
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1179–1187
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations/Differential geometry

The Dirichlet problem on a strip for the α-translating soliton 

equation

Le problème de Dirichlet pour l’équation α-soliton de translation dans une 

bande

Rafael López

Departamento de Geometría y Topología, Instituto de Matemáticas (IEMath-GR), Universidad de Granada, 18071 Granada, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 April 2018
Accepted 22 October 2018
Available online 29 October 2018

Presented by Haïm Brézis

In this paper, we investigate the Dirichlet problem associated with the α-translating 
equation. Using the Perron method and a family of grim reapers as barriers, we prove 
the existence of a solution on a strip of R2 and the boundary data is formed by two copies 
of a convex function.
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r é s u m é

Dans cette note, nous prouvons l’existence de solutions classiques au problème de Dirichlet 
pour l’équation de α-soliton de translation définie dans une bande de R2 ; les données 
sur le bord sont deux copies d’une fonction convexe continue. Nous utilisons la méthode 
de Perron, dans laquelle une famille de grim reapers est employée comme barrière pour 
résoudre le problème de Dirichlet.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous nous intéressons au problème de Dirichlet (1)–(2), dans lequel � est une bande de R2. L’équation (1) est appelée 
« équation de α-soliton de translation ». L’intérêt pour le cas où � est une bande provient du résultat de [23], dont l’auteur 
a trouvé des solitons de translation convexes qui sont des graphes sur une bande. Notre approche est différente, et nos 
preuves sont plus géométriques. Si α = 1, le grim reaper est le soliton de translation, qui est le graphe de la fonction 
u(x, y) = − log(cos(y)), où u est défini dans la bande � = {(x, y) ∈ R2 : −π/2 < y < π/2}. Si nous restreignons � à |y| <
π/2 −m, 0 < m < π/2, alors les valeurs limites de la fonction u sont constantes. Dans le cas général α > 0, nous considérons 
les solutions wθ de (1) données par la Définition 2.2, qui ne dépendent que d’une variable. Alors, ces fonctions wθ , jusqu’aux 
homothéties et rotations, sont candidates pour être des supersolutions de (1).
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Dans cet article, nous résolvons (1)–(2) quand le domaine est la bande �m = {(x, y) ∈ R2 : −m < y < m}, m > 0 et les 
données de frontière sont une fonction convexe continue. Exactement, soit f une fonction convexe continue définie dans R ; 
nous étendons f à ∂�m en définissant ϕ f = ∂�m → R comme ϕ f (x, ±m) = f (x). Alors, nous prouvons que, pour chaque 
f , il existe une solution de (1) pour la valeur u = ϕ f sur ∂�m dans les cas suivants : (i) pour tout α > 1 et m > 0 ; (ii) si 
0 < α ≤ 1, à condition que la largeur de �m vérifie m < d(α), où d(α) > 0 ne dépend que de α.

La technique de résolution utilisée est la méthode de Perron, qui consiste à résoudre le problème de Dirichlet dans 
de petits domaines, à savoir les disques contenus dans la bande �m . En plus de l’utilisation des grim reapers wθ , nous 
avons besoin, pour notre méthode de Perron, d’une sous-solution de (1). Dans ce but, nous utilisons un résultat de P. Collin 
prouvant l’existence d’une surface minimale v0 dans R3, dont les données limites sont ϕ f . Alors, nous allons construire un 
module de continuité entre les fonctions wθ et la solution minimale v0, qui montrera que la solution de Perron atteint la 
valeur f sur ∂�m .

1. Introduction and statement of results

Let � ⊂ R2 be a smooth domain. Given a constant α > 0 and ϕ ∈ C0(∂�), we investigate the existence of classical 
solutions u ∈ C2(�) ∩ C0(∂�) to the Dirichlet problem

div

(
Du√

1 + |Du|2

)
=

(
1√

1 + |Du|2

)α

in �, (1)

u = ϕ on ∂�. (2)

We call equation (1) the α-translating soliton equation and the graph of u, �u = {(x, u(x)) : x ∈ �}, an α-translating soliton. 
In the limit case α = 0, equation (1) is the known constant mean curvature equation. The motivation for studying the 
α-translating soliton equation comes from the case α = 1, where 1-translating solitons, or simply, translating solitons, 
appear in the theory of mean curvature flow of surfaces in R3 [10,11,24]. A translating soliton is a surface � ⊂ R3 that is 
a solution to the mean curvature flow such that � evolves purely by translations along some direction �a ∈ R3 \ {0}. In the 
case of �u , the direction �a is e3 = (0, 0, 1). When α �= 1, equation (1) extends this setting to the flow of surfaces by powers 
of mean curvature [16,17,19].

Apart from this interest in the mean curvature flow, Eq. (1) already appeared in the early works on the Dirichlet problem 
for quasilinear elliptic equations of Bernstein [3, p. 240] in the analytic case, and of Serrin [18] in the smoothness case. 
Possibly due to the extension of [18] and its focus on the constant mean curvature equation, Eq. (1) seemed be forgotten. 
Indeed, in [18, p. 477], Serrin considered this equation written as

(1 + |Du|2) 3
2 div

(
Du√

1 + |Du|2

)
= c(1 + |Du|2) 3−α

2 , (3)

where c > 0 is a constant and he investigated the solvability of the Dirichlet problem for mean convex domains. Recall that 
� is said to be mean convex if the mean curvature H∂� with respect to the inward normal is non-negative. For arbitrary 
dimension, Serrin proved the following result in [18, p. 478].

Theorem 1.1. Let � be a bounded domain in Rn. Then there exists a unique solution to (1)–(2) for any continuous function ϕ if and 
only if:

(1) � is mean convex, when α ≥ 1, or
(2) H∂� > 0, when 0 < α < 1.

This result has been recently revisited in the literature: see [2,12,13,15]. In the context of translating solitons (α = 1), 
the existence of solutions has been studied in [1,22,23], including also Neumann boundary conditions.

In this article, we study the solvability of (1)–(2) when � is a strip of R2. The interest of studying the case when � is 
a strip comes from the result of Wang in [23], where it was proven the existence of convex translating soliton graphs on a 
strip. A first example of a translating soliton graph on a strip is the grim reaper w(x, y) = − log(cos(y)), where w is defined 
in � = {(x, y) ∈ R2 : −π/2 < y < π/2}. Let us observe that w → ∞ as |y| → ±π/2. If we narrow �, then the restriction of 
w on the new strip has constant boundary values. For α �= 1, we extend in Section 2 the notion of the grim reaper by 
considering solutions to (1) depending only on one variable. In fact, and up to scaling, we can rotate the grim reapers an 
angle θ , |θ | < π/2, about the y-axis, and the boundary values are now linear functions.

Our main result establishes the existence of (1)–(2) when the boundary data is formed by two copies of a continuous 
convex function of R. This result generalizes the examples of the grim reapers where the boundary values are linear func-
tions. We introduce the following notation. Let �m denote the strip of width 2 m > 0 given by �m = {(x, y) ∈ R2 : −m <
y < m}. Let f be a continuous convex function defined in R; we extend f to a continuous function ϕ f on ∂�m by defining 
ϕ f (x, ±m) = f (x). The main result of the paper can now be stated.
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Theorem 1.2. Let �m ⊂ R2 . For each convex function f defined in R, there exists a solution u ∈ C2(�m) ∩ C0(�m) to (1)–(2) for 
boundary values ϕ f on ∂�m in the following cases:

(1) for any α > 1 and m > 0;
(2) if 0 < α ≤ 1, provided m < d(α), where d(α) > 0 is a constant that depends only on α.

This result was proven for the constant mean curvature equation (α = 0) by Collin in [5], where d(0) = 1. Our work is 
inspired by this paper. We also point out the relevant work of Jian and Ju [12], where they prove the existence of a solution 
to the Dirichlet problem (1)–(2) when � is an unbounded strictly convex domain like U -type or a cone in R2.

This paper is organized as follows. In Section 2, we find all solutions to (1) depending on one variable. In Section 3, we 
recall some properties of the solutions to (1) when � is a bounded domain. Finally, in Section 4, we prove Theorem 1.2 by 
means of the Perron process of sub- and supersolutions.

2. The family of α-grim reapers

For the proof of Theorem 1.2 (Section 4), we shall show that the solution u takes the boundary data ϕ f by means of 
appropriate barriers. In the present section, we construct these barriers, which are nothing more than the generalization of 
the notion of a grim reaper for every α > 0. As usual, we let (x, y, z) be canonical coordinates in Euclidean space R3. It is 
immediate that any translation of R3 and a rotation about an axis parallel to e3 preserves solutions to the α-translating 
soliton equation. In this section, we find the solutions to (1) depending only on one variable or, in other words, we classify 
all α-translating solitons that are cylindrical surfaces.

For our convenience, we consider firstly α-translating solitons � that are invariant in one direction orthogonal to e3, 
for example, invariant along the x-axis. The surface is then generated by a curve γ (s) = (y(s), z(s)), s ∈ I ⊂ R, contained in 
the yz-plane. If we suppose γ being parameterized by the arc-length, then y′(s) = cosφ(s), z′(s) = sin φ(s) for some angle 
function φ. Then � is parameterized by X(x, s) = x(1, 0, 0) + (0, γ (s)) = (x, y(s), z(s)), x ∈R, s ∈ I , and its mean curvature H
is H(x, s) = φ′(s)/2. Recall that φ′(s) is the curvature of γ (s) as a planar curve. Consequently, � is an α-translating soliton 
if and only if γ satisfies the system of differential equations⎧⎪⎨

⎪⎩
y′(s) = cosφ(s)

z′(s) = sinφ(s)

φ′(s) = (cosφ(s))α.

(4)

We see immediately that a vertical line satisfies (4). Indeed, γ can be expressed as γ (s) = (y0, z0 ± s), (y0, z0) ∈ R2, 
with φ(s) = ±π/2. In general, and after a translation if necessary, we may suppose that γ goes through the origin, hence 
γ (0) = (0, 0).

Proposition 2.1. Let α > 0. There is a family of solutions γ = γ (s) of (4) satisfying

y(0) = z(0) = 0, φ(0) = 0, (5)

and with the following properties.

(1) The graphic of γ is a graph of a convex function w = w(y) and symmetric with respect to the z-axis. Furthermore, the function 
w has a unique global minimum.

(2) Let w : (−d, d) → R, where (−d, d) is the maximal domain of w and d = d(α) depends on α. Then the value d(α) satisfies:
(a) d(α) = ∞, if α > 1;
(b) d(α) < ∞, if 0 < α ≤ 1 and γ is asymptotic to the vertical lines y = ±d(α).

Proof. The classical theory for ODEs guarantees existence and uniqueness of a solution {y, z, φ} to (4)–(5). The maximal 
domain of the solution γ is R because the derivatives y′ , z′ and φ′ in the differential equations (4) are bounded functions.

(1) The proof that γ is a graph on the y-axis is by contradiction. Suppose that at some point s = s0, the angle function φ
satisfies φ(s0) = π/2 (similar in case −π/2). Then it is immediate that the triple of functions { ȳ, ̄z, φ̄} defined by

ȳ(s) = y(s0), z̄(s) = s − s0 + z(s0), φ̄(s) = π/2

is a solution to (4). Since they have the same values at s = s0 as the initial solution {y, z, φ}, we deduce by uniqueness 
that γ (s) = (y(s0), s − s0 + z(s0)) for all s ∈ R. Thus γ is a vertical straight line and φ(s) = π/2 for all s ∈ R, leading to 
a contradiction because φ(0) = 0.
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It follows that γ is a graph on the y-axis of some function w = w(y). Taking into account that φ(s) ∈ (−π/2, π/2), we 
find from (4) that φ′(s) = cos(φ(s))α > 0. This implies that the (signed) curvature of γ is positive, which implies the 
convexity of w . On the other hand, equations (4)–(5) may write now

w ′′ = (1 + w ′ 2)
3−α

2 , w(0) = 0, w ′(0) = 0. (6)

Because the function w(−y) satisfies (6), uniqueness of solutions implies w(−y) = w(y) and this proves that w is 
symmetric about the z-axis. Finally, w ′(0) = 0 and w ′′(0) = 1 and thus w has a minimum at y = 0. This minimum is 
the unique (global) minimum because w is convex.

(2) The integration of (6) is given in terms of the first hypergeometric function 2 F1(a, b; c; x). It is known that, when 
0 < α ≤ 1, the domain of w is a bounded symmetric interval (−d, d) with limy→±d w(y) = ±∞ and when α > 1, then 
w is defined on the whole real line.

Remark 1. Explicit solutions to (6) can be obtained in some cases of α by simple quadratures.

(1) Case α = 1. Then w(y) = − log(cos(y)), d = π/2 and γ is the grim reaper.
(2) Case α = 2. Then w(y) = cosh(y) − 1, d = ∞ and γ is the catenary.
(3) Case α = 3. Then w(y) = y2/2, d = ∞ and γ is the parabola.

In the limit case α = 0, we have w(y) = 1 − √
1 − y2, d = 1 and γ is a half circle.

Recall that each solution γ given in Proposition 2.1 corresponds to an α-translating soliton whose rulings are parallel 
to the x-axis. In order to find supersolutions in the Perron process, let us further require the rulings to be parallel oblique 
lines. These new surfaces are obtained by rotating the solutions of Proposition 2.1 through the angle θ ∈ (−π/2, π/2) about 
the y-axis and then scaling the factor (sec θ)α . Then the resulting surfaces are again α-translating solitons, which we define 
as follows.

Definition 2.2. Let α > 0. If w = w(y) is a solution to (6), we define the uniparametric family of α-grim reapers wθ =
wθ (x, y) as

wθ (x, y) = 1

(cos θ)α+1 w((cos θ)α y) + (tan θ)x + a,

where θ ∈ (−π/2, π/2), a ∈R.

As a consequence of Proposition 2.1, if α > 1 the domain of wθ is R2, whereas if 0 < α ≤ 1, the maximal domain of wθ

is the strip

�d,θ =
{
(x, y) ∈R2 : − d

(cos θ)α
< y <

d

(cos θ)α

}
.

In particular, if 0 ≤ θ1 < θ2, it follows that �θ1 ⊂ �θ2 and thus the domain �d defined by

�d = �d,0 = {(x, y) ∈R2 : −d < y < d} (7)

is contained in �d,θ for all θ ∈ (−π/2, π/2).

3. Properties of the solutions to the α-translating soliton equation

This section establishes some properties of the solutions u to (1)–(2), with a special interest in the control of |u| and |Du|
when � is a bounded domain. Here we make use of explicit examples of α-translating solitons to derive these estimates. 
Firstly we recall that the difference of two solutions to Eq. (1) satisfies the maximum principle, hence the next result as a 
consequence of the comparison principle ([8, Th. 10.1]).

Proposition 3.1 (Touching principle). Let �1 and �2 be two α-translating solitons with possibly non-empty boundaries ∂�1, ∂�2 . If 
�1 and �2 have a common tangent interior point and �1 lies above �2 around p, then �1 and �2 coincide at an open set around p. 
The same statement holds if p is a common boundary point and the tangent lines to ∂�i coincide at p.

As a direct application of the touching principle, there do not exist compact α-translating solitons because if � were a 
such surface, we can place a vertical plane 
 tangent to � leaving � in one side of 
: this is impossible by the touching 
principle, because both 
 and � are α-translating solitons.
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Besides the α-grim reapers defined in Section 2, another useful family of α-translating solitons is formed by those ones 
that are rotationally symmetric about a vertical axis (this axis may be assumed to be the z-axis). These surfaces correspond 
to radial solutions u = u(r) to Eq. (1), r2 = x2 + y2, and were classified in [4] when α = 1 and in [20] for the general case 
α > 0. There are two types of such surfaces: convex entire graphs on R2 and surfaces of winglike-shape. We are interested 
in the first ones.

Definition 3.2. For each α > 0, there is an entire radially symmetric strictly convex solution to (1), namely, b = b(r), with a 
global minimum in the z-axis. The graph B of b is called the α-bowl soliton.

We intersect B by a horizontal plane 
 of equation z = t such that t > b(0). Let BR denote the compact portion of B
cut off by 
: here R > 0 indicates the radius of the circle B∩
. Let us observe that R → ∞ as t → ∞. Therefore, and after 
a vertical translation, we conclude that, for any disk D R ⊂ R2 centered at the origin of radius R , there is a radial solution 
to (1)–(2) with ϕ = 0 on ∂ D R . The bowl soliton caps BR allow comparison arguments to derive height estimates.

Proposition 3.1. Let � ⊂R2 be a bounded domain. If u is a solution to (1)–(2), we have:

(1) the solution is unique;
(2) there is a constant C > 0 depending only on ϕ and � such that

C ≤ u ≤ max
∂�

ϕ in �; (8)

(3) the maximum of |Du| in � is achieved on ∂�, that is,

sup
�

|Du| = max
∂�

|Du|.

Proof.

(1) The uniqueness of solutions is a consequence of the fact that the right-hand side of (1) is non-decreasing on u ([8, 
Th. 10.1]).

(2) Since the right-hand side of (1) is non-negative, the maximum principle implies sup� u = max∂� u = max∂� ϕ , proving 
the inequality in the right-hand side of (8).
The lower estimate for u in (8) is obtained by using α-bowl soliton caps as comparison surfaces. Indeed, let us take 
a round disc D R ⊂ R2 of radius R sufficiently big so that � ⊂ D R . After a vertical translation, consider the α-bowl 
soliton cap BR such that ∂BR = ∂ D R . We move vertically down BR sufficiently far so that �u lies above BR , that is, 
if (x, y, z) ∈ �u , (x, y, z′) ∈ BR , then z > z′ . Then we move up BR until the first touching point with �u . If the first 
contact occurs at some interior point, then the touching principle implies �u ⊂ BR . The other possibility is that the first 
contact point occurs when BR touches a boundary point of �u . In both cases, we conclude b(0) ≤ u − min∂� ϕ and, 
consequently, C := b(0) + min∂� ϕ ≤ u.

(3) Equation (1) can be expressed as

(1 + |Du|2)�u − uiu jui j − (1 + |Du|2) 3−α
2 = 0, (9)

where ui = ∂u/∂xi , i = 1, 2, and we assume the summation convention of repeated indices. Define the function vk = uk , 
k = 1, 2, and we differentiate (9) with respect to the variable xk , obtaining(

(1 + |Du|2)δi j − uiu j

)
vk

i j + 2

(
ui�u − u juij − 3 − α

2
ui(1 + |Du|2) 1−α

2

)
vk

i = 0, (10)

for each k = 1, 2. Hence, vk satisfies a linear elliptic equation and by the maximum principle, |vk| has not a maximum 
at some interior point. Consequently, the maximum of |Du| on the compact set � is attained at some boundary point.

4. Proof of Theorem 1.2

Such as it was announced in the § Introduction, the demonstration of Theorem 1.2 uses firstly the Perron method ([7, 
pp. 306–312]) to prove the existence of a Perron solution v that solves (1) in �m and subsequently, that the function v
assumes the assigned boundary values ϕ f on ∂�m . Both steps will be done in Proposition 4.6 below. First, we define the 
operator

Q [u] = div

(
Du√

1 + |Du|2

)
−

(
1√

1 + |Du|2

)α

.

For the Perron process, we need to have a subsolution to (1)–(2). In the next result, f is not necessarily a convex function.
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Proposition 4.1. Let � ⊂ R2 be a strip. If f is a continuous function defined in R, then there exists a solution v0 to the Dirichlet 
problem

div

(
Du√

1 + |Du|2

)
= 0 in �,

u = ϕ f on ∂�,

(11)

with the property f (x) ≤ v0(x, y) for all (x, y) ∈ �.

This result was proven in [5, Rem. 2], where v0 is called the minimal solution to (11).
For the existence of the Perron solution, Eq. (1) fulfills the required properties for the Perron technique; namely, the 

difference of solutions satisfies the maximum principle (Proposition 3.1) that bounded families of solutions are compact 
(see [9]) and that the Dirichlet problem is solvable for all sufficiently small disks with arbitrary boundary data (Theorem 1.1). 
We begin the process by lifting functions. In what follows, we will use the notation � for a strip of R2 when we do not 
emphasize the value of its width. Let u ∈ C0(�) be a continuous function, and let D be a closed round disk in �. Let 
ū ∈ C2(D) denote the unique solution to the Dirichlet problem

Q [ū] = 0 in D ,

ū = u on ∂ D ,

whose existence and uniqueness is assured by Theorem 1.1. Then the function ū may extend to a continuous function MD [u]
in � by

MD [u] =
{

ū in D,

u in � \ D.

The function u is said to be a supersolution in � if u satisfies MD [u] ≤ u for every closed round disk D in �.

Example 1. For any domain � ⊂ R2, the function u = 0 in � is a supersolution. Indeed, if D ⊂ � is a closed round disk, 
then Q [ū] = 0 in D and ū = 0 on ∂ D . By the maximum principle, ū < 0 in D and consequently, MD [u] ≤ 0 = u.

On the other hand, for each p ∈ �, there is a supersolution u with u(p) < 0. Indeed, let D ⊂ � be a closed round disk 
centered at p, which is supposed to be the origin of R2. Let b = b(r) be the α-bowl soliton with b|∂ D = 0. Then the function 
u defined by u = b in D and u = 0 in � \ D is a supersolution that satisfies u(p) = b(p) < 0.

Definition 4.2. Let u ∈ C0(�). We say that u is a superfunction relative to f if u is a supersolution in � and f ≤ u on ∂�. 
Let S f denote the set of superfunctions relative to f ,

S f = {u ∈ C0(�) : MD [u] ≤ u for every closed round disk D ⊂ �, f ≤ u on ∂�}.

Lemma 4.3. The set S f is not empty.

Proof. We prove that v0 ∈ S f , where v0 is the minimal solution given in Proposition 4.1. Let D ⊂ � be a closed round disk. 
Notice that, since v0 is a minimal solution, we have Q [v0] < 0. As Q [v0] = 0 and v0 = v0 on ∂ D , the maximum principle 
gives v0 ≤ v0 in D , hence that MD [v0] = v0 ≤ v0. Finally, since v0 = f on ∂�, it follows that v0 ∈ S f .

We now state some properties of superfunctions. Their proofs are straightforward and therefore they are omitted: for 
the constant mean curvature equation, we refer to [14]; in the context of α-translating solitons, see [12, Lems. 4.2–4.4].

Lemma 4.4.

(1) If {u1, . . . , un} ⊂ S f , then min{u1, . . . , un} ∈ S f .
(2) The operator MD is increasing in S f .
(3) If u ∈ S f and D is a closed round disk in �, then MD[u] ∈ S f .

We begin with the proof of Theorem 1.2. We take d(α) the number given in Proposition 2.1 and let f be a continuous 
convex function on R.

Consider the family of α-grim reaper wθ defined in Section 2. Recall that the domain of wθ is R2 if α > 1 or the strip 
�d,θ if α ≤ 1. In particular, by the definition of �d in (7), we find �m ⊂ �d ⊂ �d,θ for any θ because m < d. Thus, it makes 
sense to restrict wθ to the strip �m (we keep the same notation for its restriction on �m). Consequently, wθ is a linear 
function on ∂�m and the boundary of �wθ consists of two parallel oblique lines.
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Consider the subfamily of α-grim reapers

G = {wθ : wθ ≤ f on ∂�m, θ ∈ (−π/2,π/2)}.
Two observations are to be stated:

(1) the set G is not empty because f is convex;
(2) if v0 is the minimal solution, then Q [v0] < 0 = Q [wθ ] for all wθ ∈ G . The comparison principle asserts that wθ < v0

in �m for all θ ∈ (−π/2, π/2). Thus the function v0 will play the role of a subsolution to (1)–(2).

We are going to construct a solution to Eq. (1) between the α-grim reapers of G and the minimal solution v0. Let

S∗
f = {u ∈ S f : wθ ≤ u ≤ v0, ∀wθ ∈ G}.

We notice that S∗
f is not empty because v0 ∈ S∗

f .

Lemma 4.5. The set S∗
f is stable with respect to the operator MD , that is, if u ∈ S∗

f , then MD [u] ∈ S∗
f .

Proof. Let u ∈ S∗
f . We know by Lemma 4.4 that MD [u] ∈ S f . On the other hand, since wθ ≤ u ≤ v0 and because MD is 

increasing (Lemma 4.4 again), it follows that

MD [wθ ] ≤ MD [u] ≤ MD [v0] (12)

for every closed round disk D ⊂ �m . Because wθ satisfies (1), then MD [wθ ] = wθ . On the other hand, since v0 is a super-
solution, we have MD [v0] ≤ v0. Therefore, inequalities (12) give now wθ ≤ MD [u] ≤ v0, and this proves the result.

We are going to complete the proof of Theorem 1.2.

Proposition 4.6 (Perron process). The function v : �m →R defined by

v(x, y) = inf{u(x, y) : u ∈ S∗
f }

is a solution to (1)–(2).

Proof. The function v is the so-called Perron solution. The proof is divided into two parts.

Step 1. The function v is a solution to Eq. (1).

The proof is standard and here we follow [8]. Let p ∈ �m be an arbitrary fixed point of �m . Consider a sequence 
{un} ⊂ S∗

f such that un(p) → v(p) when n → ∞. Let D ⊂ �m be a closed round disk centered at p. For each n, define the 
function

vn(q) = min{u1(q), . . . , un(q)}, q ∈ �m.

Then vn ∈ S∗
f by Lemma 4.4. By definition of MD , we deduce MD [vn](p) → v(p) as n → ∞ (Lemma 4.5). Let Vn = MD [vn]. 

Then {Vn} is a decreasing sequence of functions satisfying (1) in D and {Vn} is bounded from below by wθ for all wθ ∈ G . 
Consequently the functions Vn are uniformly bounded on compact sets K in D . In each compact set K , the norms of 
the gradients |D Vn| are bounded by a constant depending only on K and, using Hölder estimates of Ladyzhenskaya and 
Ural’tseva, there exist uniform C1,β estimates for the sequence {Vn} on K . See [21] for interior estimates for the mean 
curvature type equations in two variables; in the context of Eq. (1), these estimates were proven in [9, Th. 1.4].

By the Schauder theory, the second derivatives of Vn are uniformly Hölder continuous on K ([8, Th. 13.1]). By a standard 
argument (as in [8, Th. 16.8]) using the Arzela–Ascoli theorem, we can find a subsequence {Vnk } of {Vn} such that {Vnk } → V
in Cγ (�), γ > 0, for some function V . By continuity, the function V satisfies (1). Moreover, by the construction of Vn , at 
the fixed point p we have V (p) = v(p).

Once proven that V is a solution to (1) and V (p) = v(p), it remains to show that V = v in int(D), not only at the fixed 
point p. Let q be an arbitrary fixed point of int(D). If we proceed with the same argument as in the previous paragraphs, 
there is a decreasing sequence {ũn} ⊂ S∗

f , such that ũn(q) → v(q). Let ṽn = min{Vn, ̃un} and Ṽn = MD [ṽn]. Again, {Ṽn}
converges on D in the C2 topology to a C2 function Ṽ satisfying (1) and Ṽ (q) = v(q). By construction, Ṽn ≤ ṽn ≤ Vn , 
hence by letting n → ∞, we find Ṽ ≤ V . Since v ≤ Ṽ , we infer that v(p) ≤ Ṽ (p) ≤ V (p). Because v(p) = V (p), we deduce 
Ṽ (p) = V (p). Thus the functions V and Ṽ satisfy Eq. (1) and coincide at an interior point of D , namely, the point p. Because 
Ṽ ≤ V , the touching principle implies V = Ṽ in int(D). In particular, V (q) = Ṽ (q) = v(q). This shows that V = v in int(D)

and the claim is proven.
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Step 2. The function v is continuous up to ∂�m with v = ϕ f on ∂�m .

In order to finish the proof of Theorem 1.2, it remains to show that the function v actually takes the value ϕ f on ∂�m . 
This can be accomplished by the technique of barriers at each boundary point p of �m . Let us observe that the graph of ϕ f

consists of two copies of f :

�ϕ f = �1 ∪ �2 = {(x,m, f (x)) : x ∈R} ∪ {(x,−m, f (x)) : x ∈R}.
Let p = (x0, m) ∈ ∂�m be a boundary point of �m (similar if p = (x0, −m)). Because of the convexity of f , the tan-
gent line Lp to the planar curve �1 contained in the plane of equation y = m leaves �1 above Lp . Taking into account 
the symmetry of ϕ f and the convexity of f , there is an α-grim reaper w p

θ such that w p
θ (p) = f (x0) and w p

θ < f in 
�ϕ f \ {(x0, m, f (x0)), (x0, −m, f (x0))}. In particular, ∂�w p

θ
lies strictly below ∂�v except at the points (x0, m, f (x0)) and 

(x0, −m, f (x0)), where both surfaces �w p
θ

and �v coincide.

Therefore, the function w p
θ and the minimal solution v0 form a modulus of continuity in a neighborhood of p, namely, 

w p
θ ≤ v ≤ v0. Because w p

θ (p) = v0(p) = f (p), we deduce that v(p) = f (p). Consequently, v is continuous up to ∂�m , 
proving that v ∈ C2(�m) ∩ C0(�m), and this completes the proof of Theorem 1.2.

Finally, we conclude this paper with two final remarks and some open questions for future research. Let us clarify why 
in Theorem 1.2, when 0 < α ≤ 1, the width of the strip is restricted (for α > 1, the solution exists on any strip of arbitrary 
width, as it can be seen in the case of α-grim reapers, Proposition 2.1). To this end, we first notice that the width of �m

can not be arbitrary large, because the maximum domain of the α-grim reaper w is a strip of bounded width d(α). The 
case α = 1 clearly illustrates this situation. More precisely, in this case, d = π/2 and w(x, y) = − log(cos(y)) (see Remark 1). 
Suppose that � is a translating soliton graph over �m , with m > d, so that �d � �m and let us recall that the grim reaper 
�w is asymptotic to the vertical planes of equations y = ±d. The proof would be then similar to that of Proposition 3.1 by 
using the touching principle starting with �w sufficiently far from � and moving it until when it intersects �. The key fact 
in the reasoning is that one may ‘insert’ �w in the slab |y| < m and arrive to � at a first contact point: since �d � �m , the 
contact point can not be a boundary point, but an interior point, so that we achieve a contradiction. However, this argument 
might fail, as we will explain below.

Our second remark is concerned with the uniqueness of solutions to problem (1)–(2) in Theorem 1.2. We recall that 
uniqueness holds if � is a bounded domain (Proposition 3.1). Suppose now that � is a strip of R2 and let �1 and �2 be 
two α-translating soliton graphs over �, with ∂�1 = ∂�2. Again, we follow the reasoning described above by lifting �1
and then moving it down until when it touches �2 for the first time. One would desire to apply the touching principle to 
obtain �1 = �2. However, the comparison technique may not work. First, one might not be able to get started because it 
is possible that �i does not have a bounded height (even when it has bounded boundary values). Even in such a case, it 
is possible that the first time �1 touches �2, the contact point occurs at some point ‘at infinity’. In any case, we can not 
proceed with the conclusion. We refer the reader to [6] for a similar setting in the case of the minimal surface equation, 
where the uniqueness of the Dirichlet problem for unbounded domains is investigated.
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