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In this note, we consider the fall of an axisymmetric body in a perfect fluid over a ramp. 
It was shown in [12] that the possibility of a collision between the body and the ramp 
is related to the asymptotics of the so-called added mass when the distance between the 
ramp and the body goes to 0. We propose here a new method to compute this added mass, 
which provides simultaneously an approximation of an associated fluid velocity field in the 
gap between the ramp and the body.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans cette note, nous considérons la chute d’un solide axisymétrique dans un fluide parfait 
au-dessus d’un plan. Il est connu [12] que l’éventualité d’un contact entre le solide et le 
plan est reliée à l’asymptotique de l’effet de masse ajoutée quand la distance entre le plan 
et le solide tend vers 0. Nous proposons une nouvelle méthode pour calculer cet effet de 
masse ajoutée, qui fournit simultanément l’asymptotique d’un champ de vitesses associé 
entre le solide et le plan.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of fluid–solid problems leads to considerable paradoxical difficulties because of possible contacts between the 
bodies inside the fluid. Indeed, classical theories for solving partial differential equations of fluid mechanics require the fluid 
domain to be sufficiently smooth (typically its boundaries should be locally the graph of a Lipschitz function). However, 
whatever the smoothness of solid boundaries, contact between solid bodies or between one solid body and the container 
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boundaries yields geometries in which the fluid domain boundaries are no longer locally Lipschitz. This makes very weak 
any mathematical theory for fluid–solid problems handling contacts (see [13,3]). Evidences that such theory might be ill 
posed are given in [14]. Yet, a naive intuition of fluid–solid problems entails that a realistic mathematical theory should 
handle collisions.

Numerous studies consider the collision problem either experimentally [10] or theoretically [6]. In case the fluid is 
viscous, first theoretical investigations, based on formal asymptotic expansions for the Stokes problem in thin domains (see 
[2]), highlight that no collision is to be expected. These formal expansions are justified via a sound analysis relying on 
variational arguments [4,7]. The no-collision paradox is extended to the full Newton–Navier–Stokes system in [5,8]. Fewer 
references investigate the case of an inviscid fluid. If the fluid is potential, the existence of finite-time contact is obtained 
in [9,12], coupling a Lagrangian viewpoint with complex analysis methods. Recently, these contact results are extended to 
non-potential flows in [1] when vorticity in the flow is sufficiently small.

In [4], the formulas of [2] are recovered via the introduction of a reduced-functional method. This method turns out to 
be very robust since it applies to general geometries and boundary conditions. In this note, we apply this method, which is 
introduced for viscous flows, to study potential flows also. To complement the complex analysis approach of [12], this yields 
a precise expansion of the flow in the aperture between solid boundaries close to contact. We expect that such a remark is 
a first step toward a finer understanding of the smallness condition required in [1] to obtain the occurrence of finite-time 
contacts in the non-potential case.

1.1. Context

Let consider the following simplified configuration taken from [12]. We denote by S an axisymmetric (homogeneous) 
rigid body. This body falls vertically in a potential fluid over a fixed horizontal wall P . For simplicity, we neglect gravity, 
since this has no influence on the contact result. We fix P := {(x, y) ∈ R

2, such that y = 0}. The solid moves vertically. So, 
the whole configuration is fixed by the distance h between S and P . Below we denote by the index h such a configuration:

Sh = h e2 + S Fh = R
2+\S̄h.

We have then that h = 0 corresponds to the contact configuration (see Fig. 1).
The unknowns of the fluid–solid interaction problem are then (u, p) the fluid velocity field/pressure and h the distance 

between the axisymmetric body and the ramp. In case the fluid is assumed inviscid and incompressible, with constant 
density ρf > 0, these unknowns are computed by integrating the pde/ode system:{

ρf (∂t u + (u · ∇)u) + ∇p = 0
div u = 0

in Fh(t) (1){
u · n = 0 on P
u · n = h′(t)e2 · n on ∂Sh(t)

(2)

mh′′(t) =
∫

∂ Sh(t)

p n · e2 dσ . (3)

The symbol n stands here for the outer normal to ∂ Fh(t) . More details on the modelling and the resolution of this system 
can be found in [9,12]. We recall shortly here that, for sufficiently smooth solutions:

• the total kinetic energy:

E(t) = 1

2
m|h′(t)|2 + 1

2
ρf

∫
Fh

|u(x, t)|2 dx

is conserved with time,
• no fluid vorticity is produced by boundaries, so that the vorticity of the flow is simply transported by the velocity 

field u.

As a consequence, if the initial data prescribe a potential velocity, the solution to (1)–(2)–(3) is potential also. In that case, 
the velocity field u is computed by stating u = h′(t) uh(t) , where, for h > 0, uh solves:{ ∇ × uh = 0 in Fh

∇ · uh = 0 in Fh
(4)

with ∇ × uh = ∂1u2 − ∂2u1 and boundary conditions{
uh · n = 0 on P
u · n = e · n on ∂S .

(5)

h 2 h
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Fig. 1. Example of a configuration with notations.

Such systems yield a unique solution (see below) up to the prescription of the circulation on the internal boundary. We 
focus herein on circulation-free solutions. So, we prescribe:∫

∂Sh

uh · n⊥dσ = 0. (6)

We introduce here the exponent ⊥ to denote a rotation of angle π/2. Though equation (3) requires the computation of the 
pressure p, we note that the pressure needs not be computed in the potential case. Indeed, fixing that the total kinetic 
energy E is conserved along trajectories rewrites as an ode for h, which governs the dynamics:

d

dt

⎡
⎢⎣|h′|2

⎛
⎜⎝ms + ρf

∫
Fh

|uh(x)|2dx

⎞
⎟⎠

⎤
⎥⎦ = 0.

Denoting by ma(h) the integral appearing in this quantity, we have then (as long as the solution exists and h remains strictly 
positive):

h′(t) = h′(0)

√
m + ρf ma(h)

m + ρf ma(h(0))
. (7)

Possible contacts in finite time (if h′(0) < 0) depend only on the asymptotics of ma(h) when h → 0. This quantity ma(h)

measures the “added-mass” effect. Namely, it stands for the minimal fluid kinetic energy that is associated with the velocity 
field e2 · n on the body S . It depends on the only geometrical parameter: the distance h between S and the wall. We refer 
the reader to [12] for the discussion on the properties that ma(h) must satisfy in order to allow/forbid contact. Herein, we 
are interested in a method that yields simultaneously the asymptotic behavior of ma(h) (when h → 0) and a profile for uh .

1.2. Main result

To state our main results, we make a little more precise the geometry of the body S . We always assume that ∂S ∈ C2. 
We also assume that contact between S and P only holds in the origin and is of order “1 + α.” Namely, for α ≥ 1 given, 
we define the following assumption.⎧⎪⎪⎨

⎪⎪⎩
There exists δ > 0, ε > 0 and κ > 0 such that

x2 > ε ∀ (x1, x2) ∈ ∂S s.t. |x1| > δ

x2 = κ |x|1+α ∀ (x1, x2) ∈ ∂S s.t. |x1| < δ, |x2| < ε

⎫⎪⎪⎬
⎪⎪⎭ . (Aα)

Our main result then reads:

Theorem 1. Let α ≥ 1 and assume that S satisfies (Aα). We have the following alternative:
if α < 2 the function h 	→ ma(h) remains bounded when h → 0;
if α > 2, denoting σh(x) = h + κ |x|1+α , we have the following asymptotics when h → 0:

ma(h) = cκ,αh3/(1+α)−1 + O (1), with cκ,α =
∫

t2dt

1 + |t|1+α
(8)
R
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uh(x, y) = ∇⊥
[

x1x2

σh(x1)

]
1|x1|<δ∩x2<ε + O (1) in L2(Fh). (9)

Following [12], this theorem entails that collision is bound to occur in finite time whatever the value of α ≥ 1. The 
expansion of ma(h) we state here is already obtained in this reference. Nonetheless, we emphasize that we obtain this same 
result here with a completely different method, which yields also information on the flow uh . In particular, we are able to 
compute the diverging part of the flow in the case α > 2.

The outline of these notes is as follows. In the next section, we recall the variational viewpoint on system (4)–(5)
and explain the method of reduced functionals. In the last section, we perform the explicit computations to extract the 
asymptotics of ma(h) and uh when h → 0.

2. Application of variational methods to (4)–(5)

As explained in the introduction, our proof of Theorem 1 is based on a fine estimate of the behavior of the added-mass 
function:

ma : (0,∞) −→ R

h 	−→
∫
Fh

|uh(x)|2dx (with uh solution to (4)–(5)).

In this section, at first, we recall the basics on the resolution of (4)–(5). We recall also the variational approach to this 
problem as presented in [11]. We explain then the method of reduced functionals and how it applies to this problem.

2.1. Resolution of (4)–(5)

In what follows, we assume α ≥ 1 so that ∂S is C2 globally. We denote:

L2
div(Fh) := {v ∈ L2(Fh) s.t. div v ∈ L2(Fh)} , L2

σ (Fh) := {v ∈ L2(Fh) s.t. div v = 0}.
We recall that L2

div(Fh) – endowed with the norm obtained by combining the L2-norm and the L2-norm of the divergence 
– is a Hilbert space. The space L2

σ (Fh) is then a Hilbert space when endowed with the L2-norm. Since ∂ Fh splits into the 
two connected components ∂Sh and ∂P , which are both at least C2, we have (see [15, Chapter 1]):

• C∞
c (Fh) is dense in L2

div(Fh);
• there exists a continuous linear operator γn : L2

div(Fh) → H−1/2(∂ Fh) such that, denoting by n the outward normal to 
∂ Fh , we have γn(v) = v · n for any v ∈ C∞

c (Fh);
• E0(Fh) := {v ∈ C∞

c (Fh) s.t. div v = 0} is dense in L2
σ ,0(Fh) := Ker(γn) ∩ L2

σ (Fh).

With these notations, we have:

Definition 1. We call u ∈ L2
σ (Fh) a weak solution to (4)–(5)–(6) if

1. γn[u] = e2 · n on ∂Sh and γn[u] = 0 on ∂P ,
2. for any w ∈ L2

σ ,0(Fh) there holds:∫
Fh

u · w = 0. (10)

The weak formulation for (4)–(5) is obtained standardly by remarking that, in the sense of distributions, there holds

〈∇ × u,ψ〉 = −
∫
Fh

u · ∇⊥ψ, ∀ψ ∈ C∞
c (Fh).

If u solves (4), we obtain then (10) with w = ∇⊥ψ ∈ L2
σ ,0(Fh). Conversely, for arbitrary w = (w1, w2) ∈ E0(Fh), setting

ψ(x1, x2) =
x1∫

w2(s,0) −
x2∫

w1(x1, s)ds,
0 0
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yields ψ ∈ C∞
c (R2+) with ψ constant on Sh and w = ∇⊥ψ . Denoting �ψ the value of ψ on Sh , the weak formulation entails 

(under the assumption that u is sufficiently smooth to make integration by parts meaningful):∫
Fh

u · w =
∫
Fh

u · ∇⊥ψ

= �ψ

∫
∂Sh

u · n⊥dσ −
∫
Fh

ψ∇ × u.

Since �ψ , ψ can be made arbitrary we obtain (4)–(6).
With this formulation, we have the following variant of [11, p. 37] for our specific unbounded domain:

Theorem 2. Given h > 0 there exists a unique weak solution to (4)–(5)–(6). Furthermore, this solution uh minimizes

inf

⎧⎪⎨
⎪⎩

∫
Fh

|v|2 , v ∈ L2
σ (Fh) s.t. γn[v] = e2 · n on ∂Sh and γn[v] = 0 on ∂P

⎫⎪⎬
⎪⎭ . (11)

Proof. The proof of this theorem yields as a standard application of the Lax–Milgram theorem. �
We remark that the above Theorem includes that the quantity ma(h) that we are interested in is the minimum that is 

achieved by the solution uh . Hence, we do not need to compute the explicit solution uh , but rather focus on the minimiza-
tion problem in order to discuss the behavior of the solution to the dynamical equation (7).

2.2. Computations of bounds for ma(h) for fixed h

We now turn to the computations of bounds for the optimization problem (11). To this end, we fix h > 0 at first and 
we adapt the abstract reduced-functional method from [5]. We shall let h tend to 0 in order to justify the relevance of the 
obtained approximation (yielding Theorem 1) afterwards.

The framework of the reduced-functional method is the following. We assume that we want to minimize the functional 
m on Y . We assume that we are able to construct a space Ỹ and a functional m̃ on the space Ỹ so that the following holds 
true. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

There exist two mappings:

� : Y → Ỹ V : Ỹ → Y

such that

m̃(�(v)) ≤ m(v) ∀ v ∈ Y .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(RF)

In this framework, we have the following lemma.

Lemma 1. Assume that the minimum of m̃ is reached in ψ0 , then there holds:

inf
Ỹ

m̃(= m̃(ψ0)) ≤ inf
Y

m ≤ m(V [ψ0]).

Proof. The last inequality is straightforward since V [ψ0] ∈ Y . As for the first one, we remark that, due to (RF), we have:

inf
Ỹ

m̃ ≤ m̃(�[v]) ≤ m(v) , ∀ v ∈ Y .

Hence m̃(ψ0) is a bound below for {m(v), v ∈ Y }. This implies the first inequality. �
We emphasize that we do not assume a priori that finding a minimum for m on Y is a well-posed problem. This is 

reminiscent of the fact that the above proposition is relevant if minimizing the functional m̃ on Ỹ is a simpler problem. 
Also, the above method is relevant only if the “reduced functional” m̃ is sufficiently close to m in the sense that m̃(ψ0) ∼
m(V [ψ0]). The key-point is to keep in the functional m̃ the relevant/dominating terms of the functional m. This is the 
motivation of the construction below in the case of the minimization problem (11).

We introduce the space

Yh = {v ∈ L2
σ (Fh) s.t. γn[v] = e2 · n on ∂Sh , γn[v] = 0 on P},
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Fig. 2. On the right, a zoom on the gap between Sh and the ramp with the domain F̃ δ
h in red.

so that our aim is to minimize the functional

m(v) =
∫
Fh

|v|2

on Yh . Following the ideas of [5], we construct the reduced functional as follows. We denote from now on:

F̃δ
h := {(x1, x2) ∈R

2+; x1 ∈ ]−δ, δ[and x2 ∈ ]0,σh(x)[}
where δ is fixed by assumption (Aα) and we recall that we denote σh(x) = h +κ |x|1+α . This domain F̃ δ

h is then the aperture 
between the solid S and the ramp P , filled with the fluid, when the solid S is at distance h > 0 of P . (See Fig. 2.)

We then set

Ỹh = {ψ ∈ H1(F̃δ
h ) s.t. ∃ C ∈ R with ψ(x,0) = 0 ψ(x,σh(x)) = C + x ∀ x ∈ ]−δ, δ[},

and we consider the energy

m̃(ψ) =
∫
F̃δ

h

|∂2ψ(x)|2dx ∀ψ ∈ Ỹh.

The main interest of this construction lies in the following proposition.

Proposition 1. Given h > 0,

i) there exists a mapping � : Yh → Ỹh such that

m̃(�[v]) ≤ m(v) ∀ v ∈ Yh;
ii) there exists a mapping V : Ỹh → Yh such that:

V (ψ) = ∇⊥ψ in F̃δ
h ∀ψ ∈ Ỹh.

The construction of the mappings � and V is the content of the following subsection. We remark at first that, item i)
includes that Lemma 1 applies to this construction. Hence, once the above construction is done, the range for ma(h) stated 
in Theorem 1 reduces to obtaining the following lemma.

Lemma 2. Given h > 0, there exists a unique ψ0 ∈ Ỹh achieving m̃(ψ0) = min{ψ, ψ ∈ Ỹh}. Furthermore, when h → 0, we have the 
following alternative:

• if α < 2: m(ψ0) and m(V [ψ0]) remain bounded;
• if α > 2:

h3/(1+α) ≤ m̃(ψ0) ≤ m(V [ψ0]) ≤ h3/(1+α) + O (1). (12)
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2.3. Proof of Proposition 1

We split this subsection into two paragraphs. The first one is devoted to the mapping �, while in the second one, we 
construct and study the mapping V .

Construction of the mapping �. Let v ∈ Yh ∩ C∞(Fh). The smoothness assumption can be relaxed in a second step by a density 
argument. We fix then �[v] = ψ by:

ψ(x1, x2) =
x1∫

0

v2(s,0)ds −
x2∫

0

v1(x1, s)ds ∀ (x1, x2) ∈ F̃δ
h .

This formula yields the unique vector-field vanishing in the origin, so that ∇⊥ψ = v (we recall that v is assumed divergence-
free). Since v ∈ Yh , we have then:

• ψ(x1, 0) = 0 (since v2 = v · n = 0 on P)
• ψ(x1, x2) = C + x1 on ∂Sh for some constant C , since, for x ∈ (−δ, δ):

d

dx
ψ(x,σh(x)) = ∂1ψ(x,σh(x)) + σ ′

h(x)∂2ψ(x,σh(x))

= v2(x,σh(x)) − σ ′
h(x)v1(x,σh(x)) = (v · n)

√
1 + |σ ′

h(x)|2

= n2

√
1 + |σ ′

h(x)|2 = 1.

This entails that ψ ∈ Ỹh . Furthermore, since v1 = −∂2ψ and F̃ δ
h ⊂ Fh , we also have

m̃(ψ) =
∫
F̃δ

h

|∂2ψ |2

=
∫
F̃δ

h

|v1|2 ≤
∫
Fh

|v|2 = m(v).

We emphasize that, combining the fact that ψ vanishes on P with a Hardy inequality, we obtain that the mapping �
(constructed on Yh ∩C∞(Fh)) is continuous, L2(Fh) → H1(F̃ δ

h ). This enables us to perform a density argument and create an 
extension � : Yh → Ỹh . The latter inequality comparing m̃ and m extends then to arbitrary v ∈ Yh by density. This concludes 
the proof of item i) in Proposition 1.

Construction of the mapping V . The construction of the mapping V is a little more technical. Indeed, let us consider ψ ∈
Ỹh ∩ C∞(F̃ δ

h ) and denote v = V [ψ]. Obviously, one wants to fix v = ∇⊥ψ , but this only defines v on F̃ δ
h , so that we need 

to construct a suitable extension.
To construct the extension mapping, we first define a function that truncates outside S . For this, we note that under 

assumption (Aα), there exists η > 0 such that, for arbitrary (x1, x2) ∈ P such that |x1| > δ/2 we have dist((x1, x2), S) > η. 
Then, we introduce:

• ζ : R → [0, 1] a cut-off function such that ζ = 1 on (−1, 1) and ζ = 0 on R \ [−2, 2],
• χ :R2 → R smooth and satisfying:

Supp (χ) ⊂ B((0,0),η/6)

∫
R2

χ = 1,

and we set:

T̃ (x1, x2) = ζ(3 dist((x1, x2),S)/η) ∀ (x1, x2) ∈R
2

T = T̃ ∗ χ with ∗ the standard convolution operator.

By construction, we have T ∈ C∞(R2) and T̃ = 1 in a η/3 neighborhood of S and vanishes outside a 2η/3 neighborhood 
of S . In particular, for arbitrary (x1, x2) ∈ S , we have T̃ = 1 on B((x1, x2), η/6) and T (x1, x2) = 1. On the opposite, if 
dist((x1, x2), S) > 5η/6, we have that T̃ = 0 on B((x1, x2), η/6) and T = 0.
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With this construction at hand, let ψ ∈ Ỹh ∩ C∞(F̃ δ
h ) for simplicity and C the associated constant such that ψ(x1, x2) =

C + x1 on ∂Sh . We construct v := V [ψ] = ∇⊥ψ̃ with:

ψ̃(x1, x2) =
{

ζ(2x1/δ)ψ(x1, x2) + (1 − ζ(2x1/δ))(x1 + C)T ((x1, x2 − h)) if (x1, x2) ∈ F̃δ
h ,

(x1 + C)T ((x1, x2 − h)) if (x1, x2) ∈R
2+ \ F̃δ

h .

Here are some comments about this construction. Since the truncation function ζ appearing on the first line is scaled so 
that ψ̃ matches smoothly through the lateral boundaries of F̃ δ

h , we have that ψ̃ ∈ C∞(Fh). In particular, v is computed in a 
standard way and divergence-free. In F̃ δ

h , we have,

v(x1, x2) =ζ(2x1/δ)∇⊥ψ(x1, x2) + (1 − ζ(2x1/δ))∇⊥((x1, x2) 	→ (x1 + C)T (x1, x2 − h))

+ 2/δ(ψ(x1, x2) − (x1 + C)T (x1, x2 − h))ζ ′(2x1/δ)e2,

and outside, we have:

v(x1, x2) = T (x1, x2 − h)e2 + (x1 + C)∇⊥((x1, x2) 	→ T (x1, x2 − h)).

At this point, we remark that (x1, x2) ∈ Sh if and only if (x1, x2 −h) ∈ S . So T (x1, x2 −h) = 1 for (x1, x2) ∈ Sh and T (x1, x2 −
h) = 0 when dist((x1, x2), Sh) ≥ η. This entails the required boundary conditions:

1) on P , we have, x1 	→ (1 − ζ(2x1/δ)) and its derivatives vanish if |x1| < δ/2, while T (x1, x2 − h) = 0 and its derivatives 
vanish when |x1| > δ/2 (by choice of η w.r.t. δ). Adding that ψ(x1, 0) = ∂1ψ(x1, 0) = 0 for |x1| < δ, we conclude that 
v · n = v2(x1, 0) = 0 globally;

2) on ∂Sh we have that T (x1, x2 − h) = 1 and ∇T (x1, x2 − h) = 0. Hence, v(x1, x2) = e2 outside F̃ δ
h . Inside F̃ δ

h , we have 
ψ(x1, x2) = (x1 + C) so that:

v · n = ζ(2x1/δ)n · ∇⊥ψ + (1 − ζ(2x1/δ))n · ∇⊥((x1 + C)T (x1, x2 − h)).

We remark then again that, on ∂Sh , there holds

n · ∇⊥ψ = n · ∇⊥((x1 + C)T (x1, x2 − h)) = e2 · n

(since the operator n · ∇⊥ corresponds to the tangential derivative of ψ along ∂Sh). This entails v · n = e2 · n.

Combining the fact that v is divergence-free and the latter boundary identities, we obtain finally that v ∈ Yh .
To end up the proof of item ii) in Proposition 1, it remains to remark that

C = 1

2δ

δ∫
−δ

ψ(x1,σh(δ))dx1

so that the mapping ψ → C is continuous, H1(Ỹh) →R. The formula for V [ψ] defines then (the restriction to Ỹh ∩ C∞(F δ
h )

of) a continuous linear mapping Ỹh → Yh when Ỹh (resp. Yh) is endowed with the H1-topology (resp. L2 topology).

3. Proof of Theorem 1

We end the paper with the proof of our main result. According to the arguments in the previous section (see in particular 
Lemma 2), this splits into three steps:

• first to fix h and to compute ψ0 that minimizes m̃ over Ỹh ,
• second to let h → 0, to compute the asymptotics of the minimum of m̃(ψ0) and compute a bound above for m(V [ψ0]),
• to prove the asymptotic formula (9).

These steps correspond to the three subsections below.

3.1. Minimizing m̃

This part of the proof is straightforward. We state the following proposition for completeness.

Proposition 2. Let h > 0 and

ψ0(x1, x2) = x1x2

σh(x1)
, ∀ (x1, x2) ∈ F̃δ

h .

Then ψ0 realizes the minimum of m̃ over Ỹh .
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Proof. It is straightforward that ψ0 ∈ Ỹh satisfies ∂22ψ0 = 0. Then, given ψ ∈ Ỹh , we have that ϕ = ψ − ψ0 ∈ H1(F̃ δ
h )

satisfies:

ϕ(x1,σh(x1)) = C for x1 ∈ (−δ, δ) and a constant C ∈R

ϕ(x1,0) = 0 for x1 ∈ (−δ, δ) .

Integrating by parts and using symmetry arguments yield:

δ∫
−δ

σh(x1)∫
0

∂2ψ0(x1, x2) ∂2ϕ(x1, x2)dx2 dx1 =
δ∫

−δ

C x1 dx1 −
δ∫

−δ

σh(x1)∫
0

∂22ψ0(x1, x2) ϕ(x1, x2)dx2 dx1 = 0;

and consequently:

m̃(ψ) =
δ∫

−δ

σh(x1)∫
0

|∂2ψ0(x1, x2)|2 +
δ∫

−δ

σh(x1)∫
0

|∂2ϕ(x1, x2)|2 ≥ m̃(ψ0)

with equality if and only if ϕ = 0 i.e. ψ = ψ0. �
3.2. Range for ma

We start with finding an equivalent for m̃(ψ0).

Proposition 3. We have two cases:

• if α < 2 the quantity m̃(ψ0) remains bounded when h → 0,
• if α > 2, m̃(ψ0) = cκ,αh3/(1+α)−1 + O (1) when h → 0 with

cκ,α =
∫
R

t2dt

1 + |t|1+α
.

Proof. Replacing with the explicit values of ψ0 we have that m̃(ψ0) = Ih with:

Ih =
δ∫

−δ

x2

σh(x)
dx =

δ∫
−δ

x2

h + κ |x|1+α
dx.

If α < 2 we have, for arbitrary h

Ih ≤ 1

κ

δ∫
−δ

1

|x|α−1 dx

and Ih remains bounded when h → 0.
If α > 2, we perform the change of variable x = h1/(1+α)t . This yields:

Ih =h3/(1+α)−1

δ/h1/(1+α)∫
−δ/h1/(1+α)

t2

1 + |t|1+α
dt

=h3/(1+α)−1
∫
R

t2

1 + κ |t|1+α
dt + O (1).

This ends the proof. �
We note that, in the case α = 2, we can make similar computations and obtain that

m̃(ψ0) = 2 | ln(h)| + O (1).

3κ
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We proceed with the upper bound, i.e. computing m(v0) where v0 = V (ψ0). We note that, since the constant C asso-
ciated with ψ0 vanishes, the extension of ψ0 that we construct with ψ̃0 (see the formula of the previous section) depends 
on h only through a translation. Hence, the contribution outside F̃ δ

h to the L2-norm of v0 remains bounded independently 
of h. Since the singularity in the geometry occurs only in the origin when h → 0, we have also that:

∫
F̃δ

h

|v0|2 =
δ/2∫

−δ/2

σh(x1)∫
0

|v0|2(x1, x2)dx1 dx2 + O (1),

and, replacing v0 with its values on F̃ δ
h , we have:

m(v0) = m̃(ψ0) +
δ∫

−δ

σh(x1)∫
0

|∂1ψ0|2(x1, x2)dx1 dx2 + O (1).

We denote by Jh the second integral on the right-hand side of this last inequality. With the explicit values for ψ0, we 
obtain:

Jh = 1

3

δ∫
−δ

(
1

σh(x1)
− x1σ

′
h(x1)

σh(x1)2

)2

|σh(x1)|3 dx1.

However, there exists an absolute constant K0 such that |σ ′
h(x1) x1| ≤ K0 σh(x1) for x1 ∈ (−δ, δ). Introducing this inequality 

in the computation of Jh , we obtain:

| Jh| ≤
δ∫

−δ

σh(x1)dx1 ≤ K1,

with K1 independent of h. This ends the computations of the bounds for ma(h).

3.3. Asymptotic expansion

To complete the proof of Theorem 1, we obtain the asymptotics (9). For this, we re-introduce (uh)h>0, the family con-
taining the unique weak solutions to (4)–(5)–(6), and we recall the notations v0 = V [ψ0] that we introduced above. We 
recall that, for fixed h > 0, since v0 ∈ Yh and uh is a weak solution to (4)–(5)–(6), we have, by definition, that:∫

Fh

uh · (uh − v0) = 0 i.e.

∫
Fh

|uh|2 =
∫
Fh

uh · v0.

Consequently, expanding the square and applying this last identity, we obtain:∫
Fh

|uh − v0|2 =
∫
Fh

|v0|2 −
∫
Fh

|uh|2.

However, by construction of the reduced functional method, we have:

m̃(ψ0) ≤
∫
Fh

|uh|2 ≤
∫
Fh

|v0|2 = m(v0).

Plugging these bounds in the previous identity yields the expected formula by recalling that m(v0) = m̃(ψ0) + O (1) when 
h → 0. This ends the proof.
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