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Let x �→ x + α be a rotation on the circle and let ϕ be a step function. Denote by ϕn(x)
the ergodic sums 

∑n−1
j=0 ϕ(x + jα). For α in a class containing the rotations with bounded 

partial quotients and under a Diophantine condition on the discontinuities of ϕ, we show 
that ϕn/‖ϕn‖2 is asymptotically Gaussian for n in a set of density 1.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Soient x �→ x +α une rotation sur le cercle, ϕ une fonction en escalier et ϕn(x) les sommes 
ergodiques 

∑n−1
j=0 ϕ(x + jα). Pour α dans une classe contenant les rotations à quotients 

partiels bornés et sous une condition diophantienne sur les discontinuités de ϕ, nous 
montrons que ϕn/‖ϕn‖2 est asymptotiquement gaussien pour n dans un ensemble de 
densité 1.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let α be an irrational number in ]0, 1[, [0; a1, a2, ..., an, ...] its continued fraction expansion, pn and qn its numerators 
and denominators defined as usual by: p0 = 0, p1 = 1 and pn+1 = an+1 pn + pn−1, q0 = 1, q1 = a1 and qn+1 = an+1qn +
qn−1, n ≥ 1. For the rotation x → x + α mod 1 on X = R/Z endowed with the Lebesgue measure μ, denote by ϕL(x) =∑L−1

0 ϕ(x + jα) the ergodic sums of a function ϕ .
Contrasting with the case of expanding maps like x → 2 x mod 1, the behavior of the sequence (ϕL)L≥1 depends strongly 

on the regularity of ϕ . Under a Diophantine condition on α, too much regularity for ϕ can imply that ϕ is a coboundary 
and that the sums remain bounded. Therefore, it is natural to consider BV (i.e. with bounded variation) functions on the 
circle, in particular step functions. But still, by Denjoy–Koksma inequality, along the sequence (qn) of denominators of α, the 
ergodic sums of a BV function ϕ are uniformly bounded: ‖ϕqn ‖∞ ≤ V (ϕ), where V (ϕ) denotes the variation. Nevertheless, 
one can ask if along other sequences of time (Ln) there is a more stochastic behavior.
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The study of a Gaussian behavior in distribution in the context of Fourier series and of rotations has a long history, 
starting with Salem and Zygmund in the 1940s. M. Denker and R. Burton in 1987, then M. Lacey (1993), D. Volný and 
P. Liardet (1997), M. Weber (2000, 2006) proved the existence of functions, necessarily not BV, whose ergodic sums over 
rotations satisfy a Central Limit Theorem after self-normalization. For the functions ψ := 1[0, 1

2 [ − 1[ 1
2 ,0[ , F. Huveneers [8]

proved that, for every irrational α, there is a sequence (Ln)n∈N such that ψLn /
√

n is asymptotically normally distributed. Let 
us also mention the recent “temporal” limit theorems for rotations obtained by J. Beck [1], D. Dolgopyat, and O. Sarig [6], 
M. Bromberg and C. Ulcigrai [2].

An irrational number α is said to be of bounded type (or “bpq”) if it has bounded partial quotients, i.e. if supk ak < ∞. 
In [4], an almost sure invariance principle for subsequences of ergodic sums of BV functions was shown when α is not 
bpq. In this note, for a class of rotations containing the bounded type case, we show (Theorem 3.1) a “spatial” asymptotic 
Gaussian behavior of the ergodic sums ϕn of a BV function, for n in a set W of integers of density 1. We also consider the 
particular case when (ak) is ultimately periodic (equivalently, by a theorem of Lagrange, when α is a quadratic irrational) 
and improve the size estimation of W in this case. The method differs from [4] and relies on a decorrelation property like 
in [8]. Detailed proofs of the results of this note are given in [5].

2. Preliminaries

For u ∈ R, set ‖u‖ := infn∈Z |u − n|. The arguments of the functions are taken modulo 1. Let BV0 be the class of centered 
BV functions. It contains in particular the step functions with a finite number of discontinuities. If ϕ is in BV0, its Fourier 
coefficients cr(ϕ) satisfy: cr(ϕ) = γr (ϕ)

r , r 
= 0, with K (ϕ) := supr 
=0 |γr(ϕ)| < +∞.
The Ostrowski expansion is the key to the analysis of the ergodic sums over the rotation by α. Let us recall its definition. 

We use the notation m = m(n) := �, if n ∈ [q�, q�+1[, for n ≥ 1. We can write n = bmqm + r, with 1 ≤ bm ≤ am+1, 0 ≤ r < qm . 
By iteration, we get for n the following representation: n = ∑m

k=0 bk qk , with 0 ≤ bk ≤ ak+1 for 1 ≤ k < m, and 0 ≤ b0 ≤ a1 −1, 
1 ≤ bm ≤ am+1. Therefore, the ergodic sum ϕn(x) = ∑n−1

j=0 ϕ(x + jα) of a function ϕ can be written:

ϕn(x) =
m∑

�=0

N�−1∑
j=N�−1

ϕ(x + jα) =
m∑

�=0

ϕb� q�
(x + N�−1α), with N−1 = 0, N� =

�∑
k=0

bk qk, for � ≤ m. (1)

3. CLT with rate along large subsets of integers

Using (1), we will obtain a Gaussian behavior of ϕn for n in a large set of integers based on the following decorrelation 
property between the components ϕbnqn . The proof (given in [5]) completes and extends the proof of decorrelation in [8]. 
A historical reference for analogous computations is [7].

Proposition 3.1. Let ψ and ϕ be BV centered functions on the circle. If there are constants A ≥ 1, p ≥ 0 such that an ≤ A np, ∀n ≥ 1, 
then we have for constants C , θ1, θ2 , θ3 , for every 1 ≤ n ≤ m ≤ �:

|
∫

X

ψ ϕbnqn dμ| ≤ C V(ψ) V(ϕ)
nθ1

qn
bn, |

∫

X

ψ ϕbnqnϕbmqm dμ| ≤ C V(ψ)V(ϕ)2 mθ2

qn
bnbm,

|
∫

X

ψ ϕbnqnϕbmqmϕb�q�
dμ| ≤ C V(ψ)V(ϕ)3 �θ3

qn
bnbmb�.

Let X and Y be two real random variables defined respectively on (�, P) and (�1, P1). Their distance (in distribution) is 
defined by d(X, Y ) = supx∈R |P(X ≤ x) −P1(Y ≤ x)|. Below the ergodic sum ϕn is viewed as a r.v. on the circle endowed with 
the uniform measure. For n such that ‖ϕn‖2 is big enough, the decorrelation proved in the preceding proposition permits 
to bound the distance of ϕn/‖ϕn‖2 to a r.v. Y1 with distribution N (0, 1). With the notation of the preliminaries, we have 
the following proposition.

Proposition 3.2. For every δ > 0, there is a constant C(δ) > 0 such that

d(
ϕn

‖ϕn‖2
, Y1) ≤ C(δ)

⎛
⎝maxm(n)

j=1 b j

‖ϕn‖2

⎞
⎠

2
3

m(n)
1
4 +δ. (2)

The proof of the proposition uses a classical method of expansion and truncation of the characteristic function ∫
exp(iζϕn)dμ where ζ is a real parameter. After replacing ϕn by its representation given in (1), one uses the decorre-

lation inequalities to estimate recursively the integral.
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To apply the proposition, we need an information about the quotient 
maxm

j=1 b j

‖ϕn‖2
. For it, we will assume that ϕ satisfies 

the condition:

∃N0, η, θ0 > 0 such that
1

N
Card{ j ≤ N : |γq j (ϕ)| ≥ η} ≥ θ0, ∀N ≥ N0. (3)

Remarks on the validity of (3) for step functions are given later. Let ϕ in BV0 satisfying (3).

Theorem 3.1. 1) Suppose that α is such that an ≤ Cnp , ∀n ≥ 1, for a constant C. For a positive constant B, let W B := {n ∈ N :
B−1

√
m(n)/

√
ln m(n) ≤ ‖ϕn‖2 ≤ B

√
m(n)}. Then if B is big enough, the asymptotic density of W B is 1 and, for δ0 ∈]0, 1

2 [, there is a 
constant K (δ0) such that, for p < 1

8 ,

d(
ϕn

‖ϕn‖2
, Y1) ≤ K (δ0)m(n)−

1
12 + 2

3 p+δ0 , ∀n ∈ W B . (4)

If α has bounded partial quotients, the statement holds with p = 0 and m(n) replaced by ln n.
2) Let α be a quadratic irrational. For a positive constant B, let V B := {n ≥ 1 : B−1

√
log n ≤ ‖ϕn‖2 ≤ B 

√
log n}. Then, there are 

B, N0 and two constants R, ζ0 > 0 such that the density of V B satisfies:

1

N
Card(V B

⋂
[1, N]) ≥ 1 − R N−ζ0 , for N ≥ N0; (5)

and for δ0 ∈]0, 1
2 [, there is a constant K (δ0) such that for n ∈ V B ,

d(
ϕn

‖ϕn‖2
, Y1) ≤ K (δ0) (log n)−

1
12 +δ0 . (6)

Sketch of the proof. Statements (4) and (6) follow from Proposition 3.2. It remains to show that W B has density 1 and that 
(5) holds. This will show that the variance ‖ϕn‖2

2 is rather big for n in large sets of integers. Let n be in [q�−1, q�[. Keeping 
only the indices q j in the Fourier series of ϕ , the variance at time n is bounded from below as follows, with c = 8

π2 , for 
every δ ∈]0, 12 [,

‖ϕn‖2
2 ≥ c

�∑
j=1

|cq j (ϕ)|2 ‖nq jα‖2

‖q jα‖2
≥ c δ2

�∑
j=1

|γq j (ϕ)|2 a2
j+1 1‖nq jα‖≥δ. (7)

Modulo 1 we have q jα = θ j , with θ j = (−1) j‖q jα‖. We count how many n in an interval of integers I = [N1, N2[ of length 
L are such that ‖n θ j‖ < δ. The numbers n θ j are separated by steps of length θ j , these steps encounter integers at most 
L(θ−1

j − 1)−1 + 2 times, and each time it occurs, we get at most 2 (1 + δ θ−1
j ) times ‖n θ j‖ < δ. Thus, as |θ j | ≤ q−1

j+1, the 
number of n in I such that ‖n θ j‖ < δ is less than C(δ + q−1

j+1) L with a universal constant C > 0 if q j+1 ≤ 2L. By summation 
on the array ( j, n) ∈ [1, �] × I , using (7) and (3), we get two positive constants c1, c2 (not depending on δ) such that, if 
q� ≤ 2L, for every δ ∈]0, 12 [, the number of n in I such that ‖ϕn‖2 < c1 δ

√
� is less than c2 (δ + �−1) L. Choosing N2 = n, 

N1 := qm(N)−uN with uN =  1
2 m(N)� and δ = (ln m(N1))

− 1
2 , we obtain that W B has density 1.

If α is a quadratic irrational, the corresponding Ostrowski expansion is associated with a subshift of finite type and we 
use a result of large deviations to bound the size of the complementary of V B . �
Remark 1. There are also examples of rotations for which there is a non-normal non-degenerate limit law for the normalized 
ergodic sums along the subsequence giving the biggest variance (see a counter-example in [5]).

4. Application to step functions

To be able to apply the results to a centered BV function ϕ = ∑
r 
=0

γr (ϕ)
r e2πir , we have to check the condition (3) on 

the coefficients γq j (ϕ). The functions {x} − 1
2 = −1

2πi

∑
r 
=0

1
r e2πirx and 1[0, 1

2 [ − 1[ 1
2 ,1[ = ∑

r
2

πi(2r+1)
e2πi(2r+1) are immediate 

examples where (3) is satisfied. In the second case, this is because γqk = 0 or 2
πi , depending on whether q j is even or odd, 

and two consecutive q j ’s cannot be both even.
In general, for a step function ϕ , (3) (and therefore by Theorem 3.1 a lower bound for ‖ϕn‖2 for many n’s) is related to 

the Diophantine properties of its discontinuities with respect to α. A generic result follows from the following lemma.

Lemma 4.1. If ϕ = ∑s
j=0 v j 1[u j ,u j+1[ − c is a centered step function ϕ on [0, 1[ taking a constant value v j ∈ R on the interval 

[u j, u j+1[, with u0 = 0 < u1 < ... < us < us+1 = 1 and c a constant such that ϕ is centered, there is a function Hϕ(u1, ..., us) ≥ 0
such that |γr(ϕ)|2 = π−2 Hϕ(ru1, ..., rus).
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Since (qk) is a strictly increasing sequence of integers, for almost every (u1, ..., us) in Ts , the sequence (qku1, ..., qkus)k≥1

is uniformly distributed in Ts . Hence, condition (3) is satisfied for a.e. value of (u1, ..., us) in Ts , since for a.e. 
(u1, ..., us) ∈ T

s:

lim
n

1

n

n∑
k=1

Hϕ(qku1, ...,qkus) =
∫

Ts

Hϕ(u1, ..., us)du1...dus > 0.

Remark 2. For example, if ϕ = ϕ(u, · ) = 1[0,u[ − u, Hϕ(u) = sin2(πu), if ϕ = ϕ(w, u, · ) = 1[0, u] − 1[w, u+w] , H(ϕ) =
4 sin2(πu) sin2(πw). Observe that, if α is not bpq, in the first example there are many u’s that do not satisfy the previous 
equidistribution property. Indeed, let u = ∑

n≥0 bnqnα mod 1, bn ∈ Z, be the so-called Ostrowski expansion of u, where qn

are the denominators of α. It can be shown that, if 
∑

n≥0
|bn|

an+1
< ∞, then limk ‖qku‖ = 0. There is an uncountable set of u’s 

satisfying this condition if α is not bpq. The variance degenerates for these values of u, although the cocycle generated by 
ϕ is ergodic (therefore not a coboundary) under the only condition u /∈ Zα +Z.

We can also address the case of vectorial functions. For simplicity, consider a centered vectorial function  = (ϕ1, ϕ2)

with two components ϕi = ∑si
j=0 vi

j 1[ui
j ,u

i
j+1[ − ci , for i = 1, 2. Now we have to control the covariance matrix. We use the 

following lemma.

Lemma 4.2. Let � be a compact space and let (Fλ, λ ∈ �) be a family of nonnegative non-identically null continuous functions on Td

depending continuously on λ. If a sequence (zk) is equidistributed in Td, then ∃ N0, η, θ0 > 0 such that Card{n ≤ N : Fλ(zn) ≥ η} ≥
θ0 N, ∀N ≥ N0 , ∀λ ∈ �.

Let us consider a linear combination ϕa,b = a ϕ1 + b ϕ2. Denote by u the parameter (u1
1, ..., u

1
s1

, u2
1, ..., u

2
s2

) in Ts1+s2

and apply the lemma to Fλ(u) = Haϕ1+bϕ2 (u), for λ = (a, b) in the unit sphere. The set of points u for which (qku)k≥1 is 
equidistributed in Ts1+s2 has full measure in Ts1+s2 .

Applying Lemma 4.2 with zk = qku for such a point u, we obtain that, generically with respect to the discontinuities 
of (ϕ1, ϕ2), condition (3) is satisfied by a ϕ1 + b ϕ2 uniformly with respect to (a, b) in the set of unit vectors. Therefore, 
generically, a bi-dimensional analogue of Theorem 3.1 holds for .

There are also special values of the parameter for which the result holds: let us consider the vectorial function appearing 
in the model of rectangular periodic billiard in the plane studied in [3] (see also [4]):  = (ϕ1, ϕ2) with ϕ1 = 1[0, α

2 ] −
1[ 1

2 , 1
2 + α

2 ] , ϕ2 = 1[0, 1
2 − α

2 ] − 1[ 1
2 ,1− α

2 ] . The Fourier coefficients of ϕ1 and ϕ2 of order r are null for r even.

If q j is even, then γq j (ϕa,b) is null. If q j is odd, we have γq j (ϕa,b) = a + O ( 1
q j+1

), if p j is odd, = b + O ( 1
q j+1

), if p j is 
even. It follows that, if α is such that, in average, there is a positive proportion of pairs (p j, q j) that are (even, odd) and the 
same for (odd, odd), then we have for  = (ϕ1, ϕ2) a bi-dimensional analogue of Theorem 3.1.
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