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Let g(n) and h(n) be the coefficients of the Rogers–Ramanujan identities. We obtain 
asymptotic formulas for the number of odd values of g(n) for odd n, and h(n) for even n, 
which improve Gordon’s results. We also obtain lower bounds for the number of odd values 
of g(n) for even n, and h(n) for odd n.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit g(n) et h(n) les coefficients des identités de Rogers–Ramanujan. Nous obtenons des 
formules asymptotiques pour le nombre de valeurs impaires de g(n) lorsque n est impair 
et de h(n) lorsque n est pair. Ces formules améliorent un résultat de Gordon. Nous obtenons 
également des bornes inférieures pour le nombre de valeurs impaires de g(n) pour n pair 
et de h(n) pour n impair.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Rogers–Ramanujan identities, first discovered by Rogers in 1894, are the pair of q-series identities:

G(q) :=
∞∏

n=0

1

(1 − q5n+1)(1 − q5n+4)
=

∞∑
n=0

qn2

(1 − q)(1 − q2) · · · (1 − qn)
,

and

H(q) :=
∞∏

n=0

1

(1 − q5n+2)(1 − q5n+3)
=

∞∑
n=0

qn2+n

(1 − q)(1 − q2) · · · (1 − qn)
,
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where |q| < 1. If q = e2πiτ and Imτ > 0, then Biagioli [2] showed that q− 1
60 G(q) and q

11
60 H(q) are modular functions on 

�1(5) with character. Let G(q) = ∑∞
n=0 g(n)qn and H(q) = ∑∞

n=0 h(n)qn . We are interested in finding the arithmetic density 
of the number of odd values of g(n) and h(n). Let

γ (N) = �{1 ≤ n ≤ N : n ≡ 1 (mod 2) and g(n) ≡ 1 (mod 2)},
and

δ(N) = �{1 ≤ n ≤ N : n ≡ 0 (mod 2) and h(n) ≡ 1 (mod 2)}.
Gordon [3] proved the order of magnitude of γ (N) and δ(N) is N

log N .

Theorem 1.1 (Gordon). There exist positive constants A and B such that

A
N

log N
< γ (N), δ(N) < B

N

log N

for sufficiently large N.

Gordon’s proof is based on the fact that g(n) with n odd and h(n) with n even are the coefficients of holomorphic 
modular forms weight 1 mod 2, and hence each such n can be determined explicitly. We obtain the following asymptotic 
formulas by refining Gordon’s arguments.

Theorem 1.2. For sufficiently large N,

γ (N) = π2

5
· N

log N
+ O

(
N log log N

log2 N

)
,

δ(N) = π2

5
· N

log N
+ O

(
N log log N

log2 N

)
.

Let

γ ′(N) = �{1 ≤ n ≤ N : n ≡ 0 (mod 2) and g(n) ≡ 1 (mod 2)}
and

δ′(N) = �{1 ≤ n ≤ N : n ≡ 1 (mod 2) and h(n) ≡ 1 (mod 2)}.
A similar question is to bound γ ′(N) and δ′(N). In this case, g(n) with n even and h(n) with n odd are the coefficients of 
holomorphic modular forms weight 3

2 mod 2. Applying the ground-breaking work of Bellaïche, Green, and Soundararajan 
[1] on the non-divisibility of the coefficients of weakly holomorphic modular forms, we obtain the following lower bounds.

Theorem 1.3. For sufficiently large N, we have

γ ′(N) �
√

N

log log N
,

δ′(N) �
√

N

log log N
.

2. Proof of Theorem 1.2

The parity of g(n) for odd n and that of h(n) for even n were determined by Gordon [3] explicitly, i.e. n is odd and 
g(n) ≡ 1 (mod 2) if and only if 60n − 1 = p4a+1m2, where a ≥ 0 is an integer and p is a prime not dividing m. n is even 
and h(n) ≡ 1 (mod 2) if and only if 60 n + 11 = p4a+1m2. Thus γ (N) can be represented as

γ (N) =
∑

1≤n≤N
n≡1 (mod 2)

60 n−1=p4a+1m2

1.

We denote by M = 60N − 1 for convenience, and by π(x) the number of primes less than x. We split the sum above into 
two parts according to a = 0 and a ≥ 1. The sum over a ≥ 1 is bounded by



S.-C. Chen / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1081–1084 1083
	
∑

1≤a	log N

∑
m≤√

M

π

((
M

m2

) 1
4a+1

)

	 log N
∑

m≤√
M

(
N

m2

) 1
5

	 N
1
2 log N,

which is negligible. Note that the sum over a = 0 is equivalent to∑
pm2≤M

pm2≡59 (mod 120)

1 =
∑

m≤√
M

(m,120)=1

∑
p≤ M

m2

p≡59m−2 (mod 120)

1.

The contribution for log2 M < m is negligible since

∑
log2 M<m
(m,120)=1

M

m2 log( M
m2 )

	
∑

log2 M<m

M

m2
	 M

log2 M
	 N

log2 N
.

By the prime number theorem for arithmetic progressions, the sum over m ≤ log2 M is

∑
m≤log2 M
(m,120)=1

M

φ(120)m2 log( M
m2 )

(
1 + O

(
1

log( M
m2 )

))

= 1

32

∑
m≤log2 M
(m,120)=1

M

m2 log M

(
1 + O

(
logm

log M

))

= 1

32

∞∑
m=1

(m,120)=1

M

m2 log M
+ O

⎛
⎝ ∑

m>log2 M

M

m2 log M

⎞
⎠ + O

(
M log log M

log2 M

)

= 1

32

∞∑
m=1

(m,120)=1

M

m2 log M
+ O

(
M log log M

log2 M

)
,

where φ is the Euler’s φ-function. Recalling M = 60N − 1, we conclude that

γ (N) = 1

32

∞∑
m=1

(m,120)=1

60 N − 1

m2 log(60N − 1)
+ O

(
N log log N

log2 N

)

=

⎛
⎜⎜⎝15

8

∞∑
m=1

(m,120)=1

1

m2

⎞
⎟⎟⎠ N

log N
+ O

(
N log log N

log2 N

)

= π2

5
· N

log N
+ O

(
N log log N

log2 N

)
,

where the constant in the main term is computed by

15

8

∞∑
m=1

(m,120)=1

1

m2
= 15

8

∏
p�120

(1 − p−2)−1 = 6

5
ζ(2) = π2

5
.

The proof of the result for δ(N) is similar, so is omitted.
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3. Proof of Theorem 1.3

Let f = ∑∞
n=n0

a(n)qn be a weakly holomorphic modular form of half-integral weight k and level �1(N) with integer 
coefficients. Bellaïche, Green, and Soundararajan [1] showed that if f 
≡ 0 (mod 2), then

�{n ≤ N : a(n) ≡ 1 (mod 2)} �
√

N

log log N
.

Thus, to prove Theorem 1.3, it suffices to show the generating functions for g(2 n) and h(2 n + 1) mod 2 are weakly holo-
morphic modular forms of half-integral weight for some levels. The generating functions for g(2 n) and h(2 n + 1) were 
computed by Hirschhorn in [4]. In view of Theorem 1 of [4], we have

∞∑
n=0

g(2 n)qn =
∞∏

n=1

(1 − q4n)

(1 − qn)(1 − q40n−8)(1 − q40n−32)
,

∞∑
n=0

h(2 n + 1)qn = q
∞∏

n=1

(1 − q4n)

(1 − qn)(1 − q40n−16)(1 − q40n−24)
.

Let η(τ ) = q
1

24
∏∞

n=1(1 − qn) be the Dedekind’s eta function and denote by f1(τ ) = q− 1
60 G(q) and f2(τ ) = q

11
60 H(q), where 

q = e2πiτ . We see that

∞∑
n=0

g(2 n)qn ≡
∞∏

n=1

(1 − qn)3

(1 − q5n−1)8(1 − q5n−4)8
= q

1
120 f 8

1 (τ )η3(τ ) (mod 2),

∞∑
n=0

h(2 n + 1)qn ≡ q
∞∏

n=1

(1 − qn)3

(1 − q5n−2)8(1 − q5n−3)8
= q− 71

120 f 8
2 (τ )η3(τ ) (mod 2).

If A =
(

a b
c d

)
∈ �1(5), by Proposition 2.5 of [2], the transformations of f1(τ ) and f2(τ ) are given by

f1(Aτ ) = e
4πiab

5 ν1(A) f1(τ ),

f2(Aτ ) = e
−4πiab

5 ν1(A) f2(τ ),

where ν1(A) denotes the multiplier system of η14(τ ), i.e.

ν1

(
a b
c d

)
=

⎧⎨
⎩

exp
(

7πi
6 (−3 c − b d (c2 − 1) + c (a + d))

)
, c odd,

exp
(

7πi
6 (3 d − 3 − a c (d2 − 1) + d (b − c))

)
, d odd.

Using these formulas, we can easily verify that f1(120 τ ) and f2(120 τ ) are invariant on �1(2880). Since η(24 τ ) is a modu-
lar form weight 1

2 on �0(576) with character ( 12
· ) (see, for example, [5, Corollary 1.62]), it follows that 

∑∞
n=0 g(2 n) q120 n−1

(mod 2) and 
∑∞

n=0 h(2 n + 1) q120 n+71 (mod 2) are weakly holomorphic form weight 3
2 and level �1(2880), as desired.
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