[G̃n], (2)

where by class field theory, we can think of ψ as a character of Gal(Q/Q) factoring through H̃n . It is clear from the 
definition that ψ is compatible with the natural map G̃n+1 → G̃n , hence we also get a well-defined object

θ := lim←−
n

θn ∈ Zp[[G̃∞]].

Let μgB ,α (respectively μE ) denote the measure on G̃∞ attached to θ̃ (resp. θ ). Note that for σ ∈ G̃∞ , the two measures 
satisfy that

ψ(σ )μgB ,α(σ ) = μE(σ ).

If χ is a good character such that χ̃ is of conductor cpn , then

χ̃ (θ̃ ) =
∫

G̃∞

χ̃ (g)dμgB ,α(g).

The character χ̃ factors through Gal(H̃n/K ), so the integral equals the finite sum

χ̃ (θ̃ ) =
∑

σ∈Gal(H̃n/K )

χ̃ (σ )ζσ
n .

Looking at the definitions of χ̃ and θ̃ , it is clear that χ̃ (θ̃ ) = χ(θ). In particular, a similar formula holds for χ(θ).
One should think of θ as the square root of the p-adic L-function. More precisely, let ∗ be the involution sending σ to 

σ−1 and let

Ln := θn ⊗ θ∗
n ∈ (Zp ⊗Zp)[G̃n].
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Definition 3.3. The p-adic L-function attached to πE is

L := lim←−
n

Ln ∈ (Zp ⊗Zp)[[G̃∞]].

Remark 3.4. If we change our compatible sequence of CM points {zn}n≥1 for another compatible sequence 
{
z′n

}
n≥1, there 

must exist an element σ0 ∈ G̃∞ such that, for every n ≥ 1, zσ0
n = z′n . Let θ ′ be the corresponding element associated with {

z′n
}

n≥1. Then, we have that

θ ′ = ψ(σ−1)σ−1
0 · θ.

Similarly, working with θ∗ and θ ′ ∗ , we obtain

θ ′ ∗ = ψ(σ−1)σ0 · θ∗.
Putting these two equations together, we get

L ′ = ψ(σ−2
0 )L .

Thus L is more intrinsic that θ , as it depends very mildly on the sequence of compatible CM points. The reader should 
compare this with [3, Remark 1, p.12].

Once we fix an embedding of Zp into C, the pairing 〈−,−〉 induces

〈−,−〉 : Zp ⊗Zp →C,

and we let LC ∈ C[[G̃∞]] be the image of L under such pairing.

Proposition 3.5. Let χ be a good character such that χ̃ has conductor cpn. Then

χ(LC) =
∑

τ1,τ2∈G̃n

ψ(τ1τ2)
〈
ζ

τ1
n , ζ

τ2
n

〉
χ(τ1τ

−1
2 ).

Proof. By definition, χ(LC) = χ(
〈
θn, θ∗

n

〉
). The result follows immediately replacing θn and θ∗

n by their definitions (2) and 
(1). �

We are now ready to prove the main result of this article.

Theorem 3.6 (Interpolation). There exists a constant �′
E that depends on E such that, for every good character χ for which χ̃ has 

conductor cpn, the following holds:

χ(LC) = pn

α2n
· Lε(1, E,χ)

�′
E

· u2
n

√
Dc

2−#�D
.

Proof. At the level of modular forms, we have that πg ⊗ ψ2 = πg . This induces the same relation under the Jacquet–
Langlands transfer, and we obtain that gB ⊗ ψ2 = gB . Using the definition of P χ̃ and the fact that χ̃ = ψχ , we can write 
the last factor of the main formula of Theorem 2.5 as〈

P χ̃ (φn), P χ̃−1(φn)
〉 = ∑

τ1,τ2∈G̃n

ψ(τ1τ2)χ(τ1τ
−1
2 )

〈
gB(z

τ1
n ), gB(z

τ2
n )

〉
.

Since gB(z
τ1
n )α−n = ζ

τ1
n and L(p)(1, πgB , ̃χ) = L(1, E, χ), we obtain the desired result using Proposition 3.5 and the fact 

that 
〈
φn, φn

〉
δ−1

n U δn
does not depend on n. �

4. The good-reduction twist case

In the case when πg has good reduction at p, i.e. E is a quadratic twist of a curve with good reduction at p, the previous 
construction and results hold, with some minor modifications. We focus on the case when the twisted curve is ordinary at 
p to follow the classical construction. In the supersingular case, the same approach works (with the additional assumption 
that p splits in K ), but instead of following the classical construction, one follows the one done by Pollack in [25].

The choice of level R = U is the same, but it will be maximal at p. Moreover, we can change the embedding ι in such 
a way that the CM point P = z0 = [z0, 1] is of conductor c and zn := δn · P are of conductor cpn in a similar way as we did 
in Lemma 1.7. The distribution relations are the following (see for example [2, p.433]):
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• If n ≥ 1, 
∑

σ∈Gal(Hn+1/Hn) z
σ
n+1 = U pzn − zn−1.

• If n = 0,

u0 ·
∑

σ∈Gal(H1/H0)

zσ1 =

⎧⎪⎨
⎪⎩

(U p − σp1 − σp2)z0 if p is split in K ,

(U p − σp1)z0 if p is ramified in K ,

U pz0 if p is inert in K ,

where σpi are the Frobenii of the primes above p in K .

If α denotes the p-adic unit root of the Frobenius polynomial at p, the normalized CM points are defined by

ζn
σ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(αgB(zσn ) − gB(zσn−1)) · α−n−1 if n ≥ 1,

u−1
0 (1 − (σp1 + σp2)α−1 + α−2)gB(zσ0 ) if n = 0 and p splits in K ,

u−1
0 (1 − σp1α−1)gB(zσ0 ) if n = 0 and p is ramified in K ,

u−1
0 (1 − α−2)gB(zσ0 ) if n = 0 and p is inert in K .

The definition of the theta element and of the p-adic L-function is the same. If we take χ such that χ̃ has conductor 
cpn (with n ∈N ∪ {0}), we can evaluate χ(LC) as we did before.

Theorem 4.1. There exists a constant �′
E that depends on E such that, for every character χ such that χ̃ has conductor cpn, the 

following holds:

χ(LC) = pn

α2n
· ep(χ̃ )2

Lp(πg, χ̃ ,1)
· Lε(1, E,χ)

�′
E

· u2
nc

√
D

2−#�D
,

where the p-adic multiplier is given by

ep(χ̃ ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if n ≥ 1.

(1 − χ̃ (σp1)α−1)(1 − χ̃ (σp2)α−1) if n = 0 and p splits in K .

(1 − χ̃ (σp1)α−1) if n = 0 and p is ramified in K .

(1 − α−2) if n = 0 and p is inert in K .

.

Proof. When n ≥ 1, if we expand the four terms in the pairing 〈−,−〉 we obtain that the only term that survives is the 
same as we had in the general case. The reason is that all the other terms involve a sum of the form 

∑
σ χ̃(σ )gB(zσn−1)

that equals zero as the conductors of the test vector and the character do not agree. Finally, both the Waldspurger and 
Gross–Zagier formulas (Theorem 2.5) for central values of the elliptic curve Eπg (or its derivative) need to include the p-th 
Euler factor at p (which is trivial if n ≥ 1 and non-vanishing in general), which gives the extra local factor to the formula. �
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