Number theory

Odd values of the Rogers-Ramanujan functions

Valeurs impaires des fonctions de Rogers-Ramanujan
\section*{Shi-Chao Chen}
Institute of Contemporary Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, P. R. China

A R T I C L E I N F O

Article history:

Received 7 July 2018
Accepted after revision 18 October 2018
Available online 26 October 2018
Presented by the Editorial Board

Abstract

Let $g(n)$ and $h(n)$ be the coefficients of the Rogers-Ramanujan identities. We obtain asymptotic formulas for the number of odd values of $g(n)$ for odd n, and $h(n)$ for even n, which improve Gordon's results. We also obtain lower bounds for the number of odd values of $g(n)$ for even n, and $h(n)$ for odd n. © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Soit $g(n)$ et $h(n)$ les coefficients des identités de Rogers-Ramanujan. Nous obtenons des formules asymptotiques pour le nombre de valeurs impaires de $g(n)$ lorsque n est impair et de $h(n)$ lorsque n est pair. Ces formules améliorent un résultat de Gordon. Nous obtenons également des bornes inférieures pour le nombre de valeurs impaires de $g(n)$ pour n pair et de $h(n)$ pour n impair.
© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Rogers-Ramanujan identities, first discovered by Rogers in 1894, are the pair of q-series identities:

$$
G(q):=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

and

$$
H(q):=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)}=\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

[^0]https://doi.org/10.1016/j.crma.2018.10.002
1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
where $|q|<1$. If $q=\mathrm{e}^{2 \pi \mathrm{i} \tau}$ and $\operatorname{Im} \tau>0$, then Biagioli [2] showed that $q^{-\frac{1}{60}} G(q)$ and $q^{\frac{11}{60}} H(q)$ are modular functions on $\Gamma_{1}(5)$ with character. Let $G(q)=\sum_{n=0}^{\infty} g(n) q^{n}$ and $H(q)=\sum_{n=0}^{\infty} h(n) q^{n}$. We are interested in finding the arithmetic density of the number of odd values of $g(n)$ and $h(n)$. Let
$$
\gamma(N)=\sharp\{1 \leq n \leq N: \quad n \equiv 1 \quad(\bmod 2) \text { and } g(n) \equiv 1 \quad(\bmod 2)\},
$$
and
$$
\delta(N)=\sharp\{1 \leq n \leq N: \quad n \equiv 0 \quad(\bmod 2) \text { and } h(n) \equiv 1 \quad(\bmod 2)\} .
$$

Gordon [3] proved the order of magnitude of $\gamma(N)$ and $\delta(N)$ is $\frac{N}{\log N}$.
Theorem 1.1 (Gordon). There exist positive constants A and B such that

$$
A \frac{N}{\log N}<\gamma(N), \delta(N)<B \frac{N}{\log N}
$$

for sufficiently large N.
Gordon's proof is based on the fact that $g(n)$ with n odd and $h(n)$ with n even are the coefficients of holomorphic modular forms weight $1 \bmod 2$, and hence each such n can be determined explicitly. We obtain the following asymptotic formulas by refining Gordon's arguments.

Theorem 1.2. For sufficiently large N,

$$
\begin{aligned}
& \gamma(N)=\frac{\pi^{2}}{5} \cdot \frac{N}{\log N}+O\left(\frac{N \log \log N}{\log ^{2} N}\right) \\
& \delta(N)=\frac{\pi^{2}}{5} \cdot \frac{N}{\log N}+O\left(\frac{N \log \log N}{\log ^{2} N}\right)
\end{aligned}
$$

Let

$$
\gamma^{\prime}(N)=\sharp\{1 \leq n \leq N: \quad n \equiv 0 \quad(\bmod 2) \text { and } g(n) \equiv 1 \quad(\bmod 2)\}
$$

and

$$
\delta^{\prime}(N)=\sharp\{1 \leq n \leq N: \quad n \equiv 1 \quad(\bmod 2) \text { and } h(n) \equiv 1 \quad(\bmod 2)\} .
$$

A similar question is to bound $\gamma^{\prime}(N)$ and $\delta^{\prime}(N)$. In this case, $g(n)$ with n even and $h(n)$ with n odd are the coefficients of holomorphic modular forms weight $\frac{3}{2} \bmod 2$. Applying the ground-breaking work of Bellaïche, Green, and Soundararajan [1] on the non-divisibility of the coefficients of weakly holomorphic modular forms, we obtain the following lower bounds.

Theorem 1.3. For sufficiently large N, we have

$$
\begin{aligned}
\gamma^{\prime}(N) & \gg \frac{\sqrt{N}}{\log \log N} \\
\delta^{\prime}(N) & \gg \frac{\sqrt{N}}{\log \log N}
\end{aligned}
$$

2. Proof of Theorem 1.2

The parity of $g(n)$ for odd n and that of $h(n)$ for even n were determined by Gordon [3] explicitly, i.e. n is odd and $g(n) \equiv 1(\bmod 2)$ if and only if $60 n-1=p^{4 a+1} m^{2}$, where $a \geq 0$ is an integer and p is a prime not dividing m. n is even and $h(n) \equiv 1(\bmod 2)$ if and only if $60 n+11=p^{4 a+1} m^{2}$. Thus $\gamma(N)$ can be represented as

$$
\gamma(N)=\sum_{\substack{1 \leq n \leq N \\ n \equiv 1 \\(\bmod 2) \\ 60 n-1=p^{4 a+1} m^{2}}} 1 .
$$

We denote by $M=60 N-1$ for convenience, and by $\pi(x)$ the number of primes less than x. We split the sum above into two parts according to $a=0$ and $a \geq 1$. The sum over $a \geq 1$ is bounded by

$$
\begin{aligned}
& \ll \sum_{1 \leq a \ll \log N} \sum_{m \leq \sqrt{M}} \pi\left(\left(\frac{M}{m^{2}}\right)^{\frac{1}{4 a+1}}\right) \\
& \ll \log N \sum_{m \leq \sqrt{M}}\left(\frac{N}{m^{2}}\right)^{\frac{1}{5}} \\
& \ll N^{\frac{1}{2}} \log N,
\end{aligned}
$$

which is negligible. Note that the sum over $a=0$ is equivalent to

$$
\sum_{\substack{p m^{2} \leq M \\ p m^{2}=59}} 1=\sum_{\substack{m \leq \sqrt{M} \\(m, \bmod 120)=1}} \sum_{\substack{p \leq \frac{M}{m^{2}} \\ p \equiv 59 m^{-2}}} 1 .
$$

The contribution for $\log ^{2} M<m$ is negligible since

$$
\sum_{\substack{\log ^{2} M<m \\(m, 120)=1}} \frac{M}{m^{2} \log \left(\frac{M}{m^{2}}\right)} \ll \sum_{\log ^{2} M<m} \frac{M}{m^{2}} \ll \frac{M}{\log ^{2} M} \ll \frac{N}{\log ^{2} N} .
$$

By the prime number theorem for arithmetic progressions, the sum over $m \leq \log ^{2} M$ is

$$
\begin{aligned}
& \sum_{\substack{m \leq \log ^{2} M \\
(m, 120)=1}} \frac{M}{\phi(120) m^{2} \log \left(\frac{M}{m^{2}}\right)}\left(1+O\left(\frac{1}{\log \left(\frac{M}{m^{2}}\right)}\right)\right) \\
= & \frac{1}{32} \sum_{\substack{m \leq \log ^{2} M \\
(m, 120)=1}} \frac{M}{m^{2} \log M}\left(1+O\left(\frac{\log m}{\log M}\right)\right) \\
= & \frac{1}{32} \sum_{\substack{m=1 \\
(m, 120)=1}}^{\infty} \frac{M}{m^{2} \log M}+O\left(\sum_{m>\log ^{2} M} \frac{M}{m^{2} \log M}\right)+O\left(\frac{M \log \log M}{\log ^{2} M}\right) \\
= & \frac{1}{32} \sum_{\substack{m=1 \\
(m, 120)=1}}^{\infty} \frac{M}{m^{2} \log M}+O\left(\frac{M \log \log M}{\log ^{2} M}\right),
\end{aligned}
$$

where ϕ is the Euler's ϕ-function. Recalling $M=60 N-1$, we conclude that

$$
\begin{aligned}
\gamma(N) & =\frac{1}{32} \sum_{\substack{m=1 \\
(m, 120)=1}}^{\infty} \frac{60 N-1}{m^{2} \log (60 N-1)}+O\left(\frac{N \log \log N}{\log ^{2} N}\right) \\
& =\left(\frac{15}{8} \sum_{\substack{m=1 \\
(m, 120)=1}}^{\infty} \frac{1}{m^{2}}\right) \frac{N}{\log N}+O\left(\frac{N \log \log N}{\log ^{2} N}\right) \\
& =\frac{\pi^{2}}{5} \cdot \frac{N}{\log N}+O\left(\frac{N \log \log N}{\log ^{2} N}\right),
\end{aligned}
$$

where the constant in the main term is computed by

$$
\frac{15}{8} \sum_{\substack{m=1 \\(m, 120)=1}}^{\infty} \frac{1}{m^{2}}=\frac{15}{8} \prod_{p \nmid 120}\left(1-p^{-2}\right)^{-1}=\frac{6}{5} \zeta(2)=\frac{\pi^{2}}{5} .
$$

The proof of the result for $\delta(N)$ is similar, so is omitted.

3. Proof of Theorem 1.3

Let $f=\sum_{n=n_{0}}^{\infty} a(n) q^{n}$ be a weakly holomorphic modular form of half-integral weight k and level $\Gamma_{1}(N)$ with integer coefficients. Bellaïche, Green, and Soundararajan [1] showed that if $f \not \equiv 0(\bmod 2)$, then

$$
\sharp\{n \leq N: a(n) \equiv 1 \quad(\bmod 2)\} \gg \frac{\sqrt{N}}{\log \log N} .
$$

Thus, to prove Theorem 1.3, it suffices to show the generating functions for $g(2 n)$ and $h(2 n+1)$ mod 2 are weakly holomorphic modular forms of half-integral weight for some levels. The generating functions for $g(2 n)$ and $h(2 n+1)$ were computed by Hirschhorn in [4]. In view of Theorem 1 of [4], we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} g(2 n) q^{n}=\prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)}{\left(1-q^{n}\right)\left(1-q^{40 n-8}\right)\left(1-q^{40 n-32}\right)} \\
& \sum_{n=0}^{\infty} h(2 n+1) q^{n}=q \prod_{n=1}^{\infty} \frac{\left(1-q^{4 n}\right)}{\left(1-q^{n}\right)\left(1-q^{40 n-16}\right)\left(1-q^{40 n-24}\right)}
\end{aligned}
$$

Let $\eta(\tau)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$ be the Dedekind's eta function and denote by $f_{1}(\tau)=q^{-\frac{1}{60}} G(q)$ and $f_{2}(\tau)=q^{\frac{11}{60}} H(q)$, where $q=\mathrm{e}^{2 \pi \mathrm{i} \tau}$. We see that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} g(2 n) q^{n} \equiv \prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)^{3}}{\left(1-q^{5 n-1}\right)^{8}\left(1-q^{5 n-4}\right)^{8}}=q^{\frac{1}{120}} f_{1}^{8}(\tau) \eta^{3}(\tau) \quad(\bmod 2) \\
& \sum_{n=0}^{\infty} h(2 n+1) q^{n} \equiv q \prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)^{3}}{\left(1-q^{5 n-2}\right)^{8}\left(1-q^{5 n-3}\right)^{8}}=q^{-\frac{71}{120}} f_{2}^{8}(\tau) \eta^{3}(\tau) \quad(\bmod 2)
\end{aligned}
$$

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}(5)$, by Proposition 2.5 of [2], the transformations of $f_{1}(\tau)$ and $f_{2}(\tau)$ are given by

$$
\begin{aligned}
& f_{1}(A \tau)=\mathrm{e}^{\frac{4 \pi \mathrm{i} a b}{5}} \nu_{1}(A) f_{1}(\tau) \\
& f_{2}(A \tau)=\mathrm{e}^{\frac{-4 \pi \mathrm{i} a b}{5}} \nu_{1}(A) f_{2}(\tau)
\end{aligned}
$$

where $\nu_{1}(A)$ denotes the multiplier system of $\eta^{14}(\tau)$, i.e.

$$
\nu_{1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left\{\begin{array}{lll}
\exp \left(\frac{7 \pi \mathrm{i}}{6}\left(-3 c-b d\left(c^{2}-1\right)+c(a+d)\right)\right), & c & \text { odd } \\
\exp \left(\frac{7 \pi \mathrm{i}}{6}\left(3 d-3-a c\left(d^{2}-1\right)+d(b-c)\right)\right), & d & \text { odd }
\end{array}\right.
$$

Using these formulas, we can easily verify that $f_{1}(120 \tau)$ and $f_{2}(120 \tau)$ are invariant on $\Gamma_{1}(2880)$. Since $\eta(24 \tau)$ is a modular form weight $\frac{1}{2}$ on $\Gamma_{0}(576)$ with character $\left(\frac{12}{.}\right)$ (see, for example, [5, Corollary 1.62]), it follows that $\sum_{n=0}^{\infty} g(2 n) q^{120 n-1}$ $(\bmod 2)$ and $\sum_{n=0}^{\infty} h(2 n+1) q^{120 n+71}(\bmod 2)$ are weakly holomorphic form weight $\frac{3}{2}$ and level $\Gamma_{1}(2880)$, as desired.

Acknowledgements

The author would like to thank the anonymous referee for her/his valuable comments and professor Yingchun Cai for his helpful suggestions. This work was partially supported by NSF of China (11771121), Henan province (2016GGJS-022), and Henan University (yqpy20140038).

References

[1] J. Bellaïche, B. Green, K. Soundararajan, Nonzero coefficients of half-integral weight modular forms mod ℓ, Res. Math. Sci. 5 (2018) 6.
[2] A.J.F. Biagioli, A proof of some identities of Ramanujan using modular forms, Glasg. Math. J. 31 (1989) 271-295.
[3] B. Gordon, On the Parity of the Rogers-Ramanujan Coefficients, Partitions, q-Series, and Modular Forms, Dev. Math., vol. 23, Springer, New York, 2012, pp. 83-93.
[4] M.D. Hirschhorn, On the 2- and 4-dissections of the Rogers-Ramanujan functions, Ramanujan J. 40 (2) (2016) 227-235.
[5] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, 2004, p. 17.

[^0]: E-mail address: schen@henu.edu.cn.

