Combinatorics

A note on small sets of reals

Une remarque sur de petits ensembles de nombres réels

Tomek Bartoszynski ${ }^{\text {a,1 }}$, Saharon Shelah ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ National Science Foundation, Division of Mathematical Sciences, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Hebrew University, Jerusalem, Israel

A R T I C L E IN F O

Article history:

Received 16 April 2018
Accepted after revision 6 November 2018
Available online 12 November 2018
Presented by the Editorial Board

Abstract

We construct an example of a combinatorially large measure-zero set. Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

Nous construisons un exemple d'un ensemble combinatoirement grand, mais de mesure zéro.

Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

We will work in the space 2^{ω} equipped with standard topology and measure. More specifically, the topology is generated by basic open sets of the form $[s]=\left\{x \in 2^{\omega}: s \subset x\right\}$ for $s \in 2^{a}, a \in \omega^{<\omega}$. The measure is the standard product measure such that $\mu([s])=2^{-|\operatorname{dom}(s)|}$; let \mathcal{N} be the collection of all measure-zero sets.

Measure-zero sets in 2^{ω} admit the following representation (see Lemma 4):
$X \in \mathcal{N}$ iff and only if there exists a sequence $\left\{F_{n}: n \in \omega\right\}$ such that
(1) $F_{n} \subseteq 2^{n}$ for $n \in \omega$,
(2) $\sum_{n \in \omega} \frac{\left|F_{n}\right|}{2^{n}}<\infty$,
(3) $X \subseteq\left\{x \in 2^{\omega}: \exists^{\infty} n x \backslash n \in F_{n}\right\}$.

The main drawback of this representation is that sets F_{n} have overlapping domains. The following definitions from [1] and [3] offer a refinement.

[^0]
Definition 1.

(1) A set $X \subseteq 2^{\omega}$ is small $(X \in \mathcal{S})$ if there exists a sequence $\left\{I_{n}, J_{n}: n \in \omega\right\}$ such that
(a) $I_{n} \in[\omega]^{<\aleph_{0}}$ for $n \in \omega$,
(b) $I_{n} \cap I_{m}=\emptyset$ for $n \neq m$,
(c) $J_{n} \subseteq 2^{I_{n}}$ for $n \in \omega$,
(d) $\sum_{n \in \omega} \frac{\left|J_{n}\right|}{2^{\left|I_{n}\right|}}<\infty$
(e) $X \subseteq\left\{x \in 2^{\omega}: \exists^{\infty} n x \mid I_{n} \in J_{n}\right\}$

Without loss of generality, we can assume that $\left\{I_{n}: n \in \omega\right\}$ is a partition of ω into finite sets.
(2) We say that X is small $\left(X \in \mathcal{S}^{\star}\right)$ if, in addition, sets I_{n} are disjoint intervals, that is, if there exists a strictly increasing sequence of integers $\left\{k_{n}: n \in \omega\right\}$ such that $I_{n}=\left[k_{n}, k_{n+1}\right)$ for each n.

Let $\left(I_{n}, J_{n}\right)_{n \in \omega}$ denote the set $\left\{x \in 2^{\omega}: \exists^{\infty} n x\left\lceil n \in J_{n}\right\}\right.$.
It is clear that $\mathcal{S}^{\star} \subseteq \mathcal{S} \subseteq \mathcal{N}$.
Small sets are useful because of their combinatorial simplicity. To test that $x \in X \in \mathcal{S}$ the real x must pass infinitely many independent tests as in Borel-Cantelli's lemma. In section 3 we will show that various structurally simple measure-zero sets are small.

Definition 2. For families of sets \mathcal{A}, \mathcal{B}, let $\mathcal{A} \oplus \mathcal{B}$ be

$$
\{X: \exists a \in \mathcal{A} \exists b \in \mathcal{B}(X \subset a \cup b)\}
$$

Clearly, if \mathcal{J} is an ideal then $\mathcal{J} \oplus \mathcal{J}=\mathcal{J}$. Likewise, $\mathcal{A} \cup(\mathcal{A} \oplus \mathcal{A}) \cup(\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}) \cup \ldots$ is an ideal for any \mathcal{A}.
Theorem 3. [1] $\mathcal{S}^{\star} \oplus \mathcal{S}^{\star}=\mathcal{S} \oplus \mathcal{S}=\mathcal{N}=\mathcal{N} \oplus \mathcal{N}$.
The main result of this paper is to show that the above result is the best possible, that is, $\mathcal{S}^{\star} \subsetneq \mathcal{S} \subsetneq \mathcal{N}$. It was known ([1]) that $\mathcal{S}^{\star} \subsetneq \mathcal{N}$.

2. Preliminaries

To make the paper complete and self contained we present a review of known results.
Lemma 4. Suppose that $X \subset 2^{\omega}$. X has measure zero iff and only if there exists a sequence $\left\{F_{n}: n \in \omega\right\}$ such that
(1) $F_{n} \subseteq 2^{n}$ for $n \in \omega$,
(2) $\sum_{n \in \omega} \frac{\left|F_{n}\right|}{2^{n}}<\infty$,
(3) $X \subseteq\left\{x \in 2^{\omega}: \exists^{\infty} n x\left\lceil n \in F_{n}\right\}\right.$.

Proof. \longleftarrow Note that $\left\{x \in 2^{\omega}: \exists \exists^{\infty} n x\left\lceil n \in F_{n}\right\}=\bigcap_{m \in \omega} \bigcup_{n \geq m}\left\{x \in 2^{\omega}: x \mid n \in F_{n}\right\}\right.$. Now,

$$
\mu\left(\bigcup_{n \geq m}\left\{x \in 2^{\omega}: x\left\lceil n \in F_{n}\right\}\right) \leq \sum_{n \geq m} \mu\left(\left\{x \in 2^{\omega}: x\left\lceil n \in F_{n}\right\}\right) \leq \sum_{n \geq m} \frac{\left|F_{n}\right|}{2^{n}} \longrightarrow 0\right.\right.
$$

\longrightarrow If X has measure zero, then there exists a sequence of open sets $\left\{U_{n}: n \in \omega\right\}$ such that
(1) $\mu\left(U_{n}\right) \leq 2^{-n}$, for each n,
(2) $X \subseteq \bigcap_{n \in \omega} U_{n}$.

Find a sequence of $\left\{s_{m}^{n}: n, m \in \omega\right\}$ such that
(1) $s_{m}^{n} \in 2^{<\omega}$,
(2) $\left[s_{m}^{n}\right] \cap\left[s_{k}^{n}\right]=\emptyset$ when $k \neq m$,
(3) $U_{n}=\bigcup_{m \in \omega}\left[s_{m}^{n}\right]$.

For $k \in \omega$ let $F_{k}=\left\{s_{m}^{n}: n, m \in \omega,\left|s_{m}^{n}\right|=k\right\}$. Note that $X \subseteq\left\{x \in 2^{\omega}: \exists^{\infty} k x \mid k \in F_{k}\right\}$ and that $\sum_{k \in \omega} \frac{\left|F_{k}\right|}{2^{k}} \leq \sum_{n \in \omega} \mu\left(U_{n}\right)$ ≤ 1.

Theorem 5. [1] $\mathcal{S}^{\star} \oplus \mathcal{S}^{\star}=\mathcal{S} \oplus \mathcal{S}=\mathcal{N}$.
Proof. Since \mathcal{N} is an ideal, $\mathcal{N} \oplus \mathcal{N}=\mathcal{N}$. Consequently, it suffices to show that $\mathcal{S}^{\star} \oplus \mathcal{S}^{\star}=\mathcal{N}$. The following theorem gives the required decomposition.

Theorem 6 ([1]). Suppose that $X \subseteq 2^{\omega}$ is a measure-zero set. Then there exist sequences $\left\langle n_{k}, m_{k}: k \in \omega\right\rangle$ and $\left\langle J_{k}, J_{k}^{\prime}: k \in \omega\right\rangle$ such that
(1) $n_{k}<m_{k}<n_{k+1}$ for all $k \in \omega$,
(2) $J_{k} \subseteq 2^{\left[n_{k}, n_{k+1}\right)}, J_{k}^{\prime} \subseteq 2^{\left[m_{k}, m_{k+1}\right)}$ for $k \in \omega$,
(3) the sets $\left(\left[n_{k}, n_{k+1}\right), J_{k}\right)_{k \in \omega}$ and $\left(\left[m_{k}, m_{k+1}\right), J_{k}^{\prime}\right)_{k \in \omega}$ are small ${ }^{\star}$, and
(4) $X \subseteq\left(\left[n_{k}, n_{k+1}\right), J_{k}\right)_{k \in \omega} \cup\left(\left[m_{k}, m_{k+1}\right), J_{k}^{\prime}\right)_{k \in \omega}$.

In particular, every null set is a union of two small* sets.
Proof. Let $X \subseteq 2^{\omega}$ be a null set.
We can assume that $X \subseteq\left\{x \in 2^{\omega}: \exists^{\infty} n x \mid n \in F_{n}\right\}$ for some sequence $\left\langle F_{n}: n \in \omega\right\rangle$ satisfying conditions of Lemma 4 .
Fix a sequence of positive reals $\left\langle\varepsilon_{k}: k \in \omega\right\rangle$ such that $\sum_{k=0}^{\infty} \varepsilon_{k}<\infty$.
Define two sequences $\left\langle n_{k}, m_{k}: k \in \omega\right\rangle$ as follows: $n_{0}=0$,

$$
m_{k}=\min \left\{j>n_{k}: 2^{n_{k}} \cdot \sum_{i=j}^{\infty} \frac{\left|F_{i}\right|}{2^{i}}<\varepsilon_{k}\right\}
$$

and

$$
n_{k+1}=\min \left\{j>m_{k}: 2^{m_{k}} \cdot \sum_{i=j}^{\infty} \frac{\left|F_{i}\right|}{2^{i}}<\varepsilon_{k}\right\} \text { for } k \in \omega
$$

Let $I_{k}=\left[n_{k}, n_{k+1}\right)$ and $I_{k}^{\prime}=\left[m_{k}, m_{k+1}\right)$ for $k \in \omega$. Define

$$
s \in J_{k} \Longleftrightarrow s \in 2^{I_{k}} \& \exists i \in\left[m_{k}, n_{k+1}\right) \exists t \in F_{i} s\lceil\operatorname{dom}(t) \cap \operatorname{dom}(s)=t\lceil\operatorname{dom}(t) \cap \operatorname{dom}(s) .
$$

Similarly

$$
s \in J_{k}^{\prime} \Longleftrightarrow s \in 2^{I_{k}^{\prime}} \& \exists i \in\left[n_{k+1}, m_{k+1}\right) \exists t \in F_{i} s\lceil\operatorname{dom}(t) \cap \operatorname{dom}(s)=t\lceil\operatorname{dom}(t) \cap \operatorname{dom}(s)
$$

It remains to show that $\left(I_{k}, J_{k}\right)_{k \in \omega}$ and $\left(I_{k}^{\prime}, J_{k}^{\prime}\right)_{k \in \omega}$ are small sets and that their union covers X.
Consider the set $\left(I_{k}, J_{k}\right)_{k \in \omega}$. Notice that for $k \in \omega$

$$
\frac{\left|J_{k}\right|}{2^{I_{k}}} \leq 2^{n_{k}} \cdot \sum_{i=m_{k}}^{n_{k+1}} \frac{\left|F_{i}\right|}{2^{i}} \leq \varepsilon_{k}
$$

Since $\sum_{n=1}^{\infty} \varepsilon_{n}<\infty$ this shows that the set $\left(I_{n}, J_{n}\right)_{n \in \omega}$ is null. An analogous argument shows that $\left(I_{k}^{\prime}, J_{k}^{\prime}\right)_{k \in \omega}$ is null. Finally, we show that

$$
X \subseteq\left(I_{n}, J_{n}\right)_{n \in \omega} \cup\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}
$$

Suppose that $x \in X$ and let $Z=\left\{n \in \omega: x\left\lceil n \in F_{n}\right\}\right.$. By the choice of F_{n} 's, the set Z is infinite. Therefore, one of the sets,

$$
Z \cap \bigcup_{k \in \omega}\left[m_{k}, n_{k+1}\right) \quad \text { or } Z \cap \bigcup_{k \in \omega}\left[n_{k+1}, m_{k+1}\right)
$$

is infinite. Without loss of generality, we can assume that it is the first one. It follows that $x \in\left(I_{n}, J_{n}\right)_{n \in \omega}$ because, if $x \mid n \in F_{n}$ and $n \in\left[m_{k}, n_{k+1}\right)$, then by the definition there is $t \in J_{k}$ such that $\left.x\right\rceil\left[n_{k}, n_{k+1}\right)=t$.

Now lets turn attention to the family of small sets \mathcal{S}. Observe that the representation used in the definition of small sets is not unique. In particular, Lemma 7 follows easily.

Lemma 7. Suppose that $\left(I_{n}, J_{n}\right)_{n \in \omega}$ is a small set and $\left\{a_{k}: k \in \omega\right\}$ is a partition of ω into finite sets. For $n \in \omega$, define $I_{n}^{\prime}=\bigcup_{l \in a_{n}} I_{l}$ and $J_{n}^{\prime}=\left\{s \in 2^{I_{n}^{\prime}}: \exists l \in a_{n} \exists t \in J_{l} s\left\lceil I_{l}=t \mid I_{l}\right\}\right.$. Then $\left(I_{n}, J_{n}\right)_{n \in \omega}=\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$.

Lemma 8. Suppose that $\left(I_{n}, J_{n}\right)_{n \in \omega}$ and $\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$ are two small sets. If $\left\{I_{n}: n \in \omega\right\}$ is a finer partition than $\left\{I_{n}^{\prime}: n \in \omega\right\}$, then $\left(I_{n}, J_{n}\right)_{n \in \omega} \cup\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$ is a small set.

Proof. Define $I_{n}^{\prime \prime}=I_{n}^{\prime}$ for $n \in \omega$ and let

$$
J_{n}^{\prime \prime}=J_{n}^{\prime} \cup\left\{s \in 2^{I_{n}^{\prime}}: \exists k \exists s \in J_{k}\left(I_{k} \subseteq I_{n}^{\prime} \& s \backslash I_{k} \in J_{k}\right)\right\} .
$$

It is easy to see that $\left(I_{n}, J_{n}\right)_{n \in \omega} \cup\left(I_{n}, J_{n}\right)_{n \in \omega}=\left(I_{n}^{\prime \prime}, J_{n}^{\prime \prime}\right)_{n \in \omega}$.
Since members of \mathcal{S} do not seem to form an ideal, we are interested in characterizing instances when a union of two sets in \mathcal{S} is in \mathcal{S}.

Theorem 9. Suppose that $\left(I_{n}, J_{n}\right)_{n \in \omega}$ and $\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$ are two small sets and $\left(I_{n}, J_{n}\right)_{n \in \omega} \subseteq\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$. Then there exists a set $\left(I_{n}^{\prime \prime}, J_{n}^{\prime \prime}\right)_{n \in \omega}$ such that $\left(I_{n}, J_{n}\right)_{n \in \omega} \subseteq\left(I_{n}^{\prime \prime}, J_{n}^{\prime \prime}\right)_{n \in \omega} \subseteq\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$ and such that the partition $\left\{I_{n}^{\prime \prime}: n \in \omega\right\}$ is finer than both $\left\{I_{n}: n \in \omega\right\}$ and $\left\{I_{n}^{\prime}: n \in \omega\right\}$.

Proof. Let start with the following:
Lemma 10. Suppose that $\left(I_{n}, J_{n}\right)_{n \in \omega}$ and $\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$ are two small sets. The following conditions are equivalent:
(1) $\left(I_{n}, J_{n}\right)_{n \in \omega} \subseteq\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$,
(2) for all but finitely many $n \in \omega$ and for every $s \in J_{n}$, there exist $m \in \omega$ and $t \in J_{m}^{\prime}$ such that
(a) $I_{n} \cap I_{m}^{\prime} \neq \emptyset$,
(b) $S \backslash\left(I_{n} \cap I_{m}^{\prime}\right)=t \upharpoonright\left(I_{n} \cap I_{m}^{\prime}\right)$,
(c) $\forall u \in 2^{I_{m}^{\prime} \backslash_{n}} t\left\lceil\left(I_{n} \cap I_{m}^{\prime}\right) \frown u \in J_{m}^{\prime}\right.$.

Proof. (2) \rightarrow (1) Suppose that $x \in\left(I_{n}, J_{n}\right)_{n \in \omega}$. Then, for infinitely many $n, x \mid I_{n} \in J_{n}$. For all but finitely many of those $n^{\prime} s$, conditions (b) and (c) of clause (2) guarantee that, for some m such that $I_{n} \cap I_{m}^{\prime} \neq \emptyset, x\left\lceil\left(I_{n} \cap I_{m}^{\prime}\right)-x\left\lceil\left(I_{m}^{\prime} \backslash I_{n}\right) \in J_{m}^{\prime}\right.\right.$. Consequently, $x \in\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$.
$\neg(2) \rightarrow \neg(1)$ Suppose that condition (2) fails. Then there exists an infinite set $Z \subseteq \omega$ such that, for each $n \in Z$, there is $s_{n} \in J_{n}$ such that, for every m such that $I_{n} \cap I_{m}^{\prime} \neq \emptyset$, exactly one of the following conditions holds:
(1) $s_{n} \upharpoonright\left(I_{n} \cap I_{m}^{\prime}\right) \neq t\left\lceil\left(I_{n} \cap I_{m}^{\prime}\right)\right.$ for every $t \in J_{m}^{\prime}$,
(2) there is $t \in J_{m}^{\prime}$ such that $s_{n} \upharpoonright\left(I_{n} \cap I_{m}^{\prime}\right)=t \uparrow\left(I_{n} \cap I_{m}^{\prime}\right)$ but for some $u=u_{n, m} \in 2^{I_{m}^{\prime} \backslash I_{n}}, t \uparrow\left(I_{n} \cap I_{m}^{\prime}\right) u_{n, m} \notin J_{m}^{\prime}$.

By thinning out the set Z, we can assume that no set I_{m}^{\prime} intersects two distinct sets I_{n} for $n \in Z$. Also, for each $m \in \omega$, fix $t^{m} \in 2^{I_{m}^{\prime}}$ such that $t^{m} \notin J_{m}^{\prime}$.

Let $x \in 2^{\omega}$ be defined as follows:

$$
x(l)=\left\{\begin{array}{ll}
s_{n}(l) & n \in Z \text { and } l \in I_{n} \text { and } u_{n, m} \text { is not defined } \\
0 & \text { if } n \in Z \text { and } l \in I_{m}^{\prime} \backslash I_{n} \text { and } I_{n} \cap I_{m} \neq \emptyset \text { and } u_{n, m} \text { is not defined } \\
s_{n}(l) & \text { if } n \in Z \text { and } l \in I_{n} \cap I_{m}^{\prime} \text { and } u_{n, m} \text { is defined } \\
u_{n, m}(l) & \text { if } n \in Z \text { and } l \in I_{m}^{\prime} \backslash I_{n} \text { and } I_{n} \cap I_{m} \neq \emptyset \text { and } u_{n, m} \text { is defined } \\
t^{m}(l) & \text { if } l \in I_{m} \text { and } I_{m} \cap I_{n}=\emptyset \text { for all } n \in Z
\end{array} .\right.
$$

Observe that the first two clauses define $x\left\lceil I_{m}^{\prime}\right.$ when $I_{m}^{\prime} \cap I_{n} \neq \emptyset$ for some $n \in Z$ and $u_{n, m}$ is undefined, the next two clauses define $x \mid I_{m}^{\prime}$ when $I_{m}^{\prime} \cap I_{n} \neq \emptyset$ for some $n \in Z$ and $u_{n, m}$ is defined, and finally the last clause defines $x \mid I_{m}^{\prime}$ when $I_{m}^{\prime} \cap I_{n}=\emptyset$ for all $n \in Z$. It is easy to see that these cases are mutually exclusive and that $x \in\left(I_{n}, J_{n}\right)_{n \in \omega}$ since $x \mid I_{n}=s_{n} \in J_{n}$ for $n \in Z$. Finally, note that $x \notin\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$, since by the choice of $u_{n, m}$ (or property of s_{n}) $x\left\lceil I_{m}^{\prime} \notin J_{m}^{\prime}\right.$ for all m.

Suppose that $\left(I_{n}, J_{n}\right)_{n \in \omega}$ and $\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$ are two small sets and $\left(I_{n}, J_{n}\right)_{n \in \omega} \subseteq\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$. Consider the partition consisting of sets $\left\{I_{n} \cap I_{m}^{\prime}: n, m \in \omega\right\}$. For each non-empty set $I_{n} \cap I_{m}^{\prime}$, we define $J_{n, m}^{\prime \prime} \subseteq 2^{I_{n} \cap I^{\prime} m}$ as follows:
$s \in J_{n, m}^{\prime \prime}$ if there is $t \in J_{m}^{\prime}$ such that $s \upharpoonright\left(I_{n} \cap I_{m}^{\prime}\right)=t \upharpoonright\left(I_{n} \cap I_{m}^{\prime}\right)$ and for all $\left.u \in 2^{\prime_{m}^{\prime} \backslash I_{n}} t\right\rangle\left(I_{n} \cap I_{m}^{\prime}\right) \subset u \in J_{m}^{\prime}$.
Observe that the definition of $J_{n, m}^{\prime \prime}$ does not depend on J_{n}.

Note that

$$
\begin{aligned}
& \sum_{m, n \in \omega, I_{n} \cap I_{m}^{\prime} \neq \emptyset} \frac{\left|J_{m, n}^{\prime \prime}\right|}{2^{\left|I_{n} \cap I_{m}^{\prime}\right|}}=\sum_{m \in \omega} \sum_{n \in \omega, I_{n} \cap I_{m}^{\prime} \neq \emptyset} \frac{\left|J_{m, n}^{\prime \prime}\right|}{2^{I_{n} \cap I_{m}^{\prime} \mid}}= \\
& \sum_{m \in \omega} \sum_{n \in \omega, I_{n} \cap I_{m}^{\prime} \neq \emptyset} \frac{\left|J_{n, m}^{\prime \prime}\right| \cdot 2^{\left|I_{m}^{\prime} \backslash I_{n}\right|}}{2^{\left|I_{k}^{\prime \prime}\right|} \cdot 2^{\left|I_{m}^{\prime} \backslash I_{n}\right|}} \leq \sum_{m \in \omega} \frac{\left|J_{m}^{\prime}\right|}{2^{\left|I_{m}^{\prime}\right|}}<\infty .
\end{aligned}
$$

To finish the proof, observe that, for $x \in 2^{\omega}$, whenever $x \upharpoonright\left(I_{n} \cap I_{m}^{\prime}\right) \in J_{n, m}^{\prime \prime}$, then $x \upharpoonright I_{m}^{\prime} \in J_{m}^{\prime}$. Similarly, if $x \upharpoonright I_{n} \in J_{n}$, then by Lemma 10 there is m such that $x \uparrow\left(I_{n} \cap I_{m}^{\prime}\right) \in J_{m, n}^{\prime \prime}$ It follows that $\left(I_{n}, J_{n}\right)_{n \in \omega} \subseteq\left(I_{n, m}, J_{n, m}^{\prime \prime}\right)_{n, m \in \omega} \subseteq\left(I_{m}^{\prime}, J_{m}^{\prime}\right)_{m \in \omega}$.

3. When null sets are small?

Small sets are combinatorially simple and this is the main motivation to study them and investigating when measurezero sets are small.

Theorem 11. Suppose that $X \subseteq 2^{\omega}$ is a measure-zero set. Then X is small if
(1) $\mid X)<2^{\aleph_{0}}$,
(2) X can be covered by a countable family of compact measure zero sets,
(3) X is a Menger set, that is, no continuous image of X into ω^{ω} is a dominating family.

Proof. Suppose that X has measure zero and use Theorem 6 to find small sets $\left(I_{k}, J_{k}\right)_{k \in \omega}$ and $\left(I_{k}^{\prime}, J_{k}^{\prime}\right)_{k \in \omega}$ such that
(1) $X \subseteq\left(I_{k}, J_{k}\right)_{k \in \omega} \cup\left(I_{k}^{\prime}, J_{k}^{\prime}\right)_{k \in \omega}$,
(2) $I_{k} \subseteq I_{k-1}^{\prime} \cup I_{k}^{\prime}$ and $I_{k}^{\prime} \subseteq I_{k} \cup I_{k+1}$ for each $k>0$.

For each $x \in X$ let $Z_{x}=\left\{k: x \mid I_{k} \in J_{k}\right\}$. Note that $x \leadsto Z_{X}$ is a continuous mapping from X into [$\left.\omega\right]^{\omega}$ (which is homeomorphic to ω^{ω}.)

Definition 12. A family $\mathcal{A} \subseteq[\omega]^{\omega}$ has property \mathbf{Q} if

$$
\forall Z \in[\omega]^{\omega} \exists A \in \mathcal{A} A \subseteq Z
$$

Lemma 13. If $\left\{Z_{x}: x \in X\right\}$ does not have property \mathbf{Q} then X is small.
Proof. Suppose that Z witnesses that $\left\{Z_{x}: x \in X\right\}$ does not have property \mathbf{Q} that is that $Z_{x} \backslash Z \in[\omega]^{\omega}$ for every $x \in X$. Let $z_{0}<z_{1}<z_{2}<\ldots$ be an increasing enumeration of Z. Note that, for every $x \in X$, if $x \in\left(I_{k}, J_{k}\right)_{k \in \omega}$, then $x \in\left(I_{k}, J_{k}\right)_{k \notin Z}$. Consequently, $X \subseteq\left(I_{k}, J_{k}\right)_{k \notin Z} \cup\left(I_{k}^{\prime}, J_{k}^{\prime}\right)_{k \in \omega}$. We will show that this set is small.

Let $I_{k}^{\prime \prime}=\bigcup_{j \in\left[z_{k}, z_{k+1}\right)} I_{j}^{\prime}$, and use Lemma 7 to find $\left\{J_{k}^{\prime \prime}: k \in \omega\right\}$ such that $\left(I_{k}^{\prime}, J_{k}^{\prime}\right)_{k \in \omega}=\left(I_{k}^{\prime \prime}, J_{k}^{\prime \prime}\right)_{k \in \omega}$. Now Lemma 8 completes the proof, as the partition $\left\{I_{k}: k \notin Z\right\}$ is finer than partition $\left\{I_{k}^{\prime \prime}: k \in \omega\right\}$.

To finish the proof, note that no family of size $<2^{\aleph_{0}}$ has property \mathbf{Q} because there is an almost disjoint family of size continuum. The remaining two cases follow from the fact that every family of subsets of ω with property \mathbf{Q} is dominating.

The following result shows that measure-zero sets endowed with sum structure are small as well.
Theorem 14 ([2], [4]). Let \mathcal{F} be a filter on ω. Then if \mathcal{F} is a measurable, then \mathcal{F} can be covered by a small set.
Proof. Let \mathcal{F} be a measurable filter on ω identified with a subset of 2^{ω} via characteristic functions of its elements. By virtue of $0-1$ law, this means that \mathcal{F} is of measure zero (measure one case is clearly impossible). Fix a sequence $\left\{\varepsilon_{n}: n \in \omega\right\}$ of positive reals such that $\sum_{k=1}^{\infty} 2^{k} \varepsilon_{k}<\infty$.

Since \mathcal{F} has measure zero, we can find sequences $\left\langle n_{k}, m_{k}: k \in \omega\right\rangle$ and $\left\langle J_{k}, J_{k}^{\prime}: k \in \omega\right\rangle$ as in Theorem 6 such that $\mathcal{F} \subseteq$ $\left(\left[n_{k}, n_{k+1}\right), J_{k}\right)_{k \in \omega} \cup\left(\left[m_{k}, m_{k+1}\right), J_{k}^{\prime}\right)_{k \in \omega}$.

If $\mathcal{F} \subset\left(\left[n_{k}, n_{k+1}\right), J_{k}\right)_{k \in \omega}$ or if $\mathcal{F} \subset\left(\left[m_{k}, m_{k+1}\right), J_{k}^{\prime}\right)_{k \in \omega}$, then we are done, since both sets are small.
Therefore, assume that neither set covers \mathcal{F}.
Define for $k \in \omega$

$$
S_{k}=\left\{s \in 2^{\left[n_{k}, m_{k}\right)}: s \text { has at least } 2^{n_{k+1}-m_{k}-k} \text { extensions inside } J_{k}\right\}
$$

It is easy to check that

$$
\frac{\left|S_{n}\right|}{2^{m_{k}-n_{k}}} \leq 2^{k} \varepsilon_{k}
$$

holds for $k \in \omega$.
Similarly, if we define

$$
S_{k}^{\prime}=\left\{s \in 2^{\left[n_{k}, m_{m}\right)}: s \text { has at least } 2^{n_{k}-m_{k-1}-k} \text { extensions inside } J_{k}^{\prime}\right\}
$$

then, by the same argument, we have that

$$
\frac{\left|S_{k}^{\prime}\right|}{2^{m_{k}-n_{k}}} \leq 2^{k} \varepsilon_{k}
$$

for all $k \in \omega$.
Consider the set $\left(\left[n_{k}, m_{k}\right), S_{k} \cup S_{k}^{\prime}\right)_{k \in \omega}$. This set is small since $\sum_{k=1}^{\infty}\left|S_{k} \cup S_{k}^{\prime}\right| 2^{n_{k}-m_{k}} \leq \sum_{k=0}^{\infty} 2^{k} \varepsilon_{k}<\infty$.
Now we have three small sets
(1) $H_{1}=\left(\left[n_{k}, n_{k+1}\right), J_{k}\right)_{k \in \omega}$,
(2) $H_{2}=\left(\left[m_{k}, m_{k+1}\right), J_{k}^{\prime}\right)_{k \in \omega}$,
(3) $H_{3}=\left(\left[n_{k}, m_{k}\right), S_{k} \cup S_{k}^{\prime}\right)_{k \in \omega}$.

If $\mathcal{F} \subset H_{2} \cup H_{3}$, we are done since, by Lemma $8, H_{2} \cup H_{3}$ is a small set. Therefore, assume that there exists $X \in \mathcal{F}$ such that $X \notin H_{2} \cup H_{3}$. Since $\mathcal{F} \subset H_{1} \cup H_{2}$, we get that $X \in H_{1}$. Let $\left\{k_{u}: u \in \omega\right\}$ be an increasing sequence enumerating set

$$
\left\{k \in \omega: X \upharpoonright\left[n_{k}, n_{k+1}\right) \in J_{k}\right\} .
$$

Define for $u \in \omega$

$$
\begin{aligned}
& \bar{I}_{u}=\left[m_{k_{u}+1}, n_{k_{u}+1}\right) \text { and } \\
& \bar{J}_{u}=\left\{s \in 2^{I_{u}}: X \upharpoonright\left[n_{k_{u}}, m_{k_{u}+1}\right) \frown s \in J_{k_{u}} \text { or } s^{\frown} X \upharpoonright\left[n_{k_{u}+1}, m_{k_{u}+1}\right) \in J_{k_{u}+1}^{\prime}\right\}
\end{aligned}
$$

By the choice of $X, X \backslash\left[n_{k_{u}}, n_{k_{u}+1}\right) \in \bar{J}_{k_{u}}$ but $X \upharpoonright\left[n_{k_{u}}, n_{k_{u}+1}\right) \notin S_{k_{u}} \cup S_{k_{u}}^{\prime}$ for sufficiently large $u \in \omega$. Thus $\left|\bar{J}_{u}\right| 2^{-\left|\bar{I}_{u}\right|} \leq 2^{-u}$ for all but finitely many $u \in \omega$. Hence the set $H_{4}=\left(\bar{I}_{u}, \bar{J}_{u}\right)_{u \in \omega}$ is small.

Lemma 15. $\mathcal{F} \subseteq H_{4}$.
Proof. Suppose that \mathcal{F} is not contained in H_{4} and let $Y \in \mathcal{F} \backslash H_{4}$.
Define $Z \in 2^{\omega}$ as follows

$$
Z(n)=\left\{\begin{array}{lc}
Y(n) & \text { if } n \in \bigcup_{u \in \omega} \bar{I}_{u} \\
X(n) & \text { otherwise }
\end{array} \text { for } n \in \omega\right.
$$

Notice that $Z \in \mathcal{F}$ since $X \cap Y \subseteq Z$. We will show that $Z \notin H_{1} \cup H_{2}$, which gives a contradiction.
Consider an interval $I_{m}=\left[n_{m}, n_{m+1}\right.$). It suffices to show that $Z \upharpoonright I_{m} \notin J_{m}$ when m is large enough.
If $m \neq k_{u}$ for every $u \in \omega$, then $I_{m} \cap \bigcup_{u \in \omega} \bar{I}_{u}=\emptyset$ and $Z \upharpoonright I_{m}=X \upharpoonright I_{m} \notin J_{m}$.
On the other hand, if $m=k_{u}$ for some $u \in \omega$ then $X\left\lceil I_{m} \in \dot{J}_{m}\right.$, but by the choice of $X, Z\left\lceil\left[n_{k_{u}}, m_{k_{u}}\right)=X \upharpoonright\left[n_{k_{u}}, m_{\underline{k}_{u}}\right.\right.$) has only few extensions inside $J_{n_{u}}$ (since $X \notin H_{3}$). More specifically, if $Z\left\lceil I_{m} \in J_{m}\right.$ then $Z\left\lceil I_{u}\right.$ has to be an element of J_{u}. But this is impossible since $Z\left\lceil I_{u}=Y\left\lceil I_{u} \notin \bar{J}_{u}\right.\right.$ for sufficiently large $u \in \omega$. The proof that $Z \notin H_{2}$ is the same and uses the second clause in the definition of set H_{4}.

4. Small sets versus measure-zero sets

In this section, we will prove the main result.
Theorem 16. There exists a null set which is not small, that is $\mathcal{S} \subsetneq \mathcal{N}$.
Proof. We will use the following.
Lemma 17. For every $\varepsilon>0$ and sufficiently large $n \in \omega$, there exists a set $A \subset 2^{n}$ such that $\frac{|A|}{2^{n}}<\varepsilon$ and, for every $u \subset n$ such that $\frac{n}{4} \leq|u| \leq \frac{3 n}{4}$, and $B_{0} \subset 2^{u}$ and $B_{1} \subset 2^{n \backslash u}$ such that $\frac{\left|B_{0}\right|}{2^{|u|}} \geq \frac{1}{2}$ and $\frac{\left|B_{1}\right|}{2^{|n \backslash u|}} \geq \frac{1}{2}$, we have $\left(B_{0} \times B_{1}\right) \cap A \neq \emptyset$.

Proof. The key case is when ε is very small and sets B_{0}, B_{1} have relative measure approximately $\frac{1}{2}$. In such a case, $B_{0} \times B_{2}$ has relative measure $\frac{1}{4}$, yet it intersects A. Fix large $n \in \omega$ and choose $A \subset 2^{n}$ randomly. That is, for each $s \in 2^{n}$, the probability $\operatorname{Prob}(s \in A)=\varepsilon$ and for $s, s^{\prime} \in 2^{n}$, events $s \in A$ and $s^{\prime} \in A$ are independent. It is well known that, for large enough n, the set constructed this way will have measure ε (with negligible error).

Fix $n / 4 \leq|u| \leq 3 n / 4$ and let

$$
\mathcal{B}_{u}=\left\{\left(B_{0}, B_{1}\right): B_{0} \subset 2^{u}, B_{1} \subset 2^{n \backslash u} \text { and } \frac{\left|B_{0}\right|}{2^{|u|}}, \frac{\left|B_{1}\right|}{2^{|n \backslash u|}} \geq \frac{1}{2}\right\} .
$$

Note that $\left|\mathcal{B}_{u}\right| \leq 2^{2^{|u|}+2^{|n| u \mid}} \leq 2^{2^{\frac{3 n}{4}+1}}$.
For $\left(B_{0}, B_{1}\right) \in \mathcal{B}_{u}, \operatorname{Prob}\left(\left(B_{0} \times B_{1}\right) \cap A=\emptyset\right)=(1-\varepsilon)^{\left|B_{0} \times B_{1}\right|} \leq(1-\varepsilon)^{2^{n-2}}$. Consequently,

$$
\operatorname{Prob}\left(\exists\left(B_{0}, B_{1}\right) \in \mathcal{B}_{u}\left(B_{0} \times B_{1}\right) \cap A=\emptyset\right) \leq\left|\mathcal{B}_{u}\right|(1-\varepsilon)^{2^{n-2}} \leq 2^{2^{\frac{3 n}{4}+1}}(1-\varepsilon)^{2^{n-2}}
$$

Finally, since we have at most 2^{n} possible sets u,

$$
\begin{aligned}
& \operatorname{Prob}\left(\exists u \exists\left(B_{0}, B_{1}\right) \in \mathcal{B}_{u}\left(B_{0} \times B_{1}\right) \cap A=\emptyset\right) \leq \\
& 2^{n}\left|\mathcal{B}_{u}\right|(1-\varepsilon)^{2^{n-2}} \leq 2^{2^{\frac{3 n}{4}}+n+1}(1-\varepsilon)^{2^{n-2}} \leq 2^{2^{\frac{7 n}{8}}}(1-\varepsilon)^{2^{n-2}} \leq \\
& 2^{2^{\frac{7 n}{8}}}(1-\varepsilon)^{\frac{1}{\varepsilon} \epsilon 2^{n-2}} \leq \frac{2^{2^{\frac{7 n}{8}}}}{2^{\varepsilon 2^{n-2}}} \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore, there is a non-zero probability that a randomly chosen set A has the required properties. In particular, such a set must exist.

Let $\left\{k_{n}^{0}, k_{n}^{1}: n \in \omega\right\}$ be two sequences defined as $k_{n}^{0}=n(n+1)$ and $k_{n}^{1}=n^{2}$ for $n>0$.
Let $I_{n}^{0}=\left[k_{n}^{0}, k_{n+1}^{0}\right)$ and $I_{n}^{1}=\left[k_{n}^{1}, k_{n+1}^{1}\right.$) for $n \in \omega$. Observe that the sequences are selected such that
(1) $\left|I_{n}^{0}\right|=2 n+2$ and $\left|I_{n}^{1}\right|=2 n+1$ for $n \in \omega$,
(2) $I_{n}^{0} \subset I_{n}^{1} \cup I_{n+1}^{1}$ for $n>0$,
(3) $I_{n}^{1} \subset I_{n-1}^{0} \cup I_{n}^{0}$ for $n>1$,
(4) $\left|I_{n}^{0} \cap I_{n}^{1}\right|=\left|I_{n}^{1} \cap I_{n-1}^{0}\right|=n$ for $n>1$,
(5) $\left|I_{n}^{0} \cap I_{n+1}^{1}\right|=\left|I_{n}^{1} \cap I_{n}^{0}\right|=n+1$ for $n>1$.

Finally, for $n>0$ let $J_{n}^{0} \subset 2^{I_{n}^{0}}$ and $J_{n}^{1} \subset 2^{I_{n}^{1}}$ be selected as in Lemma 17 for $\varepsilon_{n}=\frac{1}{n^{2}}$. Easy calculation shows that for $n \geq 140$, the sets J_{n}^{0} and J_{n}^{1} are defined and have the required properties.

Suppose that $\left(I_{n}^{0}, J_{n}^{0}\right)_{n \in \omega} \cup\left(I_{n}^{1}, J_{n}^{1}\right)_{n \in \omega} \subset\left(I_{n}^{2}, J_{n}^{2}\right)_{n \in \omega}$.
CASE 1 There exists $i \in\{0,1\}$ and infinitely many $n, m \in \omega$ such that

$$
\frac{\left|I_{m}^{i}\right|}{4} \leq\left|I_{m}^{i} \cap I_{n}^{2}\right| \leq \frac{3\left|I_{m}^{i}\right|}{4}
$$

Without loss of generality, $i=0$. Let $\left\{a_{k}: k \in \omega\right\}$ be a partition of ω into finite sets. For $n \in \omega$ define $I_{n}^{\prime}=\bigcup_{l \in a_{n}} I_{l}^{2}$ and $J_{n}^{\prime}=\left\{s \in 2^{I_{n}^{\prime}}: \exists l \in a_{n} \exists t \in J_{l}^{2} s\left\lceil I_{l}^{2}=t \upharpoonright I_{l}^{2}\right\}\right.$. By Lemma 7, we know that $\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}=\left(I_{n}^{2}, J_{n}^{2}\right)_{n \in \omega}$ no matter what is the choice of the partition $\left\{a_{k}: k \in \omega\right\}$.

Consequently, let us choose $\left\{a_{k}: k \in \omega\right\}$ and an infinite set $Z \subseteq \omega$ such that
(1) for every $m \in Z$ there is $n \in \omega$ such that $\frac{\left|I_{m}^{0}\right|}{4} \leq\left|I_{m}^{0} \cap I_{n}^{\prime}\right| \leq \frac{3\left|I_{m}^{0}\right|}{4}$,
(2) for every $m \in Z$ there exists $n \in \omega$ such that $I_{m}^{0} \subset I_{n}^{\prime} \cup I_{n+1}^{\prime}$,
(3) for every $n \in \omega$ there is at most one $m \in Z$ such that $I_{m}^{0} \cap I_{n}^{\prime} \neq \emptyset$.

To construct the required partition $\left\{a_{k}: k \in \omega\right\}$, we inductively glue together the sets I_{l}^{2} as follows: suppose that m is such that there is n such that $\frac{\left|I_{m}^{0}\right|}{4} \leq\left|I_{m}^{0} \cap I_{n}^{2}\right| \leq \frac{3\left|I_{m}^{0}\right|}{4}$. Then we define $a_{n}=\{n\}$ and $a_{n+1}=\left\{u: I_{m}^{0} \cap I_{u}^{2} \neq \emptyset\right.$ and $\left.u \neq n\right\}$. Let Z be the subset of the collection of m 's selected as above, that is, thin enough to satisfy condition (3).

Recall that $\left(I_{n}^{0}, J_{n}^{0}\right)_{n \in \omega} \subseteq\left(I_{n}^{2}, J_{n}^{2}\right)_{n \in \omega}=\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}$.

Working towards contradiction, fix $m \in Z$, and let $I_{m}^{0} \subseteq I_{n}^{\prime} \cup I_{n+1}^{\prime}$ (in this case $I_{n}^{\prime}=I_{n}^{2}$). By Lemma 10 , it follows that, if m is large enough, then for every $s \in J_{m}^{0}$ either
(1) for every $u \in 2^{I_{n}^{\prime} \backslash I_{m}^{0}}$ we have $s\left\lceil\left(I_{m}^{0} \cap I_{n}^{\prime}\right) \frown u \in J_{n}^{\prime}\right.$, or
(2) for every $u \in 2^{I_{n+1}^{\prime} \backslash I_{m}^{0}}$ we have $s \upharpoonright\left(I_{m}^{0} \cap I_{n+1}^{\prime}\right) \smile u \in J_{n+1}^{\prime}$.

Let $J_{n}^{\prime \prime}=\left\{s \in 2^{I_{m}^{0} \cap I_{n}^{\prime}}: \forall u \in 2^{I_{n}^{\prime} \backslash I_{m}^{0}} S^{\frown} u \in J_{n}^{\prime}\right\}$ and $J_{n+1}^{\prime \prime}=\left\{s \in 2^{I_{m}^{0} \cap I_{n+1}^{\prime}}: \forall u \in 2^{I_{n+1}^{\prime} \backslash I_{m}^{0}} s^{\frown} u \in J_{n+1}^{\prime}\right\}$.
Clearly, $\frac{\left|J_{n}^{\prime \prime}\right|}{2^{\left|I_{n}^{\prime} \cap I_{m}^{0}\right|}} \leq \frac{\left|J_{n}^{\prime}\right|}{2^{\left|I_{n}^{\prime}\right|}} \leq \frac{1}{2}$ and $\frac{\left|J_{n+1}^{\prime \prime}\right|}{2^{\left|I_{n+1}^{\prime} \cap I_{m}^{0}\right|}} \leq \frac{\left|J_{n+1}^{\prime}\right|}{2^{\left|I_{n+1}^{\prime}\right|}} \leq \frac{1}{2}$.
Let $B_{n}=2^{I_{m}^{0} \cap I_{n}^{\prime}} \backslash J_{n}^{\prime}$ and $B_{n+1}=2^{I_{m}^{0} \cap I_{n+1}^{\prime}} \backslash J_{n+1}^{\prime}$.
It follows that $\frac{\left|B_{n}\right|}{2^{\left|I_{m}^{0} \cap I_{n}^{\prime}\right|}}, \frac{\left|B_{n+1}\right|}{2^{\left|I_{m}^{0} \cap I_{n+1}^{\prime}\right|}} \geq \frac{1}{2}$. By Lemma 17 and the definition of set $\left(I_{m}^{0}, J_{m}^{0}\right)_{m \in \omega}$, there is $s_{m} \in\left(B_{n} \times B_{n+1}\right) \cap J_{m}^{0}$.
Consequently, there is $t_{m} \in 2^{I_{n}^{\prime} \cup I_{n+1}^{\prime}}$ such that $t_{m} \upharpoonright I_{m}^{0}=s_{m} \in J_{0}^{m}$, but $t_{m} \upharpoonright I_{n}^{\prime} \notin J_{n}^{\prime}$ and $t_{m} \upharpoonright I_{n+1}^{\prime} \notin J_{n+1}^{\prime}$. For each $n \in \omega$ choose $r_{n} \in 2^{I_{n}^{\prime}} \backslash J_{n}^{\prime}$. Define $x \in 2^{\omega}$ as

$$
x \upharpoonright I_{n}^{\prime}= \begin{cases}t_{m} \upharpoonright I_{n}^{\prime} & \text { if } I_{m}^{0} \cap I_{n}^{\prime} \neq \emptyset \\ r_{n} & \text { if } I_{m}^{0} \cap I_{n}^{\prime}=\emptyset \text { for all } m \in Z\end{cases}
$$

It follows that $x \in\left(I_{n}^{0}, J_{n}^{0}\right)_{n \in \omega}$, but $x \notin\left(I_{n}^{\prime}, J_{n}^{\prime}\right)_{n \in \omega}=\left(I_{n}^{2}, J_{n}^{2}\right)_{n \in \omega}$, which is a contradiction.
CASE 2 For every $i \in\{0,1\}$, almost every $n \in \omega$ and every $m \in \omega$,

$$
\left|I_{n}^{2} \cap I_{m}^{i}\right| \leq \frac{\left|I_{m}^{i}\right|}{4}
$$

This is quite similar to the previous case.
We inductively choose $\left\{a_{k}: k \in \omega\right\}$ and define I_{n}^{\prime} 's and J_{n}^{\prime} 's as before. Next construct an infinite set $Z \subseteq \omega$ such that
(1) for every $m \in Z$ there exists $n \in \omega$ such that $I_{m}^{0} \subset I_{n}^{\prime} \cup I_{n+1}^{\prime}$ and $\frac{\left|I_{m}^{0}\right|}{4} \leq\left|I_{m}^{0} \cap I_{n}^{\prime}\right|,\left|I_{m}^{0} \cap I_{n+1}^{\prime}\right| \leq \frac{3\left|I_{m}^{0}\right|}{4}$;
(2) for every $n \in \omega$ there is at most one $m \in Z$ such that $I_{m}^{0} \cap I_{n}^{\prime} \neq \emptyset$.

Since $\left|I_{k}^{2} \cap I_{m}^{i}\right| \leq \frac{\left|I_{m}^{i}\right|}{4}$ for each k, m we can get (1) by careful splitting $\left\{k: I_{m}^{0} \cap I_{k}^{2} \neq \emptyset\right\}$ into two sets.
The rest of the proof is exactly as before.
To conclude the proof, it suffices to show that these two cases exhaust all possibilities. To this end, we check that if, for some $i \in\{0,1\}, m, n \in \omega,\left|I_{n}^{2} \cap I_{m}^{i}\right|>\frac{3\left|I_{m}^{1}\right|}{4}$, then for some $j \in\{0,1\}$ and $k \in \omega$,

$$
\frac{3\left|I_{k}^{j}\right|}{4} \leq\left|I_{n}^{2} \cap I_{k}^{j}\right| \leq \frac{3\left|I_{k}^{j}\right|}{4}
$$

This will show that the potential remaining cases are already included in CASE 1.
Fix $i=0$ and $n \in \omega$ (the case $i=1$ is analogous.)
By the choice of intervals I_{m}^{0} and I_{m}^{1}, it follows that, if $\left|I_{n}^{2} \cap I_{m}^{0}\right|>\frac{3\left|I_{m}^{0}\right|}{4}$, then $\left|I_{n}^{2} \cap I_{m}^{1}\right|>\frac{\left|I_{m}^{1}\right|}{4}$. If $\left|I_{n}^{2} \cap I_{m}^{1}\right| \leq \frac{3\left|I_{m}^{1}\right|}{4}$, then we are in CASE 1. Otherwise, $\left|I_{n}^{2} \cap I_{m}^{1}\right|>\frac{3\left|I_{m}^{1}\right|}{4}$ and so $\left|I_{n}^{2} \cap I_{m+1}^{0}\right|>\frac{\left|I_{m+1}^{1}\right|}{4}$. Continue inductively until the construction terminates after finitely many steps settling on j and k.

Theorem 18. Not every small set is small ${ }^{\star}$, that is $\mathcal{S}^{\star} \subsetneq \mathcal{S}$.
Proof. The proof is a modification of the previous argument.
Let $I_{n}^{0}, I_{n}^{1}, J_{n}^{0}$ and J_{n}^{1} for $n \in \omega$ be like in the proof of 16 . Let $\bar{I}_{n}^{0}=\left\{2 k: k \in I_{n}^{0}\right\}$ and $\bar{I}_{n}^{1}=\left\{2 k+1: k \in I_{n}^{1}\right\}$ for $n \in \omega$ and let $\bar{J}_{n}^{0} \subset 2^{\bar{I}_{n}^{0}}, \bar{J}_{n}^{1} \subset 2^{\bar{I}_{n}^{1}}$ for $n \in \omega$ be the induced sets. Note that $\left(\left\{\bar{I}_{n}^{0}, \bar{I}_{n}^{1}\right\},\left\{\bar{J}_{n}^{0}, \bar{J}_{n}^{1}\right\}\right)_{n \in \omega}$ is a small set. We will show that this set is not small*. Suppose that $\left(\left\{\bar{I}_{n}^{0}, \bar{I}_{n}^{1}\right\},\left\{\bar{J}_{n}^{0}, \bar{J}_{n}^{1}\right\}\right)_{n \in \omega} \subseteq\left(I_{n}, J_{n}\right)_{n \in \omega}$, where $I_{n}=\left[k_{n}, k_{n+1}\right)$ for an increasing sequence $\left\{k_{n}: n \in \omega\right\}$.

Without loss of generality we can assume that for every $n \in \omega$ there exists $i \in\{0,1\}$ and $m \in \omega$ such that
(1) $I_{m}^{i} \subseteq I_{n} \cup I_{n+1}$,
(2) $\frac{\left|I_{m}^{i}\right|}{4} \leq\left|I_{n} \cap I_{m}^{i}\right| \leq \frac{3\left|I_{m}^{i}\right|}{4}$,
(3) $\frac{\left|I_{m}^{i}\right|}{4} \leq\left|I_{n+1} \cap I_{m}^{i}\right| \leq \frac{3\left|I_{m}^{i}\right|}{4}$.

To get (1), we combine consecutive intervals I_{n} to make sure that each I_{m}^{i} belongs to at most two of them. Points (2) and (3) are a consequence of the properties of the original sequences $\left\{I_{n}^{0}, I_{n}^{1}: n \in \omega\right\}$, namely that each integer belongs to exactly two of these intervals and that intersecting intervals cut each other approximately in half. The following example illustrates the procedure for finding i and m : if k_{n} is even, then $k_{n} / 2$ belongs to $I_{j}^{0} \cap I_{k}^{1}$ with $k-j$ equal to 0 or 1 . The values of i and m depend on whether $k_{n} / 2$ belongs to the lower or upper half of the said interval. The case when k_{n} is odd is similar.

The rest of the proof is exactly like in Case 1 of Theorem 16.

References

[1] T. Bartoszynski, On covering of real line by null sets, Pac. J. Math. 131 (1) (1988) 1-12.
[2] T. Bartoszynski, On the structure of measurable filters on a countable set, Real Anal. Exch. 17 (2) (1992) 681-701.
[3] T. Bartoszynski, H. Judah, Set Theory: on the Structure of the Real Line, A.K. Peters, 1995.
[4] M. Talagrand, On T. Bartoszynski structure theorem for measurable filters, C. R. Acad. Sci. Paris, Ser. I 351 (7-8) (2013) 281-284.

[^0]: E-mail addresses: tbartosz@nsf.gov (T. Bartoszynski), shelah@math.huji.ac.il (S. Shelah).
 URL: http://math.rutgers.edu/-shelah/ (S. Shelah).
 1 This material is based upon first author's work supported by and while serving at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
 2 The second author was partially supported by NSF grants DMS-1101597 and DMS-136974, publication 1139.
 https://doi.org/10.1016/j.crma.2018.11.003
 1631-073X/Published by Elsevier Masson SAS on behalf of Académie des sciences.

