
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1106–1111
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Homological algebra/Algebraic geometry

Singular Hochschild cohomology via the singularity category

La cohomologie de Hochschild singulière via la catégorie des singularités

Bernhard Keller

Université Paris-Diderot – Paris-7, Sorbonne Université, UFR de Mathématiques, CNRS, Institut de mathématiques de Jussieu–Paris Rive 
gauche, IMJ–PRG, bâtiment Sophie-Germain, 75205 Paris cedex 13, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 September 2018
Accepted after revision 22 October 2018
Available online 25 October 2018

Presented by Michèle Vergne

We show that the singular Hochschild cohomology (= Tate–Hochschild cohomology) of 
an algebra A is isomorphic, as a graded algebra, to the Hochschild cohomology of the 
differential graded enhancement of the singularity category of A. The existence of such an 
isomorphism is suggested by recent work by Zhengfang Wang.
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r é s u m é

Nous montrons que la cohomologie de Hochschild singulière (cohomologie de Tate–
Hochschild) d’une algèbre A est isomorphe, en tant qu’algèbre graduée, à la cohomologie 
de Hochschild de l’enrichissement différentiel gradué de la catégorie des singularités de A. 
L’existence d’un tel isomorphisme est suggérée par des travaux récents de Zhengfang Wang.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let k be a commutative ring. We write ⊗ for ⊗k . Let A be a right Noetherian (non-commutative) k-algebra projective as 
a k-module. The stable derived category or singularity category of A is defined as the Verdier quotient

Sg(A) = Db(mod A)/per(A)

of the bounded derived category of finitely generated (right) A-modules by the perfect derived category per(A), i.e. the full 
subcategory of complexes quasi-isomorphic to bounded complexes of finitely generated projective modules. It was intro-
duced by Buchweitz in an unpublished manuscript [4] in 1986 and rediscovered, in its scheme-theoretic variant, by Orlov 
in 2003 [24]. Notice that it vanishes when A is of finite global dimension and thus measures the degree to which A is 
‘singular’, a view confirmed by the results of [24].
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Let us suppose that the enveloping algebra Ae = A ⊗ Aop is also right Noetherian. In analogy with Hochschild cohomology, 
in view of Buchweitz’ theory, it is natural to define the Tate–Hochschild cohomology or singular Hochschild cohomology of A to 
be the graded algebra with components

H Hn
sg(A, A) = HomSg(Ae)(A,�n A) , n ∈ Z ,

where � denotes the suspension (=shift) functor. It was studied, for example, in [10,2,23] and more recently in [29,30,28,
31,27,5]. Wang showed in [29] that, like Hochschild cohomology [11], singular Hochschild cohomology carries a structure 
of Gerstenhaber algebra. Now recall that the Gerstenhaber algebra structure on Hochschild cohomology is a small part of 
much richer higher structure on the Hochschild cochain complex C(A, A) itself, namely the structure of a B∞-algebra in the 
sense of Getzler–Jones [12, 5.2] given by the brace operations [1,16]. In [27], Wang improves on [29] by defining a singular 
Hochschild cochain complex Csg(A, A) and endowing it with a B∞-structure, which in particular yields the Gerstenhaber 
algebra structure on H H∗

sg(A, A).
Using [17], Lowen–Van den Bergh showed in [21, Theorem 4.4.1] that the Hochschild cohomology of A is isomorphic 

to the Hochschild cohomology of the canonical differential graded (= dg) enhancement of the (bounded or unbounded) 
derived category of A and that the isomorphism lifts to the B∞-level. Together with the complete structural analogy be-
tween Hochschild and singular Hochschild cohomology described above, this suggests the question whether the singular 
Hochschild cohomology of A is isomorphic to the Hochschild cohomology of the canonical dg enhancement Sgdg(A) of 
the singularity category Sg(A) (note that such an enhancement exists by the construction of Sg(A) as a Verdier quotient 
[19,6]). Chen–Li–Wang show in [5] that this does hold at the level of Gerstenhaber algebras when A is the radical square 
zero algebra associated with a finite quiver without sources or sinks. Our main result is the following.

Theorem 1.1. There is a canonical isomorphism of graded algebras between the singular Hochschild cohomology of A and the 
Hochschild cohomology of the dg singularity category Sgdg(A).

Conjecture 1.2. The isomorphism of the theorem lifts to an isomorphism

Csg(A, A)
∼−→ C(Sgdg(A),Sgdg(A))

in the homotopy category of B∞-algebras.

Let us mention an application of Theorem 1.1 obtained in joint work with Zheng Hua. Let k be an algebraically closed 
field of characteristic 0 and P the power series algebra k[[x1, . . . , xn]].

Theorem 1.3 ([15]). Suppose that Q ∈ P has an isolated singularity at the origin and A = P/(Q ). Then A is determined up to isomor-
phism by its dimension and the dg singularity category Sgdg(A).

In [8, Theorem 8.1], Efimov proves a related but different reconstruction theorem: he shows that if Q is a polynomial, 
it is determined, up to a formal change of variables, by the differential Z/2-graded endomorphism algebra E of the residue 
field in the differential Z/2-graded singularity category together with a fixed isomorphism between H∗ B and the exterior 
algebra �(kn).

In section 2, we generalize Theorem 1.1 to the non-Noetherian setting and prove the generalized statement. We comment 
on a possible lift of this proof to the B∞-level in section 3. We prove Theorem 1.3 in section 4.

2. Generalization and proof

2.1. Generalization to the non-Noetherian case

We assume that A is an arbitrary k-algebra projective as a k-module. Its singularity category Sg(A) is defined as the 
Verdier quotient H−,b(proj A)/Hb(proj A) of the homotopy category of right bounded complexes of finitely generated pro-
jective A-modules by its full subcategory of bounded complexes of finitely generated projective A-modules. Notice that 
when A is right-Noetherian, this is equivalent to the definition given in the introduction.

The (partially) completed singularity category ̂Sg(A) is defined as the Verdier quotient of the right bounded derived cate-
gory D− A by its full subcategory consisting of all complexes quasi-isomorphic to bounded complexes of arbitrary projective 
modules.

Lemma 2.2. The canonical functor Sg(A) → ̂Sg(A) is fully faithful.

Proof. Let M be a right-bounded complex of finitely generated projective modules with bounded homology and P a 
bounded complex of arbitrary projective modules. Since the components of M are finitely generated, each morphism M → P
in the derived category factors through a bounded complex P ′ with finitely generated projective components. This yields 
the claim. �
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Since we do not assume that Ae is Noetherian, the A-bimodule A will not, in general, belong to the singularity category 
Sg(Ae). But it always belongs to the completed singularity category ̂Sg(Ae). We define the singular Hochschild cohomology 
of A to be the graded algebra with components

H Hn
sg(A, A) = Hom

̂Sg(Ae)(A,�n A) , n ∈ Z.

Theorem 2.3. Even if Ae is non-Noetherian, there is a canonical isomorphism of graded algebras between the singular Hochschild 
cohomology of A and the Hochschild cohomology of the dg singularity category Sgdg(A).

Let P be a right bounded complex of projective Ae-modules. For q ∈ Z, let σ>q P and σ≤q P denote its stupid truncations:

σ>q P : . . . 0 P q+1 P q+1 . . .

σ≤q P : . . . P q−1 P q 0 . . .

so that we have a triangle

σ>q P P σ≤q P �σ>q P .

We have a direct system

P = σ≤0 P σ≤−1 P σ≤−2 P . . . P≤q . . . .

Lemma 2.4. Let L ∈D−(Ae). We have a canonical isomorphism

colim HomDAe (L,σ≤q P )
∼−→ Hom

̂Sg(Ae)(L, P ) , n ∈ Z.

In particular, if P is a projective resolution of A over Ae, we have

colim HomDAe (A,�nσ≤q P )
∼−→ Hom

̂Sg(Ae)(A,�n A) , n ∈ Z.

Proof. Clearly, if Q is a bounded complex of projective modules, each morphism Q → P in the derived category DAe

factors through σ>q P → P for some q 
 0. This shows that the morphisms P → σ≤q P form a cofinal subcategory in the 
category of morphisms P → P ′ , whose cylinder is a bounded complex of projective modules. Whence the claim. �
2.5. Proof of Theorem 2.3

We refer to [18,20,25] for foundational material on dg categories. We will follow the terminology of [20]. Let M =
C

−,b
dg (proj A) denote the dg category of right-bounded complexes of finitely generated projective A-modules with bounded 

homology. Let S denote the dg quotient of M by its full dg subcategory P = Cb
dg(proj A) of bounded complexes of finitely 

generated projective A-modules. In the homotopy category of dg categories, we have an isomorphism between Sgdg(A) and 
S = M/P. We view A as a dg category with one object whose endomorphism algebra is A. We have the obvious inclusion 
and projection dg functors

A i
M

p
S.

For a dg category A, denote by DA its derived category, by Ae the enveloping dg category A ⊗Aop and by IA the identity 
bimodule

I A : (A, B) �→A(A, B).

In the case of the algebra A, the identity bimodule is the A-bimodule A. The dg functors i and p induce dg functors in the 
enveloping dg categories, which we will denote by the same symbols

Ae i
Me p

Se.

The restriction along i has the fully faithful left adjoint i∗ : DAe →DMe . We claim that it takes the identity bimodule A to 
IM . For this, we use the bar resolution of A as a bimodule

. . . A ⊗ A⊗p ⊗ A . . . A ⊗ A ⊗ A A ⊗ A.

Its image under i∗ is the sum total dg module of the complex
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. . . M(A,−) ⊗ A ⊗M(?, A) M(A,−) ⊗M(A,?)

with pth term M(A, −) ⊗ A⊗p ⊗M(?, A). We have to show that the sum total dg module of the augmented complex

. . . M(A,−) ⊗ A ⊗M(?, A) M(A,−) ⊗M(?, A) M(?,−) 0

is acyclic. Denote this augmented complex by C(?, −). Let P and Q in M be given. We have to show that C(P , Q ) is acyclic, 
i.e. that the sum total dg module of

. . . Q ⊗ A⊗p ⊗M(P , A) . . . Q ⊗M(P , A) M(P , Q ) 0

is acyclic. This is clear if P = A, since then C(Q , A) is just the bar resolution of the right dg module Q . Thus, it also holds if 
P is a bounded complex of finitely generated projective modules. In the general case, we consider the filtration of P by the 
stupid truncations σ≥q P , q ≤ 0. Clearly, C(P , Q ) is the inverse limit of the acyclic complexes C(σ≥q P , Q ) and the transition 
maps in this inverse system are componentwise surjective. It follows that C(P , Q ) is acyclic as was to be shown.

Now fix a projective resolution P of A as a bimodule. Denote by σ≤q P its stupid truncations, q ≤ 0. We have a direct 
system

P σ≤−1 P σ≤−2 P . . . P≤q . . . .

By Lemma 2.4, we have a canonical isomorphism

colim HomDAe (A,�nσ≤q P )
∼−→ Hom

̂Sg(Ae)(A,�n A).

Since i∗ is fully faithful and i∗(A) = IM , we have

colim HomDAe (A,�nσ≤q P ) = colim HomDMe (IM,�ni∗(σ≤q P )).

Since p :M → S is a localization, we have p∗(IM) = IS . Thus, we get a map

colim HomDMe (IM,�ni∗(σ≤q P )) colim HomDSe (IS,�n(pi)∗(σ≤q P )).

We claim that it is a bijection for all n. For this, we first reinterpret the left-hand side. Since i∗ : DAe → DMe is fully 
faithful, by Lemma 2.4, it is isomorphic to

HomD(Me)/N(IM,�n IM) ,

where N is the image under i∗ of the full subcategory of DAe formed by the complexes quasi-isomorphic to bounded 
complexes of arbitrary projective Ae-modules. Let us now consider the right-hand side. The cones over the morphisms 
i∗(P ) → i∗(σ≤q P ) are finite extensions of shifts of arbitrary coproducts of objects Y (P ′, P ′′), where P ′ and P ′′ are finitely 
generated projective A-modules. The functor p∗ : DMe → DSe commutes with arbitrary coproducts and vanishes on the 
Y (P ′, P ′′). Thus the images under p∗ of the morphisms i∗(P ) → i∗(σ≤q P ) are all invertible so that the right-hand side is 
isomorphic to

HomDSe (IS,�n IS) = HomDSe (p∗(IM),�n p∗(IM)).

Now notice that we have a Morita morphism of dg categories

Se ∼−→ M⊗Mop

P⊗Mop +M⊗Pop .

The functor p∗ induces the quotient functor

D(M⊗Mop)
N

D(M⊗Mop)
D(P⊗Mop+M⊗Pop)

=D(Se) .

It suffices to show that p∗ induces bijections in the morphism spaces with target IM

HomD(Me)/N(?, IM) HomD(Se)(p∗(?), p∗(IM)) .

For this, it suffices to show that IM is right orthogonal in D(Me)/N on the images under the Yoneda functor of the objects 
in P ⊗Mop +M ⊗ Pop. To show that IM is right orthogonal on Y (M ⊗ Pop), it suffices to show that it is right orthogonal 
to an object Y (M, A), M ∈ M. Now a morphism in D(Me)/N is given by a diagram of D(Me) representing a left fraction

Y (M, A) I ′M IM

where the cone over IM → I ′ lies in N. For each object X of DMe , we have canonical isomorphisms
M
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HomDMe (Y (M, A), X) = H0(X(M, A)) = HomDM(Y (M), X(?, A)).

Thus, the given fraction corresponds to a diagram in D(M) of the form

Y (M) I ′M(?, A) IM(?, A) = M(?, A) ,

where the cone over IM(?, A) → I ′M(?, A) is the image under i∗ :DA →DM of a bounded complex with projective compo-
nents. Thus, we may assume that I ′M(?, A) is a finite extension of shifts of arbitrary coproducts of objects Y (Q ), where Q is 
a finitely generated projective A-module. Since M has finitely generated components, the given morphism Y (M) → I ′M(?, A)

must then factor through Y (Q ) for an object Q of P. This means that the given morphism Y (M, A) → I ′M factors through 
Y (Q , A), which lies in N. Thus, the given fraction represents the zero morphism of D(Me)/N, as was to be shown. The 
case of an object in Y (P ⊗Mop) is analogous. In summary, we have shown that the canonical map

colim HomDMe (IM,�ni∗(σ≤q P )) colim HomDSe (IS,�n(pi)∗(σ≤q P ))

is bijective. As we have already observed, the direct system (pi)∗(σ≤q P ) is constant in D(Se). Moreover, we know that 
i∗(P ) = IM and p∗(IM) = IS . Thus the right-hand side is isomorphic to

HomDSe (IS,�n IS) ,

which is the nth component of the Hochschild cohomology of the dg category Sgdg(A).

3. Remark on a possible lift to the B∞-level

The above proof produces in fact isomorphisms in the derived category of k-modules

colim RHomAe (A,σ≤q P ) → colim RHomMe (IM, i∗σ≤q P )

→ colim RHomSe (IS, p∗i∗σ≤q P )

= RHomSe (IS, IS).

If we choose for P the bar resolution of A, then σ≤−q P is canonically isomorphic to �q�q A so that the first complex carries 
a canonical B∞-structure constructed by Wang. As explained in the introduction, it is classical that the last complex carries 
a canonical B∞-structure. It turns out that when one makes the second complex explicit, it can be chosen identical to the 
first complex (essentially because i∗ is fully faithful and i∗ A = IM). Only the interpretation changes. Thus, the problem is to 
construct a compatible B∞-structure on the third complex.

4. Proof of Theorem 1.3

By the Weierstrass preparation theorem, we may assume that Q is a polynomial. Put R = k[x1, . . . , xn]/(Q ) so that A is 
isomorphic to the completion ̂R . By Theorem 3.2.7 of [14], in sufficiently high even degrees, the Hochschild cohomology of 
R is isomorphic to

T = k[x1, . . . , xn]/(Q , ∂1 Q , . . . , ∂n Q )

as an R-module. Since R ⊗ R is Noetherian and Gorenstein (cf. Theorem 1.6 of [26]), by Theorem 6.3.4 of [4] the singu-
lar Hochschild cohomology of R coincides with Hochschild cohomology in sufficiently high degrees. By Theorem 1.1, the 
Hochschild cohomology of Sgdg(R) is isomorphic to the singular Hochschild cohomology of R and thus isomorphic to T
in high even degrees. Since R is a hypersurface, the dg category Sgdg(R) is isomorphic, in the homotopy category of dg 
categories, to the underlying differential Z-graded category of the differential Z/2-graded category of matrix factorizations 
of Q , cf. [9], [24] and Theorem 2.49 of [3]. Thus, it is 2-periodic and so is its Hochschild cohomology. It follows that the 
zeroth Hochschild cohomology of Sgdg(R) is isomorphic to T as an algebra. The completion functor ? ⊗R ̂R yields an embed-
ding Sg(R) → Sg(A) through which Sg(A) identifies with the idempotent completion of the triangulated category Sg(R), 
cf. Theorem 5.7 of [7]. Therefore, the corresponding dg functor Sgdg(R) → Sgdg(A) induces an equivalence in the derived 
categories and an isomorphism in Hochschild cohomology. So we find an isomorphism

H H0(Sgdg(A),Sgdg(A))
∼−→ T .

Since Q has an isolated singularity at the origin, we have an isomorphism

T ∼−→ k[[x1, . . . , xn]]/(Q , ∂1 Q , . . . , ∂n Q )

with the Tyurina algebra of A = P/(Q ). Now, by the Mather–Yau theorem [22], more precisely by its formal version [13, 
Prop. 2.1], in a fixed dimension, the Tyurina algebra determines A up to isomorphism.
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Notice that the Hochschild cohomology of the dg category of matrix factorizations considered as a differential Z/2-graded 
category is different: as shown by Dyckerhoff [7], it is isomorphic to the Milnor algebra P/(∂1 Q , . . . , ∂n Q ) in even degree 
and vanishes in odd degree.
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