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We recast the Dirichlet boundary conditions satisfied by the displacement field of the mid-
dle surface of a linearly elastic shell as boundary conditions satisfied by the corresponding 
linearized change of metric and of curvature tensor fields. This in turn allows us to give an 
intrinsic formulation of the linear shell model of W.T. Koiter with these two tensor fields 
as the sole unknowns.
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r é s u m é

On reformule les conditions aux limites de Dirichlet satisfaites par le champ de déplace-
ments de la surface moyenne d’une coque linéairement élastique comme des conditions 
aux limites satisfaites par les champs de tenseurs linéarisés de changement de métrique et 
de coubure correspondants. Ceci permet ensuite de donner une formulation intrinsèque du 
modèle linéaire de coques de W.T. Koiter avec ces deux champs de tenseurs comme seules 
inconnues.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Preliminaries and main result

Latin, resp. Greek, indices vary in {1, 2, 3}, resp. in {1, 2}, and the summation convention with respect to repeated indices 
is used in conjunction with these rules.

The notations E3, S2, and A3, respectively designate the three-dimensional Euclidean space, the space of all real 2 × 2
symmetric matrices, and the space of all real 3 ×3 antisymmetric matrices. The inner product, vector product, and Euclidean 
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norm in E3 are respectively denoted by ·, ∧, and |·|. A generic point in R2 is denoted y = (yα) and partial derivatives of 

the first and second order are denoted ∂α := ∂

∂ yα
and ∂αβ := ∂2

∂ yα∂ yβ
.

Let ω ⊂ R
2 be a non-empty connected open set whose boundary γ := ∂ω is of class C2 (in the sense of [8]), let γ0 ⊂ γ

be a non-empty relatively open subset of γ , and let θ ∈ C3(ω; E3) be an immersion.
Consider a linearly elastic shell with middle surface

S := θ(ω)

and thickness 2ε > 0, made of an elastic material characterized by two Lamé constants λ ≥ 0 and μ > 0, subjected to applied 
forces whose density per unit area of its middle surface is a vector field pε ∈ L2(ω; E3), and subjected to a homogeneous 
boundary condition of place along the part of its lateral face whose mid-section is the curve

θ(γ0).

Then, according to Koiter [7], the classical formulation of the two-dimensional displacement-traction problem for such a 
shell takes the form of the following quadratic minimization problem: the unknown displacement field of the middle surface 
of the shell is the unique minimizer of the quadratic functional j : V (ω) →R, where

V (ω) := {η := ηia
i ∈ C2(ω;E3); ηi = ∂αη3 = 0 on γ0},

j(η) :=
∫
ω

aαβσϕ

(
ε

2
γσϕ(η)γαβ(η) + ε3

6
ρσϕ(η)ραβ(η)

)√
a dy −

∫
ω

pε · η√
a dy for all η ∈ V (ω).

Here and in the sequel, ai ∈ C2(ω; E3) denote the vector fields of the contravariant bases along the surface θ(ω), which are 
defined by the relations

ai · a j = δi
j in ω,

where

aα := ∂αθ and a3 := a1 ∧ a2

|a1 ∧ a2| in ω

denote the vector fields of the covariant bases along the surface θ (ω),

aαβσϕ := 4λμ

λ + 2μ
aσϕaαβ + 2μ

(
aασ aβϕ + aαϕaβσ

) ∈ C2(ω), where aαβ := aα · aβ ∈ C2(ω),

denote the contravariant components of the two-dimensional elasticity tensor of the shell,

γαβ(η) := 1

2
(∂αη · aβ + ∂βη · aα) ∈ C1(ω),

resp.

ραβ(η) :=
(
∂αβη − �σ

αβ∂σ η
)

· a3 ∈ C0(ω),

denote the covariant components of the linearized change of metric, resp. of curvature, tensor field associated with the 
displacement field η = ηiai of the surface θ(ω),

�σ
αβ := ∂αβθ · aσ ∈ C1(ω)

denote the Christoffel symbols of the second kind associated with the immersion θ , and

√
a dy, where a := det(aαβ) ∈ C1(ω) and aαβ := aα · aβ ∈ C1(ω),

denotes the area element along the surface θ(ω).
It is well known that the extension by continuity of the functional j to the larger space V (ω), defined as the completion 

of V (ω) with respect to the natural norm associated with j, has a unique minimizer in V (ω); cf. [1] or [2] (see also [3]).
The objective of this paper is to provide an intrinsic formulation of the above displacement-traction problem for linearly 

elastic shells. This new formulation consists in replacing, in the above minimization problem, the unknown η by the new 
unknowns (cαβ) and (rαβ), where

cαβ := γαβ(η) and rαβ := ραβ(η).
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This replacement is made possible thanks to a well-known infinitesimal rigid displacement lemma, asserting that the linear 
mapping

F : η ∈ V (ω) → F(η) := (
(cαβ), (rαβ)

) ∈ C1(ω;S2) × C0(ω;S2)

is injective; see, e.g., [3]. Thus the unknown η can be replaced in the classical formulation of Koiter’s model in terms of the 
new unknowns (cαβ) and (rαβ) by

η = G
(
(cαβ, (rαβ)

)
,

where G denotes the inverse of the bijective linear mapping η ∈ V (ω) →F(η) ∈V(ω), where

V(ω) := {F(η); η ∈ V (ω)}.
The main result of this Note is the following explicit characterization of the space V(ω), to which the new unknowns (cαβ)

and (rαβ) belong.

Theorem 1. Let ω ⊂ R
2 be a non-empty, simply-connected open set whose boundary is of class C2, let γ0 ⊂ ∂ω be a non-empty 

relatively open connected subset of the boundary ∂ω of ω, and let θ ∈ C3(ω; E3) be an immersion.
Let the functions τα ∈ C1(γ0), να ∈ C1(γ0), κg ∈ C0(γ0), κn ∈ C0(γ0), and τg ∈ C0(γ0), respectively denote the contravariant 

components of the unit tangent vector, the contravariant components of the unit inner normal vector, the geodesic curvature, the 
normal curvature, and the geodesic torsion, along the curve θ(γ0) (cf. Section 2).

Given any matrix fields (cαβ) ∈ C1(ω; S2) and (rαβ) ∈ C0(ω; S2), define the distributions

Sβασϕ := cσα|βϕ + cϕβ|ασ − cϕα|βσ − cσβ|αϕ + Rψ·ασϕcβψ − Rψ
·βσϕcαψ − bϕαrσβ − bσβrϕα

+ bσαrϕβ + bϕβrσα ∈ D′(ω),

S3ασϕ := bψ
σ (cαψ |ϕ + cϕψ |α − cϕα|ψ) − bψ

ϕ (cαψ |σ + cσψ |α − cσα|ψ) − rσα|ϕ + rϕα|σ ∈ D′(ω),

where the functions

Rψ·ασϕ := ∂σ �
ψ
αϕ − ∂ϕ�

ψ
ασ + �

β
αϕ�

ψ
βσ − �

β
ασ �

ψ
βϕ ∈ C0(ω)

denote the mixed components of the Riemann curvature tensor associated with the immersion θ .
Then the space V(ω) is given by

V(ω) = {
((cαβ), (rαβ)) ∈ C1(ω;S2) × C0(ω;S2); Sβασϕ = 0 and S3ασϕ = 0 in D′(ω),

cαβτατβ = 0 and cαβ|σ τα
(
2νβτσ − τβνσ

) + κgcαβνανβ = 0 on γ0,

rαβτατβ = 0 and rαβτανβ − cαβνα
(
2κnτ

β + τgν
β
) = 0 on γ0

}
, �

Theorem 1 is established by combining Theorem 2 (below) and Theorem 3 (Section 3). Since Theorem 2 is a simple 
consequence of Theorems 4.1 and 5.1 in [4], its proof is not given here.

Theorem 2. Let ω ⊂ R
2 be a non-empty connected open set and let θ ∈ C3(ω; E3) be an immersion. Then:

(a) If η ∈ C2(ω; E3), the functions cαβ := γαβ(η) ∈ C1(ω) and rαβ := ραβ(η) ∈ C0(ω) satisfy the equations:

Sβασϕ = 0 and S3ασϕ = 0 in D′(ω),

where the functions Sβασϕ and S3ασϕ are defined in terms of cαβ and rαβ as in Theorem 1.
(b) If the functions cαβ ∈ C1(ω) and rαβ ∈ C0(ω) satisfy the equations

Sβασϕ = 0 and S3ασϕ = 0 in D′(ω),

and if ω is simply-connected, then there exists a vector field η ∈ C2(ω; E3) such that

cαβ = γαβ(η) and rαβ = ραβ(η) in ω.

(c) If the boundary of ω is of class C2 , the results of (a) and (b) hold “up to the boundary”, in the sense that (a) holds for η ∈
C2(ω; E3), in which case the corresponding functions cαβ and rαβ belong respectively to the spaces C1(ω) and C0(ω), and (b) holds 
for cαβ ∈ C1(ω) and rαβ ∈ C0(ω), in which case the corresponding vector field η belongs to the space C2(ω; E3). �
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2. Geometry of curves on a surface with boundary

More details about the geometry notions used in this section can be found in [9].
Let ω ⊂ R

2 be a nonempty connected open set whose boundary γ := ∂ω is of class C2 and let θ ∈ C3(ω; E3) be an 
immersion. Then

S = θ(ω)

is a surface with boundary in E3 and the boundary θ(γ ) of S is a curve, or a finite union of curves, of class C2. For definiteness, 
we consider this curve oriented by means of the inner normal vector field to the boundary of ω; this means that its unit 
tangent vector

τ (y) = τα(y)aα(y)

at any point θ(y), y ∈ ∂ω, has the property that the vector (−τ 2(y), τ 1(y)) ∈R
2, which is normal to the curve γ at y ∈ γ , 

is oriented towards the interior of ω.
The covariant components of the first and second fundamental forms associated with the immersion θ are respectively 

denoted and defined by

aαβ := ∂αθ · ∂βθ and bαβ := ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | .

The Darboux frame at a point θ(y), y ∈ γ , of the boundary of S is the orthogonal basis in E3 formed by the three vectors 
τ (y), ν(y), and a3(y), where τ (y) is the positively-oriented unit vector tangent to θ(γ ) defined above,

a3(y) := ∂1θ(y) ∧ ∂2θ(y)

|∂1θ(y) ∧ ∂2θ(y)|
is a unit vector orthogonal to S at θ(y), and

ν(y) := a3(y) ∧ τ (y)

is a unit vector in the tangent plan to S at θ(y) that is orthogonal to the boundary of S at θ(y).
The geodesic curvature κg : γ → R, the normal curvature κn : γ → R, and the geodesic torsion τg : γ → R, of the curve 

θ(γ ) are respectively defined at each point y ∈ γ as the scalars

κg(y) := ∂τ τ (y) · ν(y) = −τ (y) · ∂τ ν(y),

κn(y) := ∂τ τ (y) · a3(y) = −τ (y) · ∂τ a3(y),

τg(y) := ∂τ ν(y) · a3(y) = −ν(y) · ∂τ a3(y),

where the notation ∂τ τ (y) denotes the derivative at θ(y) of the vector field τ with respect to the arclength abscissa along 
the curve θ(γ ).

Note that, for any extension (still denoted τα ) of τα of class C1 in a neighborhood of γ , we have

∂τ τ (y) = τα(y)∂ατ (y) for all y ∈ γ .

Let η = ηiai ∈ C2(ω; E3) denote a vector field on the surface S = θ(ω). For each t ∈ R, define the mapping θ(t) ∈
C2(ω; E3) by

θ(t) := θ + tη in ω.

Then a simple compactness argument shows that there exists δ > 0 such that, for each t ∈ [−δ, δ], the mapping θ(t) is 
an immersion. For such t , the image

S(t) := θ(t)(ω)

is a surface with boundary in E3 and the image θ(t)(γ ) by θ(t) of γ = ∂ω is a curve, or a finite union of curves, on this 
surface. Hence the geodesic curvature κg(t)(y), the normal curvature κn(t)(y), and the geodesic torsion τg(t)(y), of the curve 
θ(t)(γ ) at θ(t)(y), y ∈ γ , are defined as above in terms of the Darboux frames {τ (t)(y), ν(t)(y), a3(t)(y)}, y ∈ γ .

Then the linearized change of length �aτ (η) : γ → R, the linearized change of geodesic curvature �κg(η) : γ → R, the 
linearized change of normal curvature �κn(η) : γ → R, and the linearized change of geodesic torsion �τg(η) : γ →R, associated 
with the vector field η ∈ C2(ω; E3) are respectively defined at each point y ∈ γ as the scalars (note that aαβτατβ =
|τ |2 = 1)
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�aτ (η)(y) := lim
t→0

1

2t

[
aαβ(t)τατβ − aαβτατβ

]
(y) = lim

t→0

1

2t

(
aαβ(t)(y)τα(y)τ β(y) − 1

)
,

�κg(η)(y) := lim
t→0

1

t

(
κg(t)(y) − κg(y)

)
,

�κn(η)(y) := lim
t→0

1

t
(κn(t)(y) − κn(y)) ,

�τg(η)(y) := lim
t→0

1

t

(
τg(t)(y) − τg(y)

)
.

Finally, the covariant components of the first and second fundamental forms associated with the immersion θ(t) are re-
spectively defined by

aαβ(t) := ∂αθ(t) · ∂βθ(t) and bαβ(t) := ∂αβθ(t) · a3(t) in ω,

and the linear change of metric tensor field (γαβ(η)) : ω → S
2 and the linear change of curvature tensor field (ραβ(η)) : ω → S

2

associated with the displacement field η of the surface S = θ(ω) are respectively denoted and defined at each point y ∈ ω

by

γαβ(η)(y) := lim
t→0

1

2t
(aαβ(t)(y) − aαβ(y)) and ραβ(η)(y) := lim

t→0

1

t
(bαβ(t)(y) − bαβ(y)).

The following two lemmas play an essential role in the proof of Theorem 3 (Section 3), which itself play an essential 
role in the proof of our main result, Theorem 1 (Section 1).

Note that, as expected, the expressions found in Lemma 1 for the components γαβ(η) and ραβ(η) as defined above 
coincide with the classical ones; cf., e.g., [3].

Lemma 1. Let ω ⊂ R
2 be a non-empty connected open set with a boundary γ of class C2 , let θ ∈ C3(ω; E3) be an immersion, and let 

η ∈ C2(ω; E3) be a vector field. Then

γαβ(η) = 1

2
(∂αη · aβ + ∂βη · aα) and ραβ(η) =

(
∂αβη − �σ

αβ∂ση
)

· a3 in ω,

and

�aτ (η) = ∂τ η · τ on γ ,

�κg(η) = ∂τ (∂τ η · ν) − κg(∂τ η · τ ) − τg(∂τ η · a3) + κn(∂νη · a3) on γ ,

�κn(η) = ∂τ (∂τ η · a3) − κn(∂τ η · τ ) + τg(∂τ η · ν) − κg(∂νη · a3) on γ ,

�τg(η) = ∂τ (∂νη · a3) − τg(∂τ η · τ ) − κn(∂τ η · ν) + κg(∂τ η · a3) on γ ,

where

τ = ταaα, ν = ναaα, and a3 := a1 ∧ a2

|a1 ∧ a2| ,

denote the vector fields that constitute the Darboux frames associated with the curve θ(γ ), and

aα := ∂αθ , ∂τ := τα∂α, and ∂ν := να∂α.

Furthermore, the following relations hold:

�aτ (η) = γαβ(η)τατβ on γ ,

�κg(η) = γαβ(η)|σ τα
(
2νβτσ − τβνσ

) + κgγαβ(η)
(
νανβ − 2τατβ

)
on γ ,

�κn(η) = ραβ(η)τατβ − 2κnγαβ(η)τατβ on γ ,

�τg(η) = ραβ(η)τανβ − γαβ(η)
[
2bα

σ τσ νβ + τg
(
τατβ + νανβ

)]
on γ ,

where

γαβ(η)|σ := ∂σ γαβ(η) − �
ϕ
ασ γϕβ(η) − �

ϕ
σβ�αϕ(η) in ω

denotes the covariant derivatives of the components of the twice-covariant tensor (γαβ(η)).
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Proof. The first two relations are well-known in the theory of linearly elastic shells (see, e.g., [3]).
The next four relations follow from the definitions of the limits �aτ (η), �κg(η), �κn(η), and �τg(η), combined with 

the relations

lim
t→0

1

t
(τ (t) − τ ) = (∂τ η · ν)ν + (∂τ η · a3)a3 on γ ,

lim
t→0

1

t
(ν(t) − ν) = −(∂τ η · ν)τ + (∂νη · a3)a3 on γ ,

lim
t→0

1

t
(a3(t) − a3) = −(∂σ η · a3)a

σ = −(∂τ η · a3)τ − (∂νη · a3)ν on ω,

where (τ , ν, a3) denotes the Darboux frame associated with the curve θ(γ ), and (τ (t), ν(t), a3(t)) denotes the Darboux 
frame associated with the curve θ(t)(γ ).

Finally, the last four relations of Lemma 1 follow by combining the relations established above. �
Remark 1. The last four relations in the statement of Lemma 1 show that the linearized change of length, the linearized change 
of geodesic curvature, the linearized change of normal curvature, and the linearized change of geodesic torsion, associated with a 
vector field η depend on this vector field only by means of the linear change of metric tensor field and the linear change of 
curvature tensor field associated with η.

Lemma 2. Let ω ⊂ R
2 be a non-empty connected open set with a boundary γ of class C2 , let θ ∈ C3(ω; E3) be an immersion, and let 

η ∈ C2(ω; E3) be a vector field. Let γ0 ⊂ γ be a non-empty and connected relatively open subset of the boundary of ω.
Then

�aτ (η) = �κg(η) = �κn(η) = �τg(η) = 0 on γ0

if and only if there exist two vectors h ∈ E
3 and κ ∈ E

3 such that the vector field η� ∈ C2(ω; E3) defined by

η�(y) := η(y) − (h + κ ∧ θ(y)) for all y ∈ ω

satisfies

η�(y) = 0 and ∂ν(η� · a3)(y) = 0 for all y ∈ γ0.

Proof. In view of Lemma 1, the system of equations

�aτ (η) = �κg(η) = �κn(η) = �τg(η) = 0 on γ0

is equivalent to the equations

∂τ η · τ = 0 and ∂τ F (η) = A F (η) on γ0,

where F (η) : γ → M
3 denotes the column vector field whose components are ∂τ η · ν, ∂τ η · a3, and ∂νη · a3 (in this order), 

and A : γ → A
3 denotes the matrix field defined by

A :=
⎛
⎝ 0 τg −κn

−τg 0 κg

κn −κg 0

⎞
⎠ .

Given any point y0 ∈ γ0, let

k := ((∂νη · a3)τ − (∂τ η · a3)ν + (∂τ η · ν)a3) (y0) ∈ E
3,

h := η(y0) − k ∧ θ(y0) ∈ E
3,

ξ(y) := h + k ∧ θ(y), y ∈ ω.

Then one can show that

∂τ ξ · τ = 0 and ∂τ F (ξ) = A F (ξ) on γ ,

and that

ξ(y0) = η(y0) and F (ξ)(y0) = F (η)(y0).
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Then the announced equivalence follows from the uniqueness of the solutions to the Cauchy problems{
∂τ F = A F on γ0,

F (y0) = F (η)(y0),

and {
∂τ η = ∂τ ξ on γ0,

η(y0) = ξ(y0). �
3. Intrinsic formulation of a homogeneous boundary condition of place for linearly elastic shells

By definition, a displacement field η = ηiai ∈ C2(ω; E3) of the middle surface θ(ω) of a shell satisfies a homogeneous 
boundary condition of place along a portion θ(γ0) of its boundary, where γ0 is a non-empty relatively open subset of the 
boundary of ω, if

ηi = ∂αη3 = 0 on γ0.

An intrinsic formulation of this boundary condition is one that is expressed only by means of the functions γαβ(η) and 
ραβ(η), as defined in the previous section, i.e. as the covariant components of the linearized change of metric tensor field 
and linearized change of curvature tensor field between the surfaces θ (ω) and (θ + η)(ω).

The next theorem, which is the crucial ingredient of our main result (Theorem 1 in Section 1), provides such an intrinsic 
formulation of a homogeneous boundary condition of place. Note that the substraction of an infinitesimal rigid displacement
in part (b) of Theorem 3 below is necessary, since

γαβ(η) = γαβ(η + ξ) and ραβ(η) = ραβ(η + ξ) on ω

for all η ∈ C2(ω; E3) and for all vector fields ξ : ω → E
3 that are of the form

ξ(y) = h + k ∧ θ(y), y ∈ ω,

for some vectors h ∈ E
3 and k ∈ E

3; such vector fields ξ are called “infinitesimal rigid displacements” of the surface θ (ω).

Theorem 3. Let ω ⊂ R
2 be a non-empty connected open set whose boundary is of class C2, let γ0 be a non-empty relatively open 

subset of the boundary of ω, and let θ ∈ C3(ω; E3) be an immersion.
(a) If a vector field η = ηiai ∈ C2(ω; E3) satisfies the boundary conditions

ηi = ∂αη3 = 0 on γ0,

then the functions cαβ := γαβ(η) ∈ C1(ω) and rαβ := ραβ(η) ∈ C0(ω) satisfy the boundary conditions

cαβτατβ = 0 and cαβ|σ τα(2νβτσ − τβνσ ) + κgcαβνανβ = 0 on γ0,

rαβτατβ = 0 and rαβτανβ − cαβνα(2κnτ
β + τgν

β) = 0 on γ0.

(b) If the functions cαβ := γαβ(η) ∈ C1(ω) and rαβ := ραβ(η) ∈ C0(ω) associated with a vector field η = ηiai ∈ C2(ω; E3) satisfy 
the boundary conditions

cαβτατβ = 0 and cαβ|σ τα(2νβτσ − τβνσ ) + κgcαβνανβ = 0 on γ0,

rαβτατβ = 0 and rαβτανβ − cαβνα(2κnτ
β + τgν

β) = 0 on γ0,

and if γ0 is connected, then there exists two vectors h ∈ E
3 and k ∈ E

3 such that the vector field η� = η
�

i ai ∈ C2(ω; E3) defined by

η�(y) = η(y) − (h + k ∧ θ(y)) for all y ∈ ω,

satisfies the boundary conditions

η
�

i = ∂αη
�
3 = 0 on γ0.

Proof. Theorem 3 is a straightforward consequence of Lemmas 1 and 2, combined with the relation

bα
σ τσ := aαβbβσ τσ = −τσ ∂σ a3 · aα = −∂τ a3 · (τατ + ναν) = τακn + νατg . �
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It is worthwhile pointing out that Theorem 3 generalizes to a general immersion θ ∈ C3(ω; E3) a previous result of 
the authors (Theorem 4.1 in [5]; see also Section 4 in [6]) established for the particular immersion corresponding to the 
displacement-traction problem of a linearly elastic plate. To see this, let the immersion θ in Theorem 3 be defined by

θ(y) = (y1, y2,0) ∈ E
3 for all y = (y1, y2) ∈ ω.

Then

cαβ|σ = ∂σ cαβ in ω,

and

κg = κ, κn = 0, and τg = 0, on γ0,

where κ := νατβ∂βτα is the signed curvature of the planar curve γ0. These relations in turn imply that the boundary 
conditions satisfied by the functions cαβ and rαβ in Theorem 3 are equivalent in this case to the boundary conditions

cαβτατβ = 0 and ∂σ cαβτα(2τσ νβ − τβνσ ) + κcαβνανβ on γ0,

rαβτατβ = 0 and rαβτανβ = 0 on γ0,

where να = να are the Cartesian components of the inner unit normal vector field to the boundary of ω and τα = τα are 
the Cartesian components of the positively-oriented (i.e. so that ν1 = −τ 2 and ν2 = τ 1) unit tangent vector field to the 
boundary of ω, which are precisely the boundary conditions found in Theorem 4.1 of [5].
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