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r é s u m é

Nous présentons dans cette courte Note une démonstration tannakienne du théorème de 
Grothendieck–Harder sur la classification des torseurs pour un groupe réductif, sur la droite 
projective définie sur un corps.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let k be a field, let G/k be a reductive group and let P1
k be the projective line over k. In this small note we present 

a Tannakian proof of the classification of G-torsors on P1
k , thereby reproving known results of A. Grothendieck [11] and 

G. Harder [15, Satz 3.4.] (over arbitrary fields). To state our main theorem, we denote by

Hom⊗(Repk(G),Repk(Gm))

the set of isomorphism classes of exact tensor functors

ω : Repk(G) → Repk(Gm).

Theorem 1.1 (cf. Theorem 3.3, Proposition 3.4). There exists a canonical bijection

Hom⊗(Repk(G),Repk(Gm)) ∼= H1
ét(P

1
k , G).
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In particular, there exists a canonical bijection

Hom(Gm, G)/G(k) ∼= H1
Zar(P

1
k , G).

If A ⊆ G denotes a maximal split torus, then

Hom(Gm, G)/G(k) ∼= X∗(A)+

is in bijection with the set of dominant cocharacters of A ⊆ G (for the choice of some minimal parabolic of G), which gives 
a very concrete description of the set H1

Zar(P
1
k , G) (cf. Corollary 3.5). Our proof of Theorem 1.1, which originated in questions 

about torsors over the Fargues–Fontaine curve (cf. [1]), is based on the Tannakian description of G-torsors (cf. Lemma 3.1), 
the Tannakian theory of filtered fiber functors (cf. [19]), the canonicity of the Harder–Narasimhan filtration (cf. Lemma 2.2) 
and, most importantly, the well-known understanding of the category BunP1

k
of vector bundles on P1

k (cf. Theorem 2.1). In 
particular, we use crucially the fact that

H1
ét(P

1
k ,E) = 0

for E a semistable vector bundle on P1
k of slope > 0.

In a last section, we mention applications of Theorem 1.1 to the computation of the Brauer group of P1
k (avoiding Tsen’s 

theorem) and to the Birkhoff–Grothendieck decomposition of G(k((t))).

2. Vector bundles on PPP1
k

Let k be an arbitrary field. We recall, in a more canonical form, the classification of vector bundles on the projective 
line P1

k due to A. Grothendieck (cf. [11]). Let

Repk(Gm)

be the category of finite-dimensional representations of the multiplicative group Gm over k. More concretely, the category 
Repk(Gm) is equivalent to the Tannakian category of finite-dimensional Z-graded vector spaces over k.

Over P1
k there is the canonical Gm-torsor

η : A2
k \ {0} → P1

k , (x0, x1) �→ [x0 : x1],
also called the “Hopf bundle”. Given a representation V ∈ Repk(Gm), the contracted product

E(V ) := A2
k \ {0} ×Gm V → P1

k

defines a (geometric) vector bundle over P1
k . The well-known classification of the category

BunP1
k

of vector bundles on P1
k can now be phrased in the following way.

Theorem 2.1. The functor

E(−) : Repk(Gm) → BunP1
k

is an exact, faithful tensor functor inducing a bijection on isomorphism classes.

However, the functor E(−) is not an equivalence. For example, the category Repk(Gm) is abelian, while BunP1
k

is not. 
Specifically this is caused by non-zero morphisms of semistable vector bundles of different slopes. We recall that, for X , 
a smooth projective curve over k the slope μ(E) ∈ Q ∪ {∞} of a vector bundle E of rank r on X is defined by

μ(E) = deg(�rE)

r

and that E is called semistable, if μ(F) ≤ μ(E) for every subbundle 0 �=F ⊆ E . It can be checked that for some fixed μ ∈ Q

the category Bunμ
X of semistable vector bundles on X of slope μ or ∞ is abelian and that each vector bundle E admits a 

canonical filtration, the so-called “Harder–Narasimhan filtration”,

0 = En ⊆ En−1 ⊆ . . . ⊆ E1 ⊆ E0 := E
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such that each graded piece Ei/Ei+1 is a semistable vector bundle of some slope μi and μn ≥ μn+1 ≥ . . . ≥ μ0 (cf. [16, 
Section 1.3]). In the case of X = P1

k , these results have a very concrete form. Namely, a vector bundle E is semistable if and 
only if

E ∼=
r⊕

i=1

OP1
k
(n)

is isomorphic to a direct some of copies of the line bundle OP1
k
(n) with n = μ(E). The Harder–Narasimhan filtration of a 

vector bundle E(V ) with V ∈ Repk(Gm) can therefore be described as follows. Write

V =
⊕
i∈Z

V i

with Gm acting on V i by the character1

Gm →Gm, z �→ z−i

and set

fili(V ) :=
⊕
j≥i

V j

for i ∈ Z. Then the Harder–Narasimhan filtration of E := E(V ) is given by

. . . ⊆ HNi+1(E) ⊆ HNi(E) ⊆ . . . ⊆ E

where

HNi(E) := E(fili(V )).

Let us denote by

FilBunP1
k

the category of filtered vector bundles on P1
k , i.e. the category of vector bundles E on P1

k together with a separated and 
exhaustive decreasing filtration Fil•(E) by locally direct summands Fili(E) ⊆ E (cf. [19, Chapter 4]). The category FilBunP1

k

has a natural exact structure by considering sequences

0 → (E,Fil•(E)) → (E ′,Fil•(E ′)) → (E ′′,Fil•(E ′′)) → 0

of filtered vector bundles such that the restriction to each Fili remains exact.

Lemma 2.2. Sending a vector bundle E to the filtered vector bundle E with the Harder–Narasimhan filtration HN•(E) defines a fully 
faithful tensor functor

HN : BunP1
k
→ FilBunP1

k

into the exact tensor category of filtered vector bundles on P1
k .

Proof. This is clear from the description of the Harder–Narasimhan filtration. �
We remark that the functor HN is not exact as one sees for example by looking at the Euler sequence

0 → OP1
k
(−1) → OP1

k
⊕OP1

k
→ OP1

k
(1) → 0

on P1
k .

Sending a filtered vector bundle (E, F •) to the associated graded vector bundle

gr(E) :=
⊕
i∈Z

F iE/F i+1E

1 The sign is explained by the fact that the standard representation z �→ z of Gm is sent by E(−) to O
P

1 (−1) and not to O
P

1 (1).

k k
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defines an exact tensor functor

gr : FilBunP1
k
→ GrBunP1

k

(cf. [19, Chapter 4]).
The following lemma is immediate from Theorem 2.1, Lemma 2.2 and the fact that

H0(P1
k ,OP1

k
) ∼= k.

Lemma 2.3. The composite functor

Repk(Gm)
E(−)−−−→ BunP1

k

HN−−→ FilBunP1
k

gr−→ GrBunP1
k

is an equivalence of exact categories from Repk(Gm) onto its essential image, which consists of graded vector bundles

E =
⊕
i∈Z

E i

such that each E i is semistable of slope i.

3. Torsors over PPP1
k

Let G/k be an arbitrary reductive group. In this section, we want to classify G-torsors on P1
k for the étale topology. For 

this, we keep the notation from the last section. In particular, there is the functor

E(−) : Repk(Gm) → BunP1
k

from Theorem 2.1.
In order to apply the formulations from the previous section, we need a more bundle theoretic interpretation of G-torsors 

(for the étale topology). This is achieved by the Tannakian formalism (cf. [6]).

Lemma 3.1. Let S be a scheme over k. Sending a G-torsor P over S to the exact tensor functor

ω : Repk(G) → BunS , V �→ P ×G (V ⊗k OS)

defines an equivalence from the groupoid of G-torsors to the groupoid of exact tensor functors from Repk(G) to BunS . The inverse 
equivalence sends an exact tensor functor ω : Repk(G) → BunS the G-torsor Isom⊗(ωcan, ω) of isomorphisms of ω to the canonical 
fiber functor ωcan : Repk(G) → BunS , V �→ V ⊗k OS .

In fact, for a general affine group scheme over k, one has to use the fpqc-topology in Lemma 3.1. However, as G is 
assumed to be reductive, thus in particular smooth, a theorem of Grothendieck (cf. [12, Theorem 11.7]) allows us to reduce 
to the étale topology.

Composing an exact tensor functor

ω : Repk(G) → BunP1
k

with the Harder–Narasimhan functor

HN : BunP1
k
→ FilBunP1

k

defines a, a priori not necessarily exact, tensor functor

HN ◦ ω : Repk(G) → FilBunP1
k
.

But using Haboush’s theorem reductivity of G actually implies that the composition HN ◦ ω is still exact.

Lemma 3.2. Let

ω : Repk(G) → BunP1
k

be an exact tensor functor. Then the composition

HN ◦ ω : Repk(G) → FilBunP1
k

is still exact.
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Proof. The crucial observation is that the functors

ω, gr ◦ HN

are compatible with duals, and exterior resp. symmetric products. This is clear for ω as ω is assumed to be exact and 
follows from Lemma 2.3 for the functor gr ◦ HN. In fact, for a representation V ∈ Repk(Gm) with associated vector bundle

E := E(V )

we can conclude

�r(E) ∼= E(�r(V )) resp. Symr(E) ∼= E(Symr(V ))

by exactness of the functor E(−). But by Lemma 2.3

gr ◦ HN ◦ E(−)

is an exact tensor equivalence of Repk(Gm) with a subcategory of GrBunP1
k

, which implies the stated compatibility with 
exterior and symmetric powers. Using this, the proof can proceed similarly to [5, Theorem 5.3.1]. We note that for a repre-
sentation V of G there is a canonical isomorphism

Symr(V ∨) ∼= TSr(V )∨

from the r-th symmetric power Symr(V ∨) of the dual of V to the dual of the module

TSr(V ) = (V ⊗r)Sr ⊆ V ⊗r

of symmetric tensors. In particular, G-invariant homogenous polynomials on V define G-invariant linear forms on TSr(V ).

Let now 0 → V
f−→ V ′ g−→ V ′′ → 0 be an exact sequence in Repk(G). We have to check that the sequence

0 → ω̃(V )
ω̃( f )−−−→ ω̃(V ′) ω̃(g)−−−→ ω̃(V ′′) → 0

with

ω̃ := gr ◦ HN ◦ ω

is still exact. We claim that ω̃( f ) is injective. This can be checked after taking the exterior power �dim V of f because ω̃

commutes with exterior powers. In particular, to prove injectivity, we can reduce the claim for general f to the case 
dim V = 1. Tensoring with the dual of V reduces further to the case where V is moreover trivial. By Haboush’s theorem 
(cf. [14]), there exists an r > 0 and a G-invariant homogenous polynomial f ∈ Symr(V ′∨) such that f |V �= 0. Using the above 
isomorphism Symr(V ∨) ∼= TSr(V )∨ , this shows that there exists an r > 0 such that the morphism

V ∼= TSr(V )
TSr( f )−−−−→ TSr(V ′)

splits. This implies that ω̃(TSr( f )) splits and thus that ω̃( f ) is in particular injective because ω̃ commutes with the sym-
metric tensors T Sr as it commutes with symmetric powers and duals.

Dualizing yields that ω̃(g) is surjective at the generic point of P1
k . However, the sequence

0 → ω̃(V )
ω̃( f )−−−→ ω̃(V ′) ω̃(g)−−−→ ω̃(V ′′) → 0

lies in the essential image of the functor Repk(Gm) → GrBunP1
k

from Lemma 2.3. In particular, we see that the cokernel of 
ω̃(g) cannot have torsion, i.e. that it is zero. Finally, exactness in the middle of the sequence follows because

rk(ω̃(V ′)) = rk(V ′) = rk(V ) + rk(V ′′) = rk(ω̃(V )) + rk(ω̃(V ′′)).

This finishes the proof. �
We briefly recall some results about filtered fiber functors on Repk(G) (cf. [19] and [4]). By definition, a filtered fiber 

functor for Repk(G) over a k-scheme S is an exact tensor functor

ω : Repk(G) → FilBunS

into the exact tensor category of filtered vector bundles (with filtration by locally direct summands) on S . Associated with 
each filtered fiber functor ω is an exact tensor functor
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gr ◦ ω : Repk(G) → GrBunS ,

i.e. a graded fiber functor, by mapping a filtered vector bundle to its associated graded. A splitting γ of a filtered fiber 
functor ω is a graded fiber functor

γ : Repk(G) → GrBunS

together with an isomorphism

ω ∼= fil ◦ γ

where the exact tensor functor

fil : GrBunS → FilBunS

sends a graded vector bundle

E =
⊕
i∈Z

E i

to the filtered vector bundle (E, fil•E) with filtration

filiE =
⊕
j≥i

E j .

For a scheme f : S ′ → S over S let ωS ′ be the base change of the filtered fiber functor ω to S ′ , i.e. ωS ′ is defined as the 
composition

Repk(G)
ω−→ FilBunS

f ∗
−→ FilBunS ′ ,

which is again a filtered fiber functor. For a filtered fiber functor ω, the presheaf

Spl(ω)(S ′) := {set of splittings of ωS ′ }/ ∼=
of splittings of ω up to isomorphism (where the isomorphism respects the given isomorphisms ω ∼= fil ◦ γ ) on the category 
of S-schemes is represented by an fpqc-torsor for the affine and faithfully flat group scheme

U (ω) := Ker(Aut⊗(ω) → Aut⊗(gr ◦ ω))

over S (cf. [19, Lemma 4.20]). In particular, every filtered fiber functor

ω : Repk(G) → FilBunS

admits a splitting fpqc-locally on S . The group scheme U (ω) is unipotent (cf. [19, Theorem 4.40]) and has an explicit 
decreasing filtration by normal subgroups

U (ω) = U1(ω) ⊇ . . . ⊇ Ui(ω) ⊇ . . .

for i ≥ 1, which has moreover the property that for i ≥ 1 the quotient

gri U (ω) := Ui(ω)/Ui+1(ω)

is abelian and isomorphic to

gri U (ω) ∼= Lie(gri U (ω)) ∼= griω(Lie(G)), i ≥ 1.

We can now give a proof of our main theorem about the classification of G-torsors on P1
k . We denote for a scheme S over k

by

Hom⊗(Repk(G),BunS)

the groupoid of exact tensor functors ω : Repk(G) → BunS and by

Hom⊗(Repk(G),BunS)

its set of isomorphism classes. Similarly, we use the notations

Hom⊗(Repk(G),Repk(Gm))
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resp.

Hom⊗(Repk(G),Repk(Gm))

for the groupoid resp. the isomorphism classes of exact tensor functors

ω : Repk(G) → Repk(Gm).

Theorem 3.3. Let G be a reductive group over k. Then the composition with E(−) defines faithful functor

� : Hom⊗(Repk(G),Repk(Gm)) → Hom⊗(Repk(G),BunP1
k
)

which induces a bijection

Hom⊗(Repk(G),Repk(Gm)) ∼= H1
ét(P

1
k , G)

on isomorphism classes.

Proof. By Lemma 2.3 the composition

Repk(Gm)
E(−)−−−→ BunP1

k

HN−−→ FilBunP1
k

gr−→ GrBunP1
k

is an equivalence onto its essential image. In particular, the functor

� : Hom⊗(Repk(G),Repk(Gm)) → Hom⊗(Repk(G),BunP1
k
)

is faithful and induces an injection on isomorphism classes. Thus, we have to prove that every exact tensor functor

ω : Repk(G) → BunP1
k

factors as

ω ∼= E(−) ◦ ω′

for some exact tensor functor

ω′ : Repk(G) → Repk(Gm).

Let ω̃ := HN ◦ ω be the functor

ω̃ : Repk(G)
ω−→ BunP1

k

HN−−→ FilBunP1
k
.

By Lemma 3.2, the functor ω̃ is still exact, i.e. a filtered fiber functor in the terminology of [19], and we can use the results 
recalled above. We get a U (ω̃)-torsor

Spl(ω̃)

of splittings of ω̃. But for the filtration

U (ω̃) ⊇ U2(ω̃) ⊇ . . .

the graded quotients

gri U (ω̃) ∼= griω̃(Lie(G))

are semistable vector bundles of slope i ≥ 1. Hence,

H1
ét(P

1
k ,gri U (ω̃)) = 0

because

gri U (ω̃) ∼= OP1
k
(i)⊕n

by Theorem 2.1. We can conclude that

H1 (P1, U (ω̃)) = 1,
ét k
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hence the U (ω̃)-torsor

Spl(ω̃)

is in fact trivial, i.e. there exists a splitting

γ : Repk(G) → GrBunP1
k

of ω̃ already over P1
k . As

γ ∼= gr ◦ ω̃

the functor γ takes its image in the full subcategory

{ E =
⊕
i∈Z

E i ∈ GrBunP1 | E i semistable of slope i},

which by Lemma 2.3 is equivalent to the category RepkGm of representations of Gm . Thus there exists an exact tensor 
functor

ω′ : Repk(G) → RepkGm

such that

ω ∼= E(−) ◦ ω′,

by simply setting

ω′ := Egr(−)−1 ◦ gr ◦ ω̃

where

Egr(−) : RepkGm → { E =
⊕
i∈Z

E i ∈ GrBunP1 | E i semistable of slope i},

is the equivalence of Lemma 2.3. �
Let

ωGm
can : Repk(Gm) → Veck, V �→ V

be the canonical fiber functor of Repk(Gm) over k. Composing with ωGm
can defines a morphism

� : Hom⊗(Repk(G),Repk(Gm)) → Hom⊗(Repk(G),Veck)

of groupoids, where the right-hand side denotes the groupoid of exact tensor functors

Repk(G) → Veck,

which by Lemma 3.1 identifies with the groupoid of G-torsors on Spec(k). Geometrically, the morphism � can be identified 
on isomorphisms classes with the map

i∗x : H1
ét(P

1
k , G) → H1

ét(Spec(k), G)

restricting a G-torsor over P1
k to a G-torsor over Spec(k) along a k-rational point x ∈ P1

k (k).
Moreover, there is a canonical map

� : Hom(Gm, G)/G(k) → H1
ét(P

1
k , G)

by sending a cocharacter χ : Gm → G to the G-torsor

η ×Gm G

where η : A2
k \ {0} → P1

k is the Hopf bundle. We note that each G-torsor obtained this way is automatically Zariski-locally 
on P1 trivial.
k
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Proposition 3.4. The map � is injective and identifies Hom(Gm, G)/G(k)) with the subset H1
Zar(P

1
k , G) ⊆ H1

ét(P
1
k , G). Moreover, for 

every k-rational point x ∈ P1
k (k), the sequence

1 → H1
Zar(P

1
k , G) → H1

ét(P
1
k , G)

i∗x−→ H1
ét(Spec(k), G) → 1

is exact and

H1
ét(P

1
k , G) ∼=

∐
H

H1
Zar(P

1
k , H)

where the disjoint union is taken over all pure inner forms H of G over k (up to isomorphy).

Proof. The last statement follows from the first by replacing G by H (note that H1
ét(P

1
k , G) ∼= H1

ét(P
1
k , H) for a pure inner 

form H of G). By the Tannakian formalism, the quotient Hom(Gm, G)/G(k) embeds into the isomorphism classes of exact, 
tensor functors Repk(G) → Repk(Gm). Thus we have to prove two things. First, that (up to isomorphism) every Zariski-locally 
trivial G-torsor on P1

k lies in the image of � and that a G-torsor on P1
k is Zariski-locally trivial if and only if its image in 

H1
ét(Spec(k), G) is trivial. Let P be a G-torsor over P1

k whose image is trivial in H1
ét(Spec(k), G). We know from Theorem 3.3

that P is associated with some exact tensor functor

ω′ : Repk(G) → RepkGm.

More precisely, P corresponds under Lemma 3.1 to the exact tensor functor ω := E(−) ◦ ω′ : RepkG → BunP1
k

. If i∗xP is 
trivial, then i∗x ◦ ω is isomorphic to the trivial fiber functor ω0 : Repk(G) → Veck . Also, the composition

Repk(Gm)
E(−)−−−→ BunP1

k

i∗x−→ Veck

is isomorphic to the trivial fiber functor on Repk(Gm). Thus, we can conclude that ω′ preserves, up to isomorphism, the 
respective trivial fiber functors on Repk(G) and Repk(Gm). Thus, by the Tannakian formalism, ω′ is induced, up to iso-
morphism, from some cocharacter χ : Gm → G . This proves that P lies in the image of �, which implies both desired 
claims. �

The classification results of Grothendieck and Harder on torsors on P1
k (cf. [11] resp. [15]) are most concretely stated in 

the following form.

Corollary 3.5. Let k be a field and let G/k be a reductive group with maximal split subtorus A ⊆ G. Then there exist canonical bijections

X∗(A)+ ∼= Hom(Gm, G)/G(k) ∼= H1
Zar(P

1
k , G),

where X∗(A)+ denotes the set of dominant cocharacters of A ⊆ G (for the choice of some minimal parabolic).

Proof. By Proposition 3.4 it suffices to show

X∗(A)+ ∼= Hom(Gm, G)/G(k).

First, we claim that the canonical map

Hom(Gm, A)/NG(A)(k) → Hom(Gm, G)/G(k)

is a bijection. Surjectivity follows because the image of every cocharacter of G is contained in some maximal k-split torus 
and all maximal k-split tori in G are conjugated over k (cf. [3, Theorem 4.21]). Injectivity follows from (cf. [3, Corollary 4.22]). 
Namely, if χ, χ ′ : Gm → A are two cocharacters that are conjugated by g ∈ G(k), i.e. χ ′(−) = gχ(−)g−1, then (cf. [3, Corol-
lary 4.22]) implies that there exists h ∈ NG(A)(k) such that hχ(−)h−1 = χ ′(−). But the orbits under NG (A)(k) on X∗(A) are 
the orbits under the Weyl group Wk(A) := (NG (A)(k)/ZG (A)(k) of the relative root system of G with respect to A (cf. [3, 
Théorème 5.3]) and the choice of a minimal parabolic defines a unique Weyl chamber in X∗(A) (cf. [3, Corollary 5.9]). Then

X∗(A)/Wk(A) ∼= X∗(A)+

follows because the Weyl group permutes the Weyl chambers in X∗(A)+ simply transitively. �
A description of H1

ét(P
1
k , G), similar to the one of us, can be found in [10].

Of course, it is an interesting question to try to extend the method in this paper to arbitrary smooth projective curves X
over k. Let us resume the main points of our argument for X = P1 in Theorem 3.3. These are:
k



1212 J. Anschütz / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1203–1214
1) for any exact tensor functor ω : Repk(G) → BunX , the composition

Repk(G)
ω−→ BunX

HN−−→ FilQBunX

is an exact tensor functor2;
2) the category

TX := {E =
⊕
λ∈Q

Eλ | Eλ is semistable of slope λ}

is equivalent to Repk(Gm);
3) for every semistable vector bundle E on X with positive slopes the group H1

ét(X, E) vanishes.

Point 1) may fail in general as the tensor product of semistable vector bundles on a general X may no longer be 
semistable (implying that HN(−) is not a tensor functor in this case), but however it is true for X of genus 0 or 1 and k
arbitrary or X arbitrary and char(k) = 0. On the other hand, 3) is satisfied only if the genus of X is 0 or 1. Thus let 
us assume that X is of genus 0 or 1. Then the argument in Lemma 3.2 goes through and 1) would be satisfied as well. 
Moreover, the category TX is then Tannakian and, in particular, isomorphic to the category of representations of some Galois 
gerbe G X over k (cf. [17, §2] for the notion of a Galois gerbe). If X �= P1

k is of genus 0, i.e. a Brauer–Severi curve, and k =R

one might guess (cf. [9, Proposition 5.1]) that Gx is isomorphic to the Weil group of R. The analog of Theorem 3.3 should 
yield the classification in [9, Proposition 5.1]. If k is algebraically closed of characteristic 0 and X an elliptic curve, then 
using Atiyah’s classification of vector bundles on elliptic curves Philipp Reichenbach has shown that G X fits into a non-split 
extension

1 →DQ → G X →DPic0
X (k) ×Ga → 1.

Here for M an abelian group, DM denotes the multiplicative group scheme over k with character group M and Pic0
X (k) the 

k-rational points of the Jacobian Pic0
X of X .

4. Applications

In this section, we present some applications of the classification of torsors (following (cf. [8]), which discusses analogous 
applications to the Fargues–Fontaine curve).

The first application is the computation of the Brauer group of P1
k . For this, we recall the theorem of Steinberg (cf. [18, 

Chapter 3.2.3]). If k is a field of cohomological dimension cd(k) ≤ 1, then Steinberg’s theorem states that

H1
ét(Spec(k), G) = 1

for every smooth connected affine algebraic group G/k. In particular, the Brauer group

Br(k) = 0

of such fields vanishes. For example, separably closed or finite fields are of cohomological dimension ≤ 1.

Theorem 4.1. If k is of cohomological dimension cd(k) ≤ 1, then the Brauer group

Br(P1
k ) ∼= H2

ét(P
1
k ,Gm) = 0

vanishes.

Proof. By [13, Corollary 2.2.] there is an isomorphism

Br(P1
k ) ∼= H2

ét(P
1
k ,Gm)

of the Brauer group Br(P1
k ) parametrizing equivalence classes of Azumaya algebras over OP1

k
with the cohomological Brauer 

group H2
ét(P

1
k , Gm). It suffices to show that for every n ≥ 0 the canonical map

H1
ét(P

1
k ,PGLn) → H2

ét(P
1
k ,Gm)

arising as a boundary map of the short exact sequence

2 We include the Q as for a general X the Harder–Narasimhan filtration is indexed by Q and not by Z.
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1 →Gm → GLn → PGLn → 1

is trivial. Because k is of cohomological dimension ≤ 1, there exists using Steinberg’s theorem in the case G = GLn or 
G = PGLn and Theorem 3.3 together with Proposition 3.4, a commutative diagram

H1
ét(P

1
k ,GLn)

∼=

H1
ét(P

1
k ,PGLn)

∼=

Hom(Gm,GLn)/GLn(k) Hom(Gm,PGLn)/PGLn(k).

It suffices to show that the top horizontal arrow, or equivalently the lower horizontal arrow, is surjective. But every cochar-
acter

χ : Gm → PGLn

can be lifted to GLn because for the standard torus T ∼= Gn
m ⊆ GLn there is a split exact sequence

0 → X∗(Gm) → X∗(T ) → X∗(T /Gm) → 0

on cocharacter groups where T /Gm is a maximal torus of PGLn . �
For a general field k, i.e. k not necessarily of cohomological dimension ≤ 1, the Brauer group of P1

k is given by

Br(Spec(k)) ∼= Br(P1
k )

as can be calculated from Theorem 4.1 using the spectral sequence

E pq
2 = H p(Gal(k̄/k), Hq

ét(P
1
k̄
,Gm)) ⇒ H p+q

ét (P1
k ,Gm)

where k̄ denotes a separable closure of k.
The next application we give is to the uniformization of G-torsors.

Theorem 4.2. Let k be a field and let G be reductive group over k. If x ∈ P1
k (k) is k-rational point, then every G-torsor

P ∈ H1
Zar(P

1
k , G)

which is locally trivial for the Zariski topology becomes trivial on P1
k \ {x}.

Proof. By Proposition 3.4, we know that every such G-torsor P is isomorphic to the pushout

P ∼= η ×Gm G

along a cocharacter

χ : Gm → G

of the canonical Gm-torsor

η : A2
k \ {0} → P1

k

corresponding to the line bundle OP1
k
(−1) on P1

k . But

OP1
k
(−1)|P1

k \{x}

is trivial because P1
k \ {x} ∼=A1

k . This shows the claim. �
Finally, we reprove the Birkhoff–Grothendieck decomposition of G(k((t)) for a reductive group G over k (cf. [7, 

Lemma 4]).

Theorem 4.3. Let A ⊆ G be a maximal split torus in G. Then there exists a canonical bijection

X∗(A)+ ∼= G(k[t−1])\G(k((t)))/G(k[[t]]),
where X∗(A)+ denotes the set of dominant cocharacters of A ⊆ G.
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Proof. Let x ∈ P1
k (k) be a k-rational point. By Beauville–Laszlo [2] and Lemma 3.1, there is an injective map

γ : G(k[t−1])\G(k((t)))/G(k[[t]]) → H1
ét(P

1
k , G)

by gluing the trivial G-torsor on P1
k \ {x} with the trivial G-torsor on the formal completion

Spec(ÔP1
k ,x)

along an isomorphism on Spec(Frac(ÔP1
k ,x)). Note that ÔP1

k ,x
∼= k[[t]]. From Proposition 3.4, we can conclude that the 

G-torsors obtained in this way are actually locally trivial for the Zariski topology. By Theorem 4.2, we can conversely see 
that the image of γ contains the set H1

Zar(P
1
k , G). Using Proposition 3.4, we can conclude that

G(k[t−1])\G(k((t)))/G(k[[t]]) ∼= H1
Zar(P

1
k , G) ∼= X∗(A)+. �
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