Homological algebra

Derived invariance of the Tamarkin-Tsygan calculus of an algebra

Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre

Marco Antonio Armenta ${ }^{\mathrm{a}, \mathrm{b}}$, Bernhard Keller ${ }^{\mathrm{c}}$

${ }^{\text {a }}$ CIMAT A. C. Guanajuato, Mexico
b IMAG, Université de Montpellier, CNRS, Montpellier, France
${ }^{\text {c }}$ Université Paris-Diderot - Paris 7, Sorbonne Université, UFR de mathématiques, CNRS, Institut de mathématiques de Jussieu-Paris Rive Gauche, IMJ-PRG, Bâtiment Sophie-Germain, 75205 Paris cedex 13, France

A R T I C L E I N F O

Article history:

Received 23 November 2018
Accepted after revision 24 January 2019
Available online 31 January 2019
Presented by Michèle Vergne

Abstract

We prove that derived equivalent algebras have isomorphic differential calculi in the sense of Tamarkin-Tsygan. © 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On montre que deux algèbres équivalentes par dérivation ont des calculs différentiels (au sens de Tamarkin-Tsygan) isomorphes.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let k be a commutative ring and A an associative k-algebra projective as a module over k. We write \otimes for the tensor product over k. We point out that all the constructions and proofs of this paper extend to small dg categories cofibrant over k. The Hochschild homology $H H_{\bullet}(A)$ and cohomology $H H^{\bullet}(A)$ are derived invariants of A, see $[3,4,9,10,12]$. Moreover, these k-modules come with operations, namely the cup product

$$
\cup: H H^{n}(A) \otimes H H^{m}(A) \rightarrow H H^{n+m}(A)
$$

the Gerstenhaber bracket

$$
[-,-]: H H^{n}(A) \otimes H H^{m}(A) \rightarrow H H^{n+m-1}(A)
$$

[^0]the cap product
$$
\cap: H H_{n}(A) \otimes H H^{m}(A) \rightarrow H H_{n-m}(A)
$$
and Connes' differential
$$
B: H H_{n}(A) \rightarrow H H_{n+1}(A),
$$
such that $B^{2}=0$ and
\[

$$
\begin{equation*}
\left[B i_{\alpha}-(-1)^{|\alpha|} i_{\alpha}, i_{\beta}\right]=i_{[\alpha, \beta]} \tag{1}
\end{equation*}
$$

\]

where $i_{\alpha}(z)=(-1)^{|\alpha||z|} z \cap \alpha$. This is the first example [2,11] of a differential calculus or a Tamarkin-Tsygan calculus, which is by definition a collection

$$
\left(\mathcal{H}^{\bullet}, \cup,[-,-], \mathcal{H}_{\bullet}, \cap, B\right)
$$

such that $\left(\mathcal{H}^{\bullet}, \cup,[-,-]\right)$ is a Gerstenhaber algebra, the cap product \cap endows \mathcal{H}. with the structure of a graded Lie module over the Lie algebra ($\mathcal{H}^{\bullet}[1], \cup,[-,-]$) and the map $B: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n+1}$ squares to zero and satisfies the equation (1). The Gerstenhaber algebra $\left(H^{\bullet}(A), \cup,[-,-]\right)$ has been proved to be a derived invariant [8,7]. The cap product is also a derived invariant [1]. In this work, we use an isomorphism induced from the cyclic functor [6] to prove derived invariance of Connes' differential and of the ISB-sequence. To obtain derived invariance of the differential calculus, we need to prove that this isomorphism equals the isomorphism between Hochschild homologies used in [1] to prove derived invariance of the cap product.

2. The cyclic functor

Let Alg be the category whose objects are the associative dg (= differential graded) k-algebras cofibrant over k (i.e. 'closed' in the sense of section 7.5 of [6]) and whose morphisms are morphisms of dg k-algebras that do not necessarily preserve the unit. Let $\operatorname{rep}(A, B)$ be the full subcategory of the derived category $D\left(A^{o p} \otimes B\right)$ whose objects are the dg bimodules X such that the restriction X_{B} is compact in $D(B)$, i.e. lies in the thick subcategory generated by the free module B_{B}. Define ALG to be the category whose objects are those of Alg and whose morphisms from A to B are the isomorphism classes in $\operatorname{rep}(A, B)$. The composition of morphisms in ALG is given by the total derived tensor product [6]. The identity of A is the isomorphism class of the bimodule ${ }_{A} A_{A}$. There is a canonical functor Alg \rightarrow ALG that associates with a morphism $f: A \rightarrow B$ the bimodule ${ }_{f} B_{B}$ with underlying space $f(1) B$ and A-B-action given by $a . f(1) b . b^{\prime}=f(a) b b^{\prime}$.

Let Λ be the dg algebra $k[\epsilon] /\left(\epsilon^{2}\right)$ where $|\epsilon|=-1$ and the differential vanishes. As in [5,6], we will identify the category of $\mathrm{dg} \Lambda$-modules with the category of mixed complexes. Denote by DMix the derived category of $\mathrm{dg} \Lambda$-modules. Let $C: \mathbf{A l g} \rightarrow$ DMix be the cyclic functor [6], that is, the underlying dg k-module of $C(A)$ is the mapping cone over $(1-t)$ viewed as a morphism of complexes $\left(A^{\otimes *+1}, b^{\prime}\right) \rightarrow\left(A^{\otimes *}, b\right)$ and the first and second differentials of the mixed complex $C(A)$ are

$$
\left[\begin{array}{cc}
b & 1-t \\
0 & -b^{\prime}
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
0 & 0 \\
N & 0
\end{array}\right]
$$

Clearly, a dg algebra morphism $f: A \rightarrow B$ (even if it does not preserve the unit) induces a morphism $C(f): C(A) \rightarrow C(B)$ of dg Λ-modules. Let X be an object of $\operatorname{rep}(A, B)$. We assume, as we may, that X is cofibrant (i.e. 'closed' in the sense of section 7.5 of [6]). This implies that X_{B} is cofibrant as a dg B-module and thus that morphism spaces in the derived category with source X_{B} are isomorphic to the corresponding morphism spaces in the homotopy category. Consider the morphisms

$$
A \xrightarrow[\alpha_{X}]{\longrightarrow \operatorname{End}_{B}(B \oplus X) \leftarrow \beta_{X}} B
$$

where $\operatorname{End}_{B}(B \oplus X)$ is the differential graded endomorphism algebra of $B \oplus X$, the morphism α_{X} be given by the left action of A on X and β_{X} is induced by the left action of B on B. Note that these morphisms do not preserve the units. The second author proved in [6] that $C\left(\beta_{X}\right)$ is invertible in DMix and defined $C(X)=C\left(\beta_{X}\right)^{-1} \circ C\left(\alpha_{X}\right)$. We recall that C is well defined on ALG and that this extension of C from Alg to ALG is unique by Theorem 2.4 of [6].

Let $X: A \rightarrow B$ be a morphism of ALG where X is cofibrant. Put $X^{\vee}=\operatorname{Hom}_{B}(X, B)$. We can choose morphisms $u_{X}: A \rightarrow$

Then the functors

$$
? \stackrel{\stackrel{\mathbf{L}}{\otimes}}{A^{e}}\left(X \otimes X^{\vee}\right): D\left(A^{e}\right) \rightarrow D\left(B^{e}\right)
$$

and

$$
? \stackrel{\stackrel{\mathrm{~L}}{\otimes_{B^{e}}}\left(X^{\vee} \otimes X\right): D\left(B^{e}\right) \rightarrow D\left(A^{e}\right), ~}{\text { en }}
$$

form an adjoint pair. We will identify $X \stackrel{\mathbf{L}}{\otimes_{B}} X^{\vee} \xrightarrow{\sim}\left(X \otimes X^{\vee}\right) \stackrel{\mathbf{L}}{\otimes} B^{e} B$ and $X^{\vee} \stackrel{\mathbf{L}}{\otimes}^{\text {L }} X \xrightarrow{\sim}\left(X^{\vee} \otimes X\right) \stackrel{\mathbf{L}}{\otimes_{A^{e}}} A$, and still call u_{X} and v_{X} the same morphisms when composed with this identification. Since k is a commutative ring, the tensor product over k is symmetric. We will denote the symmetry isomorphism by τ. Let $D(k)$ denote the derived category of k-modules. We define a functor $\psi:$ Alg $\rightarrow D(k)$ by putting $\psi(A)=A \stackrel{\mathbf{L}}{\otimes}_{A^{e}} A$, and $\psi(f)=f \otimes f$ for a morphism $f: A \rightarrow B$. There is a canonical quasi-isomorphism $\psi(A) \rightarrow \varphi(A)$ for any algebra A, where $\varphi(A)$ is the underlying complex of $C(A)$. Therefore, the functors φ and ψ take isomorphic values on objects. We now define ψ on morphisms of ALG as follows: Let X be a cofibrant object of $\operatorname{rep}(A, B)$. Define $\psi(X)$ to be the composition

$$
\begin{aligned}
& A \stackrel{\stackrel{\mathbf{L}}{\otimes}}{A^{e}} A \rightarrow A \stackrel{\mathbf{L}}{\otimes_{A^{e}}} X \otimes X^{\vee} \stackrel{\mathbf{L}}{\otimes}_{B^{e}} B \\
& \xrightarrow{\sim} B \stackrel{\mathbf{L}}{\otimes}_{B^{e}} X^{\vee} \otimes X \stackrel{\mathbf{L}}{\otimes}_{A^{e}} A \\
& \rightarrow B{\stackrel{\mathbf{L}}{\otimes_{B}}} B .
\end{aligned}
$$

That is, we put $\psi(X)=\left(1 \otimes v_{X}\right) \circ \tau \circ\left(1 \otimes u_{X}\right)$.

Theorem 2.1. The assignments $A \mapsto \psi(A), X \mapsto \psi(X)$ define a functor on $\boldsymbol{A L G}$ that extends the functor $\varphi: \operatorname{Alg} \rightarrow D(k)$.
Corollary 2.2. The functors φ and $\psi: \mathbf{A L G} \rightarrow D(k)$ are isomorphic.
Proof of the Corollary. This is immediate from Theorem 2.4 of [6] and the remark following it.

Proof of the Theorem. Let $f: A \rightarrow B$ be a morphism of Alg. The associated morphism in ALG is $X={ }_{f} B_{B}$. Note that $X^{\vee}={ }_{B} B_{f}$. The diagrams

and

are commutative. Since

is also commutative and the bottom morphism equals the identity, we get that $\psi\left({ }_{f} B_{B}\right)$ is the morphism induced by f from $A \stackrel{\mathbf{L}}{\otimes} A^{e} A$ to $B \stackrel{\mathbf{L}}{\otimes} B_{B^{e}} B$. Therefore $\psi\left({ }_{f} B_{B}\right)=\varphi\left({ }_{f} B_{B}\right)$. Let $X: A \rightarrow B$ and $Y: B \rightarrow C$ be morphisms in ALG. We have the canonical isomorphisms

$$
\operatorname{RHom}_{C}(Y, C) \stackrel{\mathbf{L}}{\otimes}{ }_{B} \operatorname{RHom}_{B}(X, B) \xrightarrow{\sim} \operatorname{RHom}_{B}\left(X, \operatorname{RHom}_{C}(Y, C)\right)
$$

$$
\xrightarrow{\sim} \operatorname{RHom}_{C}\left(X \stackrel{\mathbf{L}}{\otimes}_{B} Y, C\right) .
$$

Whence the identification

$$
\left(X \stackrel{\mathbf{L}}{\otimes}_{B} Y\right)^{\vee}=Y^{\vee} \stackrel{\mathbf{L}}{\otimes_{B}} X^{\vee}
$$

Put $Z=X \stackrel{\stackrel{L}{\otimes}}{B}$. For u_{Z}, we choose the composition

$$
A \xrightarrow{u_{X}} X \stackrel{\mathbf{L}}{\otimes_{B}} X^{\vee} \xrightarrow{1 \otimes u_{Y} \otimes 1} X \stackrel{\mathbf{L}}{\otimes}_{B} Y \stackrel{\mathbf{L}}{\otimes} C \stackrel{\mathbf{L}}{\otimes} Y^{\vee} \stackrel{\mathbf{L}}{\otimes_{B}} X^{\vee}
$$

and for v_{Z} the composition

$$
\left(Y^{\vee} \stackrel{\mathbf{L}}{\otimes_{B}} X^{\vee}\right) \stackrel{\mathbf{L}}{\otimes_{A}}\left(X \stackrel{\mathbf{L}}{\otimes}_{B} Y\right) \xrightarrow{1 \otimes v_{X} \otimes 1} Y^{\vee} \stackrel{\mathbf{L}}{\otimes}_{B} Y \xrightarrow{v_{Y}} C .
$$

By definition, the composition $\psi(Y) \circ \psi(X)$ is the composition of $\left(1 \otimes v_{Y}\right) \circ \tau \circ\left(1 \otimes u_{Y}\right)$ with $\left(1 \otimes v_{X}\right) \circ \tau \circ\left(1 \otimes u_{X}\right)$. We first examine the composition $\left(1 \otimes u_{Y}\right) \circ\left(1 \otimes v_{X}\right)$:

$$
B \stackrel{\mathbf{L}}{\otimes_{B^{e}}}\left(X^{\vee} \stackrel{\mathbf{L}}{\otimes} X\right) \stackrel{\mathbf{L}}{\otimes_{A^{e}}} A \xrightarrow{1 \otimes v_{X}} B{\stackrel{\mathbf{L}}{\otimes_{B^{e}}} B \xrightarrow{1 \otimes u_{Y}} B \stackrel{\mathbf{L}}{\otimes_{B^{e}}}\left(Y \stackrel{\mathbf{L}}{\otimes} Y^{\vee}\right) \stackrel{\mathbf{L}}{\otimes_{C}} C}
$$

Clearly, the following square is commutative

where c is the obvious cyclic permutation. Notice that
equals the identity. Thus, we have $1 \otimes u_{Y}=\left(1 \otimes u_{Y}\right) \circ \tau$ and

$$
\left(1 \otimes u_{Y}\right) \circ\left(1 \otimes v_{X}\right)=\left(1 \otimes u_{Y}\right) \circ \tau \circ\left(1 \otimes v_{X}\right)=\left(1 \otimes u_{Y}\right) \circ\left(v_{X} \otimes 1\right) \circ c
$$

Let σ
$\left(\left(X^{\vee} \stackrel{\mathbf{L}}{\otimes} X\right) \stackrel{\mathbf{L}}{\otimes} A^{e} A\right) \stackrel{\mathbf{L}}{\otimes} B_{B^{e}}\left(Y \stackrel{\mathbf{L}}{\otimes} Y^{\vee}\right) \stackrel{\mathbf{L}}{\otimes} C^{e} C \xrightarrow{\sim} A \stackrel{\mathbf{L}}{\otimes_{A^{e}}}\left(X \stackrel{\mathbf{L}}{\otimes_{B}} Y\right) \stackrel{\mathbf{L}}{\otimes}\left(Y^{\vee}{\left.\stackrel{\mathbf{L}}{\otimes}{ }_{B} X^{\vee}\right) \stackrel{\mathbf{L}}{\otimes_{C}} C}_{C}\right.$
be the natural isomorphism given by reordering the factors. Then we have $\psi(Y) \circ \psi(X)=f \circ g$, where $f=\sigma \circ\left(1 \otimes u_{Y}\right) \circ$ $c \circ \tau \circ\left(1 \otimes u_{X}\right)$ and $g=\left(v_{Y} \otimes 1\right) \circ \tau \circ\left(v_{X} \otimes 1\right) \circ \sigma^{-1}$. It is not hard to see that f equals $1 \otimes u_{Z}$ and g equals $\left(1 \otimes v_{Z}\right) \circ \tau$. Intuitively, the reason is that, given the available data, there is only one way to go from $A \stackrel{\mathbf{L}}{\otimes} A^{e} A$ to

$$
A{\stackrel{\mathbf{L}}{\otimes^{e}}}(X \stackrel{\stackrel{\mathbf{L}}{\otimes}}{B} Y) \stackrel{\mathbf{L}}{\otimes}\left(Y^{\vee} \stackrel{\mathbf{L}}{\otimes}_{B} X^{\vee}\right) \stackrel{\stackrel{\mathbf{L}}{Q^{e}} C}{ }
$$

and only one way to go from here to $C{\stackrel{\mathbf{L}}{Q^{e}}}$. It follows that $\psi(Y) \circ \psi(X)=\psi(Z)$.

3. Derived invariance

Let A and B be derived equivalent algebras and X be a cofibrant object of $\operatorname{rep}(A, B)$ such that $? \stackrel{L}{\otimes}_{A} X: D(A) \rightarrow D(B)$ is an equivalence. Then $C(X)$ is an isomorphism of DMix and $\varphi(X)$ an isomorphism of $D(k)$. There is a canonical short exact sequence of dg Λ-modules

$$
0 \rightarrow k[1] \rightarrow \Lambda \rightarrow k \rightarrow 0
$$

giving rise to a triangle

$$
k[1] \xrightarrow{B^{\prime}} \Lambda \xrightarrow{I} k \xrightarrow{S} k[2]
$$

We apply the isomorphism of functors $? \stackrel{\mathbf{L}}{\otimes}{ }_{\Lambda} C(A) \xrightarrow{\sim} ? \stackrel{\mathbf{L}}{\otimes}{ }_{\Lambda} C(B)$ to this triangle to get an isomorphism of triangles in $D(k)$, where we recall that $\varphi(A)$ is the underlying complex of $C(A)$

Taking homology and identifying $H_{j}\left(k \stackrel{\mathbf{L}}{\otimes}{ }_{\Lambda} C(A)\right)=H C_{j}(A)$ as in [5], gives an isomorphism of the ISB-sequences of A and B,

where $H H_{n}(X)$ is the map induced by $\varphi(X)$. In terms of the differential calculus, Connes' differential is the map

$$
B_{n}: H H_{n}(A) \rightarrow H H_{n+1}(A),
$$

given by $B_{n}=B_{n}^{\prime} I_{n}$. This shows that B_{n} is a derived invariant via $H H_{n}(X)$. By Theorem 2.1, the map $H H_{n}(X)$ is equal to the map induced by $\psi(X)$. It is immediate that this map is precisely the one used in the proof of the derived invariance of the cap product [1]. Therefore, we get the following

Theorem 3.1. The differential calculus of an algebra is a derived invariant.

References

[1] M. Armenta, B. Keller, Derived invariance of the cap product in Hochschild theory, C. R. Acad. Sci. Paris, Ser. I 355 (12) (2017) $1205-1207$.
[2] I.M. Gelfand, Yu.L. Daletskiĭ, B.L. Tsygan, On a variant of noncommutative differential geometry, Dokl. Akad. Nauk SSSR 308 (6) (1989) $1293-1297$.
[3] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, UK, 1988.
[4] D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Séminaire d'algèbre Paul-Dubreil-et-Marie-Paul-Malliavin, 39^{e} année, Paris, 1987/1988, in: Lecture Notes in Mathematics, vol. 1404, Springer, Berlin, 1989, pp. 108-126.
[5] C. Kassel, Cyclic homology, comodules and mixed complexes, J. Algebra 107 (1987) 195-216.
[6] B. Keller, Invariance and localization for cyclic homology of dg algebras, J. Pure Appl. Algebra 123 (1998) 223-273.
[7] B. Keller, Derived invariance of higher structures on the Hochschild complex, preprint, 2003, available at the author's home page.
[8] B. Keller, Hochschild cohomology and derived Picard groups, J. Pure Appl. Algebra 190 (2004) 177-196.
[9] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (3) (1989) 303-317.
[10] J. Rickard, Derived equivalences as derived functors, J. Lond. Math. Soc. (2) 43 (1) (1991) 37-48.
[11] D. Tamarkin, B. Tsygan, Noncommutative differential calculus, homotopy bv algebras and formality conjectures, Methods Funct. Anal. Topol. 6 (2) (2000) 85-100.
[12] A. Zimmermann, Fine Hochschild invariants of derived categories for symmetric algebras, J. Algebra 308 (1) (2007) 350-367.

[^0]: E-mail addresses: drmarco@cimat.mx (M.A. Armenta), bernhard.keller@imj-prg.fr (B. Keller). URL: https://webusers.imj-prg.fr/~bernhard.keller/ (B. Keller).
 https://doi.org/10.1016/j.crma.2019.01.007
 1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

