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We prove that derived equivalent algebras have isomorphic differential calculi in the sense 
of Tamarkin–Tsygan.
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r é s u m é

On montre que deux algèbres équivalentes par dérivation ont des calculs différentiels (au 
sens de Tamarkin–Tsygan) isomorphes.
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1. Introduction

Let k be a commutative ring and A an associative k-algebra projective as a module over k. We write ⊗ for the tensor 
product over k. We point out that all the constructions and proofs of this paper extend to small dg categories cofibrant 
over k. The Hochschild homology H H•(A) and cohomology H H•(A) are derived invariants of A, see [3,4,9,10,12]. Moreover, 
these k-modules come with operations, namely the cup product

∪ : H Hn(A) ⊗ H Hm(A) → H Hn+m(A),

the Gerstenhaber bracket

[−,−] : H Hn(A) ⊗ H Hm(A) → H Hn+m−1(A),
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the cap product

∩ : H Hn(A) ⊗ H Hm(A) → H Hn−m(A)

and Connes’ differential

B : H Hn(A) → H Hn+1(A),

such that B2 = 0 and

[Biα − (−1)|α|iα, iβ ] = i[α,β], (1)

where iα(z) = (−1)|α||z|z ∩ α. This is the first example [2,11] of a differential calculus or a Tamarkin–Tsygan calculus, which is 
by definition a collection

(H•,∪, [−,−],H•,∩, B),

such that (H•, ∪, [−, −]) is a Gerstenhaber algebra, the cap product ∩ endows H• with the structure of a graded Lie 
module over the Lie algebra (H•[1], ∪, [−, −]) and the map B : Hn → Hn+1 squares to zero and satisfies the equation (1). 
The Gerstenhaber algebra (H H•(A), ∪, [−, −]) has been proved to be a derived invariant [8,7]. The cap product is also a 
derived invariant [1]. In this work, we use an isomorphism induced from the cyclic functor [6] to prove derived invariance 
of Connes’ differential and of the ISB-sequence. To obtain derived invariance of the differential calculus, we need to prove 
that this isomorphism equals the isomorphism between Hochschild homologies used in [1] to prove derived invariance of 
the cap product.

2. The cyclic functor

Let Alg be the category whose objects are the associative dg (= differential graded) k-algebras cofibrant over k (i.e. 
‘closed’ in the sense of section 7.5 of [6]) and whose morphisms are morphisms of dg k-algebras that do not necessarily 
preserve the unit. Let rep(A, B) be the full subcategory of the derived category D(Aop ⊗ B) whose objects are the dg 
bimodules X such that the restriction XB is compact in D(B), i.e. lies in the thick subcategory generated by the free 
module B B . Define ALG to be the category whose objects are those of Alg and whose morphisms from A to B are the 
isomorphism classes in rep(A, B). The composition of morphisms in ALG is given by the total derived tensor product [6]. 
The identity of A is the isomorphism class of the bimodule A A A . There is a canonical functor Alg → ALG that associates 
with a morphism f : A → B the bimodule f B B with underlying space f (1)B and A-B-action given by a. f (1)b.b′ = f (a)bb′ .

Let � be the dg algebra k[ε]/(ε2) where |ε| = −1 and the differential vanishes. As in [5,6], we will identify the category 
of dg �-modules with the category of mixed complexes. Denote by DMix the derived category of dg �-modules. Let 
C : Alg → DMix be the cyclic functor [6], that is, the underlying dg k-module of C(A) is the mapping cone over (1 − t)
viewed as a morphism of complexes (A⊗∗+1, b′) → (A⊗∗, b) and the first and second differentials of the mixed complex 
C(A) are[

b 1 − t
0 −b′

]

and [
0 0
N 0

]
.

Clearly, a dg algebra morphism f : A → B (even if it does not preserve the unit) induces a morphism C( f ) : C(A) → C(B)

of dg �-modules. Let X be an object of rep(A, B). We assume, as we may, that X is cofibrant (i.e. ‘closed’ in the sense 
of section 7.5 of [6]). This implies that XB is cofibrant as a dg B-module and thus that morphism spaces in the derived 
category with source XB are isomorphic to the corresponding morphism spaces in the homotopy category. Consider the 
morphisms

A
αX EndB(B ⊕ X) B

βX

where EndB(B ⊕ X) is the differential graded endomorphism algebra of B ⊕ X , the morphism αX be given by the left action 
of A on X and βX is induced by the left action of B on B . Note that these morphisms do not preserve the units. The second 
author proved in [6] that C(βX ) is invertible in DMix and defined C(X) = C(βX )−1 ◦ C(αX ). We recall that C is well defined 
on ALG and that this extension of C from Alg to ALG is unique by Theorem 2.4 of [6].

Let X : A → B be a morphism of ALG where X is cofibrant. Put X∨ = HomB(X, B). We can choose morphisms u X : A →
X

L⊗B X∨ and v X : X∨ L⊗B X → B such that the following triangles commute
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X
u X ⊗1

=

X
L⊗B X∨ L⊗A X

1⊗v X

X

X∨ 1⊗u X

=

X∨ L⊗A X
L⊗B X∨

v X ⊗1

X∨.

Then the functors

?
L⊗Ae (X ⊗ X∨) : D(Ae) → D(Be)

and

?
L⊗Be (X∨ ⊗ X) : D(Be) → D(Ae)

form an adjoint pair. We will identify X
L⊗B X∨ ∼→ (X ⊗ X∨) 

L⊗Be B and X∨ L⊗A X ∼→ (X∨ ⊗ X) 
L⊗Ae A, and still call u X and v X

the same morphisms when composed with this identification. Since k is a commutative ring, the tensor product over k is 
symmetric. We will denote the symmetry isomorphism by τ . Let D(k) denote the derived category of k-modules. We define 

a functor ψ : Alg → D(k) by putting ψ(A) = A 
L⊗Ae A, and ψ( f ) = f ⊗ f for a morphism f : A → B . There is a canonical 

quasi-isomorphism ψ(A) → ϕ(A) for any algebra A, where ϕ(A) is the underlying complex of C(A). Therefore, the functors 
ϕ and ψ take isomorphic values on objects. We now define ψ on morphisms of ALG as follows: Let X be a cofibrant object 
of rep(A, B). Define ψ(X) to be the composition

A
L⊗Ae A → A

L⊗Ae X ⊗ X∨ L⊗Be B

∼→ B
L⊗Be X∨ ⊗ X

L⊗Ae A

→ B
L⊗Be B.

That is, we put ψ(X) = (1 ⊗ v X ) ◦ τ ◦ (1 ⊗ u X ).

Theorem 2.1. The assignments A �→ ψ(A), X �→ ψ(X) define a functor on ALG that extends the functor ϕ : Alg → D(k).

Corollary 2.2. The functors ϕ and ψ : ALG → D(k) are isomorphic.

Proof of the Corollary. This is immediate from Theorem 2.4 of [6] and the remark following it. �
Proof of the Theorem. Let f : A → B be a morphism of Alg. The associated morphism in ALG is X = f B B . Note that 
X∨ = B B f . The diagrams

A
L⊗Ae ( f B

L⊗B B f )



A
L⊗Ae ( f B

L⊗ B f )
L⊗Be B  A

L⊗Ae f B f

and

A
L⊗Ae ( f B

L⊗ B f )
L⊗Be B 

τ

A
L⊗Ae f B f

τ

B
L⊗Be B f

L⊗ f B
L⊗Ae A 

f B f
L⊗Ae A

are commutative. Since

f B f
L⊗Ae A τ

1
L⊗ f

A
L⊗Ae f B f

f
L⊗1

B
L⊗ e B τ B

L⊗ e B
B B



M.A. Armenta, B. Keller / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 236–240 239
is also commutative and the bottom morphism equals the identity, we get that ψ( f B B) is the morphism induced by f from 

A 
L⊗Ae A to B 

L⊗Be B . Therefore ψ( f B B) = ϕ( f B B). Let X : A → B and Y : B → C be morphisms in ALG. We have the canonical 
isomorphisms

RHomC (Y , C)
L⊗B RHomB(X, B)

∼→ RHomB(X,RHomC (Y , C))

∼→ RHomC (X
L⊗B Y , C).

Whence the identification

(X
L⊗B Y )∨ = Y ∨ L⊗B X∨.

Put Z = X
L⊗B Y . For u Z , we choose the composition

A
u X X

L⊗B X∨ 1⊗uY ⊗1
X

L⊗B Y
L⊗C

L⊗Y ∨ L⊗B X∨

and for v Z the composition

(Y ∨ L⊗B X∨)
L⊗A (X

L⊗B Y )
1⊗v X ⊗1

Y ∨ L⊗B Y
vY C .

By definition, the composition ψ(Y ) ◦ ψ(X) is the composition of (1 ⊗ vY ) ◦ τ ◦ (1 ⊗ uY ) with (1 ⊗ v X ) ◦ τ ◦ (1 ⊗ u X ). We 
first examine the composition (1 ⊗ uY ) ◦ (1 ⊗ v X ):

B
L⊗Be (X∨ L⊗ X)

L⊗Ae A
1⊗v X B

L⊗Be B
1⊗uY B

L⊗Be (Y
L⊗ Y ∨)

L⊗Ce C

Clearly, the following square is commutative

B
L⊗Be (X∨ L⊗ X)

L⊗Ae A c

1⊗v X

((X∨ L⊗ X)
L⊗Ae A)

L⊗Be B

v X ⊗1

B
L⊗Be B τ B

L⊗Be B ,

where c is the obvious cyclic permutation. Notice that

τ : B
L⊗Be B → B

L⊗Be B

equals the identity. Thus, we have 1 ⊗ uY = (1 ⊗ uY ) ◦ τ and

(1 ⊗ uY ) ◦ (1 ⊗ v X ) = (1 ⊗ uY ) ◦ τ ◦ (1 ⊗ v X ) = (1 ⊗ uY ) ◦ (v X ⊗ 1) ◦ c.

Let σ

((X∨ L⊗ X)
L⊗Ae A)

L⊗Be (Y
L⊗ Y ∨)

L⊗Ce C ∼→ A
L⊗Ae (X

L⊗B Y )
L⊗ (Y ∨ L⊗B X∨)

L⊗Ce C

be the natural isomorphism given by reordering the factors. Then we have ψ(Y ) ◦ ψ(X) = f ◦ g , where f = σ ◦ (1 ⊗ uY ) ◦
c ◦ τ ◦ (1 ⊗ u X ) and g = (vY ⊗ 1) ◦ τ ◦ (v X ⊗ 1) ◦ σ−1. It is not hard to see that f equals 1 ⊗ u Z and g equals (1 ⊗ v Z ) ◦ τ . 

Intuitively, the reason is that, given the available data, there is only one way to go from A 
L⊗Ae A to

A
L⊗Ae (X

L⊗B Y )
L⊗ (Y ∨ L⊗B X∨)

L⊗Ce C

and only one way to go from here to C
L⊗Ce C . It follows that ψ(Y ) ◦ ψ(X) = ψ(Z). �

3. Derived invariance

Let A and B be derived equivalent algebras and X be a cofibrant object of rep(A, B) such that ? 
L⊗A X : D(A) → D(B) is 

an equivalence. Then C(X) is an isomorphism of DMix and ϕ(X) an isomorphism of D(k). There is a canonical short exact 
sequence of dg �-modules

0 → k[1] → � → k → 0



240 M.A. Armenta, B. Keller / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 236–240
giving rise to a triangle

k[1] B ′
�

I k S k[2] .

We apply the isomorphism of functors ? 
L⊗� C(A) ∼→? 

L⊗� C(B) to this triangle to get an isomorphism of triangles in D(k), 
where we recall that ϕ(A) is the underlying complex of C(A)

k[1] L⊗� C(A)
B ′

∼=

ϕ(A)
I

ϕ(X)

k
L⊗� C(A)

S

∼=

k[2] L⊗� C(A)

∼=

k[1] L⊗� C(B)
B ′

ϕ(B)
I k

L⊗� C(B)
S k[2] L⊗� C(B).

Taking homology and identifying H j(k 
L⊗� C(A)) = HC j(A) as in [5], gives an isomorphism of the ISB-sequences of A and B ,

· · · HCn−1(A)
B ′

n−1

∼=

H Hn(A)
In

H Hn(X)

HCn(A)
Sn

∼=

HCn−2(A)

∼=

· · ·

· · · HCn−1(B)
B ′

n−1 H Hn(B)
In HCn(B)

Sn HCn−2(B) · · · ,

where H Hn(X) is the map induced by ϕ(X). In terms of the differential calculus, Connes’ differential is the map

Bn : H Hn(A) → H Hn+1(A),

given by Bn = B ′
n In . This shows that Bn is a derived invariant via H Hn(X). By Theorem 2.1, the map H Hn(X) is equal to the 

map induced by ψ(X). It is immediate that this map is precisely the one used in the proof of the derived invariance of the 
cap product [1]. Therefore, we get the following

Theorem 3.1. The differential calculus of an algebra is a derived invariant.
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