Dynamical systems/Probability theory

On the CLT for rotations and BV functions

Sur le TCL pour les rotations et les fonctions BV
Jean-Pierre Conze, Stéphane Le Borgne
Université de Rennes, CNRS, IRMAR, UMR 6625, 35000 Rennes, France

A R T I C L E I N F O

Article history:

Received 13 July 2018
Accepted after revision 25 January 2019
Available online 5 February 2019
Presented by Jean-François Le Gall

Abstract

Let $x \mapsto x+\alpha$ be a rotation on the circle and let φ be a step function. Denote by $\varphi_{n}(x)$ the ergodic sums $\sum_{j=0}^{n-1} \varphi(x+j \alpha)$. For α in a class containing the rotations with bounded partial quotients and under a Diophantine condition on the discontinuities of φ, we show that $\varphi_{n} /\left\|\varphi_{n}\right\|_{2}$ is asymptotically Gaussian for n in a set of density 1 . © 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

R É S U M É

Soient $x \mapsto x+\alpha$ une rotation sur le cercle, φ une fonction en escalier et $\varphi_{n}(x)$ les sommes ergodiques $\sum_{j=0}^{n-1} \varphi(x+j \alpha)$. Pour α dans une classe contenant les rotations à quotients partiels bornés et sous une condition diophantienne sur les discontinuités de φ, nous montrons que $\varphi_{n} /\left\|\varphi_{n}\right\|_{2}$ est asymptotiquement gaussien pour n dans un ensemble de densité 1.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let α be an irrational number in $] 0,1\left[,\left[0 ; a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]\right.$ its continued fraction expansion, p_{n} and q_{n} its numerators and denominators defined as usual by: $p_{0}=0, p_{1}=1$ and $p_{n+1}=a_{n+1} p_{n}+p_{n-1}, q_{0}=1, q_{1}=a_{1}$ and $q_{n+1}=a_{n+1} q_{n}+$ $q_{n-1}, n \geq 1$. For the rotation $x \rightarrow x+\alpha \bmod 1$ on $X=\mathbb{R} / \mathbb{Z}$ endowed with the Lebesgue measure μ, denote by $\varphi_{L}(x)=$ $\sum_{0}^{L-1} \varphi(x+j \alpha)$ the ergodic sums of a function φ.

Contrasting with the case of expanding maps like $x \rightarrow 2 x \bmod 1$, the behavior of the sequence $\left(\varphi_{L}\right)_{L \geq 1}$ depends strongly on the regularity of φ. Under a Diophantine condition on α, too much regularity for φ can imply that φ is a coboundary and that the sums remain bounded. Therefore, it is natural to consider BV (i.e. with bounded variation) functions on the circle, in particular step functions. But still, by Denjoy-Koksma inequality, along the sequence (q_{n}) of denominators of α, the ergodic sums of a BV function φ are uniformly bounded: $\left\|\varphi_{q_{n}}\right\|_{\infty} \leq V(\varphi)$, where $V(\varphi)$ denotes the variation. Nevertheless, one can ask if along other sequences of time $\left(L_{n}\right)$ there is a more stochastic behavior.

[^0]The study of a Gaussian behavior in distribution in the context of Fourier series and of rotations has a long history, starting with Salem and Zygmund in the 1940s. M. Denker and R. Burton in 1987, then M. Lacey (1993), D. Volný and P. Liardet (1997), M. Weber $(2000,2006)$ proved the existence of functions, necessarily not BV, whose ergodic sums over rotations satisfy a Central Limit Theorem after self-normalization. For the functions $\psi:=1_{\left[0, \frac{1}{2}[\right.}-1_{\left[\frac{1}{2}, 0[\right.}$, F. Huveneers [8] proved that, for every irrational α, there is a sequence $\left(L_{n}\right)_{n \in \mathbb{N}}$ such that $\psi_{L_{n}} / \sqrt{n}$ is asymptotically normally distributed. Let us also mention the recent "temporal" limit theorems for rotations obtained by J. Beck [1], D. Dolgopyat, and O. Sarig [6], M. Bromberg and C. Ulcigrai [2].

An irrational number α is said to be of bounded type (or "bpq") if it has bounded partial quotients, i.e. if $\sup _{k} a_{k}<\infty$. In [4], an almost sure invariance principle for subsequences of ergodic sums of BV functions was shown when α is not bpq. In this note, for a class of rotations containing the bounded type case, we show (Theorem 3.1) a "spatial" asymptotic Gaussian behavior of the ergodic sums φ_{n} of a BV function, for n in a set W of integers of density 1 . We also consider the particular case when $\left(a_{k}\right)$ is ultimately periodic (equivalently, by a theorem of Lagrange, when α is a quadratic irrational) and improve the size estimation of W in this case. The method differs from [4] and relies on a decorrelation property like in [8]. Detailed proofs of the results of this note are given in [5].

2. Preliminaries

For $u \in \mathbb{R}$, set $\|u\|:=\inf _{n \in \mathbb{Z}}|u-n|$. The arguments of the functions are taken modulo 1 . Let $\mathcal{B} \mathcal{V}_{0}$ be the class of centered $B V$ functions. It contains in particular the step functions with a finite number of discontinuities. If φ is in $\mathcal{B} \mathcal{V}_{0}$, its Fourier coefficients $c_{r}(\varphi)$ satisfy: $c_{r}(\varphi)=\frac{\gamma_{r}(\varphi)}{r}, r \neq 0$, with $K(\varphi):=\sup _{r \neq 0}\left|\gamma_{r}(\varphi)\right|<+\infty$.

The Ostrowski expansion is the key to the analysis of the ergodic sums over the rotation by α. Let us recall its definition. We use the notation $m=m(n):=\ell$, if $n \in\left[q_{\ell}, q_{\ell+1}\left[\right.\right.$, for $n \geq 1$. We can write $n=b_{m} q_{m}+r$, with $1 \leq b_{m} \leq a_{m+1}, 0 \leq r<q_{m}$. By iteration, we get for n the following representation: $n=\sum_{k=0}^{m} b_{k} q_{k}$, with $0 \leq b_{k} \leq a_{k+1}$ for $1 \leq k<m$, and $0 \leq b_{0} \leq a_{1}-1$, $1 \leq b_{m} \leq a_{m+1}$. Therefore, the ergodic sum $\varphi_{n}(x)=\sum_{j=0}^{n-1} \varphi(x+j \alpha)$ of a function φ can be written:

$$
\begin{equation*}
\varphi_{n}(x)=\sum_{\ell=0}^{m} \sum_{j=N_{\ell-1}}^{N_{\ell}-1} \varphi(x+j \alpha)=\sum_{\ell=0}^{m} \varphi_{b_{\ell} q_{\ell}}\left(x+N_{\ell-1} \alpha\right), \text { with } N_{-1}=0, N_{\ell}=\sum_{k=0}^{\ell} b_{k} q_{k}, \text { for } \ell \leq m \tag{1}
\end{equation*}
$$

3. CLT with rate along large subsets of integers

Using (1), we will obtain a Gaussian behavior of φ_{n} for n in a large set of integers based on the following decorrelation property between the components $\varphi_{b_{n} q_{n}}$. The proof (given in [5]) completes and extends the proof of decorrelation in [8]. A historical reference for analogous computations is [7].

Proposition 3.1. Let ψ and φ be $B V$ centered functions on the circle. If there are constants $A \geq 1, p \geq 0$ such that $a_{n} \leq A n^{p}, \forall n \geq 1$, then we have for constants $C, \theta_{1}, \theta_{2}, \theta_{3}$, for every $1 \leq n \leq m \leq \ell$:

$$
\begin{aligned}
\left|\int_{X} \psi \varphi_{b_{n} q_{n}} \mathrm{~d} \mu\right| \leq & C \mathrm{~V}(\psi) \mathrm{V}(\varphi) \frac{n^{\theta_{1}}}{q_{n}} b_{n}, \quad\left|\int_{X} \psi \varphi_{b_{n} q_{n}} \varphi_{b_{m} q_{m}} \mathrm{~d} \mu\right| \leq C \mathrm{~V}(\psi) \mathrm{V}(\varphi)^{2} \frac{m^{\theta_{2}}}{q_{n}} b_{n} b_{m} \\
& \left|\int_{X} \psi \varphi_{b_{n} q_{n}} \varphi_{b_{m} q_{m}} \varphi_{b_{\ell} q_{\ell}} \mathrm{d} \mu\right| \leq C \mathrm{~V}(\psi) \mathrm{V}(\varphi)^{3} \frac{\ell^{\theta_{3}}}{q_{n}} b_{n} b_{m} b_{\ell}
\end{aligned}
$$

Let X and Y be two real random variables defined respectively on (Ω, \mathbb{P}) and $\left(\Omega_{1}, \mathbb{P}_{1}\right)$. Their distance (in distribution) is defined by $d(X, Y)=\sup _{x \in \mathbb{R}}\left|\mathbb{P}(X \leq x)-\mathbb{P}_{1}(Y \leq x)\right|$. Below the ergodic sum φ_{n} is viewed as a r.v. on the circle endowed with the uniform measure. For n such that $\left\|\varphi_{n}\right\|_{2}$ is big enough, the decorrelation proved in the preceding proposition permits to bound the distance of $\varphi_{n} /\left\|\varphi_{n}\right\|_{2}$ to a r.v. Y_{1} with distribution $\mathcal{N}(0,1)$. With the notation of the preliminaries, we have the following proposition.

Proposition 3.2. For every $\delta>0$, there is a constant $C(\delta)>0$ such that

$$
\begin{equation*}
d\left(\frac{\varphi_{n}}{\left\|\varphi_{n}\right\|_{2}}, Y_{1}\right) \leq C(\delta)\left(\frac{\max _{j=1}^{m(n)} b_{j}}{\left\|\varphi_{n}\right\|_{2}}\right)^{\frac{2}{3}} m(n)^{\frac{1}{4}+\delta} \tag{2}
\end{equation*}
$$

The proof of the proposition uses a classical method of expansion and truncation of the characteristic function $\int \exp \left(\mathrm{i} \zeta \varphi_{\mathrm{n}}\right) \mathrm{d} \mu$ where ζ is a real parameter. After replacing φ_{n} by its representation given in (1), one uses the decorrelation inequalities to estimate recursively the integral.

To apply the proposition, we need an information about the quotient $\frac{\max _{j=1}^{m} b_{j}}{\left\|\varphi_{n}\right\|_{2}}$. For it, we will assume that φ satisfies the condition:

$$
\begin{equation*}
\exists N_{0}, \eta, \theta_{0}>0 \text { such that } \frac{1}{N} \operatorname{Card}\left\{j \leq N:\left|\gamma_{q_{j}}(\varphi)\right| \geq \eta\right\} \geq \theta_{0}, \forall N \geq N_{0} \tag{3}
\end{equation*}
$$

Remarks on the validity of (3) for step functions are given later. Let φ in $\mathcal{B} \mathcal{V}_{0}$ satisfying (3).
Theorem 3.1. 1) Suppose that α is such that $a_{n} \leq C n^{p}, \forall n \geq 1$, for a constant C. For a positive constant B, let $W_{B}:=\{n \in \mathbb{N}$: $\left.B^{-1} \sqrt{m(n)} / \sqrt{\ln m(n)} \leq\left\|\varphi_{n}\right\|_{2} \leq B \sqrt{m(n)}\right\}$. Then if B is big enough, the asymptotic density of W_{B} is 1 and, for $\left.\delta_{0} \in\right] 0, \frac{1}{2}[$, there is a constant $K\left(\delta_{0}\right)$ such that, for $p<\frac{1}{8}$,

$$
\begin{equation*}
d\left(\frac{\varphi_{n}}{\left\|\varphi_{n}\right\|_{2}}, Y_{1}\right) \leq K\left(\delta_{0}\right) m(n)^{-\frac{1}{12}+\frac{2}{3} p+\delta_{0}}, \forall n \in W_{B} \tag{4}
\end{equation*}
$$

If α has bounded partial quotients, the statement holds with $p=0$ and $m(n)$ replaced by $\ln n$.
2) Let α be a quadratic irrational. For a positive constant B, let $V_{B}:=\left\{n \geq 1: B^{-1} \sqrt{\log n} \leq\left\|\varphi_{n}\right\|_{2} \leq B \sqrt{\log n}\right\}$. Then, there are B, N_{0} and two constants $R, \zeta_{0}>0$ such that the density of V_{B} satisfies:

$$
\begin{equation*}
\frac{1}{N} \operatorname{Card}\left(V_{B} \bigcap[1, N]\right) \geq 1-R N^{-\zeta_{0}}, \text { for } N \geq N_{0} \tag{5}
\end{equation*}
$$

and for $\left.\delta_{0} \in\right] 0, \frac{1}{2}\left[\right.$, there is a constant $K\left(\delta_{0}\right)$ such that for $n \in V_{B}$,

$$
\begin{equation*}
d\left(\frac{\varphi_{n}}{\left\|\varphi_{n}\right\|_{2}}, Y_{1}\right) \leq K\left(\delta_{0}\right)(\log n)^{-\frac{1}{12}+\delta_{0}} \tag{6}
\end{equation*}
$$

Sketch of the proof. Statements (4) and (6) follow from Proposition 3.2. It remains to show that W_{B} has density 1 and that (5) holds. This will show that the variance $\left\|\varphi_{n}\right\|_{2}^{2}$ is rather big for n in large sets of integers. Let n be in $\left[q_{\ell-1}, q_{\ell}[\right.$. Keeping only the indices q_{j} in the Fourier series of φ, the variance at time n is bounded from below as follows, with $c=\frac{8}{\pi^{2}}$, for every $\delta \in] 0, \frac{1}{2}[$,

$$
\begin{equation*}
\left\|\varphi_{n}\right\|_{2}^{2} \geq c \sum_{j=1}^{\ell}\left|c_{q_{j}}(\varphi)\right|^{2} \frac{\left\|n q_{j} \alpha\right\|^{2}}{\left\|q_{j} \alpha\right\|^{2}} \geq c \delta^{2} \sum_{j=1}^{\ell}\left|\gamma_{q_{j}}(\varphi)\right|^{2} a_{j+1}^{2} 1_{\left\|n q_{j} \alpha\right\| \geq \delta} \tag{7}
\end{equation*}
$$

Modulo 1 we have $q_{j} \alpha=\theta_{j}$, with $\theta_{j}=(-1)^{j}\left\|q_{j} \alpha\right\|$. We count how many n in an interval of integers $I=\left[N_{1}, N_{2}\right.$ [of length L are such that $\left\|n \theta_{j}\right\|<\delta$. The numbers $n \theta_{j}$ are separated by steps of length θ_{j}, these steps encounter integers at most $L\left(\theta_{j}^{-1}-1\right)^{-1}+2$ times, and each time it occurs, we get at most $2\left(1+\delta \theta_{j}^{-1}\right)$ times $\left\|n \theta_{j}\right\|<\delta$. Thus, as $\left|\theta_{j}\right| \leq q_{j+1}^{-1}$, the number of n in I such that $\left\|n \theta_{j}\right\|<\delta$ is less than $C\left(\delta+q_{j+1}^{-1}\right) L$ with a universal constant $C>0$ if $q_{j+1} \leq 2 L$. By summation on the array $(j, n) \in[1, \ell] \times I$, using (7) and (3), we get two positive constants c_{1}, c_{2} (not depending on δ) such that, if $q_{\ell} \leq 2 L$, for every $\left.\delta \in\right] 0, \frac{1}{2}\left[\right.$, the number of n in I such that $\left\|\varphi_{n}\right\|_{2}<c_{1} \delta \sqrt{\ell}$ is less than $c_{2}\left(\delta+\ell^{-1}\right) L$. Choosing $N_{2}=n$, $N_{1}:=q_{m(N)-u_{N}}$ with $u_{N}=\left\lfloor\frac{1}{2} m(N)\right\rfloor$ and $\delta=\left(\ln m\left(N_{1}\right)\right)^{-\frac{1}{2}}$, we obtain that W_{B} has density 1 .

If α is a quadratic irrational, the corresponding Ostrowski expansion is associated with a subshift of finite type and we use a result of large deviations to bound the size of the complementary of V_{B}.

Remark 1. There are also examples of rotations for which there is a non-normal non-degenerate limit law for the normalized ergodic sums along the subsequence giving the biggest variance (see a counter-example in [5]).

4. Application to step functions

To be able to apply the results to a centered BV function $\varphi=\sum_{r \neq 0} \frac{\gamma_{r}(\varphi)}{r} \mathrm{e}^{2 \pi \mathrm{ir}}$, we have to check the condition (3) on the coefficients $\gamma_{q_{j}}(\varphi)$. The functions $\{x\}-\frac{1}{2}=\frac{-1}{2 \pi \mathrm{i}} \sum_{r \neq 0} \frac{1}{r} \mathrm{e}^{2 \pi \mathrm{irx}}$ and $1_{\left[0, \frac{1}{2}[\right.}-1_{\left[\frac{1}{2}, 1[\right.}=\sum_{r} \frac{2}{\pi \mathrm{i}(2 r+1)} \mathrm{e}^{2 \pi \mathrm{i}(2 r+1)}$ are immediate examples where (3) is satisfied. In the second case, this is because $\gamma_{q_{k}}=0$ or $\frac{2}{\pi \mathrm{i}}$, depending on whether q_{j} is even or odd, and two consecutive q_{j} 's cannot be both even.

In general, for a step function φ, (3) (and therefore by Theorem 3.1 a lower bound for $\left\|\varphi_{n}\right\|_{2}$ for many n 's) is related to the Diophantine properties of its discontinuities with respect to α. A generic result follows from the following lemma.

Lemma 4.1. If $\varphi=\sum_{j=0}^{s} v_{j} 1_{\left[u_{j}, u_{j+1}[\right.}-c$ is a centered step function φ on $\left[0,1\left[\right.\right.$ taking a constant value $v_{j} \in \mathbb{R}$ on the interval [u_{j}, u_{j+1} [, with $u_{0}=0<u_{1}<\ldots<u_{s}<u_{s+1}=1$ and c a constant such that φ is centered, there is a function $H_{\varphi}\left(u_{1}, \ldots, u_{s}\right) \geq 0$ such that $\left|\gamma_{r}(\varphi)\right|^{2}=\pi^{-2} H_{\varphi}\left(r u_{1}, \ldots, r u_{s}\right)$.

Since $\left(q_{k}\right)$ is a strictly increasing sequence of integers, for almost every $\left(u_{1}, \ldots, u_{s}\right)$ in \mathbb{T}^{s}, the sequence $\left(q_{k} u_{1}, \ldots, q_{k} u_{s}\right)_{k \geq 1}$ is uniformly distributed in \mathbb{T}^{s}. Hence, condition (3) is satisfied for a.e. value of $\left(u_{1}, \ldots, u_{s}\right)$ in \mathbb{T}^{s}, since for a.e. $\left(u_{1}, \ldots, u_{s}\right) \in \mathbb{T}^{s}$:

$$
\lim _{n} \frac{1}{n} \sum_{k=1}^{n} H_{\varphi}\left(q_{k} u_{1}, \ldots, q_{k} u_{s}\right)=\int_{\mathbb{T}^{s}} H_{\varphi}\left(u_{1}, \ldots, u_{s}\right) \mathrm{d} u_{1} \ldots \mathrm{~d} u_{s}>0
$$

Remark 2. For example, if $\varphi=\varphi(u, \cdot)=1_{[0, u[}-u, H_{\varphi}(u)=\sin ^{2}(\pi u)$, if $\varphi=\varphi(w, u, \cdot)=1_{[0, u]}-1_{[w, u+w]}, H(\varphi)=$ $4 \sin ^{2}(\pi u) \sin ^{2}(\pi w)$. Observe that, if α is not bpq, in the first example there are many u 's that do not satisfy the previous equidistribution property. Indeed, let $u=\sum_{n \geq 0} b_{n} q_{n} \alpha \bmod 1, b_{n} \in \mathbb{Z}$, be the so-called Ostrowski expansion of u, where q_{n} are the denominators of α. It can be shown that, if $\sum_{n \geq 0} \frac{\left|b_{n}\right|}{a_{n+1}}<\infty$, then $\lim _{k}\left\|q_{k} u\right\|=0$. There is an uncountable set of u 's satisfying this condition if α is not bpq. The variance degenerates for these values of u, although the cocycle generated by φ is ergodic (therefore not a coboundary) under the only condition $u \notin \mathbb{Z} \alpha+\mathbb{Z}$.

We can also address the case of vectorial functions. For simplicity, consider a centered vectorial function $\Phi=\left(\varphi_{1}, \varphi_{2}\right)$ with two components $\varphi_{i}=\sum_{j=0}^{s_{i}} v_{j}^{i} 1_{\left[u_{j}^{i}, u_{j+1}^{i}[\right.}-c_{i}$, for $i=1,2$. Now we have to control the covariance matrix. We use the following lemma.

Lemma 4.2. Let Λ be a compact space and let $\left(F_{\lambda}, \lambda \in \Lambda\right)$ be a family of nonnegative non-identically null continuous functions on \mathbb{T}^{d} depending continuously on λ. If a sequence $\left(z_{k}\right)$ is equidistributed in \mathbb{T}^{d}, then $\exists N_{0}, \eta, \theta_{0}>0$ such that Card $\left\{n \leq N: F_{\lambda}\left(z_{n}\right) \geq \eta\right\} \geq$ $\theta_{0} N, \forall N \geq N_{0}, \forall \lambda \in \Lambda$.

Let us consider a linear combination $\varphi_{a, b}=a \varphi_{1}+b \varphi_{2}$. Denote by \underline{u} the parameter $\left(u_{1}^{1}, \ldots, u_{s_{1}}^{1}, u_{1}^{2}, \ldots, u_{s_{2}}^{2}\right)$ in $\mathbb{T}^{s_{1}+s_{2}}$ and apply the lemma to $F_{\lambda}(\underline{u})=H_{a \varphi_{1}+b \varphi_{2}}(\underline{u})$, for $\lambda=(a, b)$ in the unit sphere. The set of points \underline{u} for which $\left(q_{k} \underline{u}\right)_{k \geq 1}$ is equidistributed in $\mathbb{T}^{s_{1}+s_{2}}$ has full measure in $\mathbb{T}^{s_{1}+s_{2}}$.

Applying Lemma 4.2 with $z_{k}=q_{k} \underline{u}$ for such a point \underline{u}, we obtain that, generically with respect to the discontinuities of (φ_{1}, φ_{2}), condition (3) is satisfied by $a \varphi_{1}+b \varphi_{2}$ uniformly with respect to (a, b) in the set of unit vectors. Therefore, generically, a bi-dimensional analogue of Theorem 3.1 holds for Φ.

There are also special values of the parameter for which the result holds: let us consider the vectorial function appearing in the model of rectangular periodic billiard in the plane studied in [3] (see also [4]): $\Phi=\left(\varphi_{1}, \varphi_{2}\right)$ with $\varphi_{1}=1_{\left[0, \frac{\alpha}{2}\right]}$ $1_{\left[\frac{1}{2}, \frac{1}{2}+\frac{\alpha}{2}\right]}, \varphi_{2}=1_{\left[0, \frac{1}{2}-\frac{\alpha}{2}\right]}-1_{\left[\frac{1}{2}, 1-\frac{\alpha}{2}\right]}$. The Fourier coefficients of φ_{1} and φ_{2} of order r are null for r even.

If q_{j} is even, then $\gamma_{q_{j}}\left(\varphi_{a, b}\right)$ is null. If q_{j} is odd, we have $\gamma_{q_{j}}\left(\varphi_{a, b}\right)=a+O\left(\frac{1}{q_{j+1}}\right)$, if p_{j} is odd, $=b+O\left(\frac{1}{q_{j+1}}\right)$, if p_{j} is even. It follows that, if α is such that, in average, there is a positive proportion of pairs (p_{j}, q_{j}) that are (even, odd) and the same for (odd, odd), then we have for $\Phi=\left(\varphi_{1}, \varphi_{2}\right)$ a bi-dimensional analogue of Theorem 3.1.

References

[1] J. Beck, Randomness of the square root of 2 and the giant leap, part 1, 2, Period. Math. Hung. 60 (2) (2010) 137-242; 62 (2) (2011) 127-246.
[2] M. Bromberg, C. Ulcigrai, A temporal central limit theorem for real-valued cocycles over rotations, preprint, arXiv:1705.06484.
[3] J.-P. Conze, E. Gutkin, On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces, Ergod. Theory Dyn. Syst. 32 (2) (2012) 491-515.
[4] J.-P. Conze, S. Isola, S. Le Borgne, Diffusive behaviour of ergodic sums over rotations, arXiv:1705.10550, Stoch. Dyn. (2019), https://doi.org/10.1142/ S0219493719500163, in press.
[5] J.-P. Conze, S. Le Borgne, On the CLT for rotations and BV functions, arXiv:1804.09929v2.
[6] D. Dolgopyat, O. Sarig, Temporal distributional limit theorems for dynamical systems, J. Stat. Phys. 166 (2017) 680-713.
[7] G.H. Hardy, J.E. Littlewood, Some problems of Diophantine approximation: a series of cosecants, Bull. Calcutta Math. Soc. 20 (1930) $251-266$.
[8] F. Huveneers, Subdiffusive behavior generated by irrational rotations, Ergod. Theory Dyn. Syst. 29 (4) (2009) 1217-1233.

[^0]: E-mail addresses: jean-pierre.conze@univ-rennes1.fr (J.-P. Conze), stephane.leborgne@univ-rennes1.fr (S. Le Borgne).
 https://doi.org/10.1016/j.crma.2019.01.008
 1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

