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The goal of this paper is to investigate the topological structure of open simply connected 
3-manifolds whose scalar curvature has a slow decay at infinity. In particular, we show 
that the Whitehead manifold does not admit a complete metric whose scalar curvature 
decays slowly, and in fact that any contractible complete 3-manifolds with such a metric 
is diffeomorphic to R3. Furthermore, using this result, we prove that any open simply 
connected 3-manifold M with π2(M) = Z and a complete metric as above is diffeomorphic 
to S2 ×R.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Le but de cet article est d’étudier la structure topologique de 3-variétés simplement 
connexes ouvertes dont la courbure scalaire présente une décroissance lente à l’infini. En 
particulier, nous montrons que la variété de Whitehead n’admet pas de métrique complète 
dont la courbure scalaire décroît lentement, et qu’en fait toute 3-variété contractible 
complète avec une telle métrique est difféomorphe à R3. De plus, en utilisant ce résultat, 
nous montrons que toute 3-variété ouverte simplement connexe M telle que π2(M) = Z, 
munie d’une métrique complète comme celle ci-dessus, est difféomorphe à S2 ×R.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thanks to G. Perelman’s proof of W. Thurston’s geometrization conjecture in [12–14], the topological structure of compact 
3-manifolds is now well understood. However, it is known from the early work [21] of J.H.C. Whitehead that the topological 
structure of non-compact 3-manifolds is much more complicated. For example, there exists a contractible open 3-manifold, 
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called the Whitehead manifold, which is not homeomorphic to R3. An interesting question in differential geometry is 
whether the Whitehead manifold admits a complete metric with positive scalar curvature.

The study of manifolds of positive scalar curvature has a long history. Among many results, we mention the topological 
classification of compact manifolds of positive scalar curvature and the Positive Mass Theorem. There are two methods that 
have achieved many breakthroughs: minimal hypersurfaces and K-theory.

The K-theory method was pioneered by A. Lichnerowicz and is systemically developed by M. Gromov and H. Lawson 
in [5], based on the Atiyah–Singer Index theorem in [1]. Furthermore, combined with some results about the Novikov 
conjecture, S. Chang, S. Weinberger, and G.L. Yu [3] investigated the topological structure of open 3-manifolds with uniformly 
positive scalar curvatures and finitely generated fundamental groups. Precisely, they proved that any contractible 3-manifold 
whose scalar curvature is bounded away from zero is R3, which implies that the Whitehead manifold does not admit a 
metric with uniformly positive scalar curvature.

The origin of the minimal hypersurfaces method is the article of R. Schoen and S.T. Yau [19]. For open 3-manifolds, 
there are many applications, such as the Positive Mass Theorem [17,18] and the 3-dimensional Milnor Conjecture [7]. In [5], 
Gromov and Lawson applied this method to open 3-manifolds.

In this paper, we extend Gromov–Lawson’s Theorem [5] to open 3-manifolds whose scalar curvature has a decay at 
infinity.

Theorem 1.1. Assume that (M3, g) is a contractible complete 3-manifold. Let 0 ∈ M and r(x) be the distance function from x to 0. If 
there exists a number α ∈ [0, 2) such that

lim inf
r(x)→∞ rα(x)Scal(x) > 0,

then M3 is diffeomorphic to R3.

Our main tool comes from the solution to the Plateau Problem. Let us give a brief review of the existence of the solution 
to the Plateau problem and their regularity. In the case of R3, the existence is due to Douglas [4] and Radó [15]: For 
any smooth curve γ in R3, there exists a surface with minimal area, spanning γ , which is parametrized by a disc D2. 
Furthermore, Osserman [10] and Gulliver [6] proved that this solution has no interior branch point. In 1948, Morrey [8,
9] devised a new method to solve the Plateau problem for a map from a disc to a “homogeneously regular” Riemannian 
manifold. In addition, Osserman and Gulliver’s arguments show that Morrey’s solution also has no interior branch point.

To sum up, for any null-homotopic smooth curve γ in a complete Riemannian manifold (M3, g), there exists a continuous 
map f : D2 → M such that f induces a homomorphism between ∂ D and γ and the interior of f is a minimal immersion.

Let us explain the scheme of Gromov–Lawson’s proof in [5]. From J. Stalling’s results in [20], it is sufficient to prove 
that M is simply connected at infinity. We argue by contradiction and suppose that M is not simply connected at infinity. 
Namely, there exists a compact set K in M , satisfying that, for any geodesic ball B R (0) containing K , there is a smooth 
closed curve γ in M \ B R(0), which is not null-homotopic in M \ K . Choosing R large enough and considering the solution 
S to the Plateau problem for γ , S can not be contained in a “small” neighborhood of some circle(s), which contradicts a 
result of Rosenberg in [16]. Before stating Rosenberg’s result, we firstly define the notion of stable H-surface.

Definition 1.2. Let (M, g) be a 3-dimensional Riemannian manifold and � a surface immersed in (M, g). � is said to be a 
H-surface if the mean curvature of � is constant and equals to H , where H ∈ R. Furthermore, we consider the operator L
of � defined as

L = �� + |A|2 + RicM(n),

where |A|2 is the square length of the second fundamental form of � in M , n is a unit normal vector field along �. We say 
that � is a stable H-surface if

−
∫
�

uL(u) ≥ 0

for any smooth function u with compact support over �.

In [16], applying the stable condition, Rosenberg obtained the following theorem.

Theorem 1.3. [16] Let (N, g) be a complete Riemannian 3-manifold satisfying

3H2 + S(x) ≥ c, for any x ∈ N,
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where S(x) is the scalar curvature, H ∈R and c > 0. Suppose that � is a stable H-surface immersed in N. Then, one has, for any x ∈ �,

d�(x, ∂�) ≤ 2π/(3c)1/2,

where d� is the intrinsic distance in �.

Remark 1.4. From the proof of Theorem 1.3 in [16], we do not need the condition that the scalar curvature S(x) is uniformly 
bounded.

When trying to generalize Gromov–Lawson’s arguments to contractible 3-manifolds whose scalar curvature decays at 
infinity, one encounters an obstacle: the lack of uniform lower bound of the scalar curvature on the surface S spanning the 
curve γ . However, this can be overcome by choosing a new curve σ near the boundary of B R/2(0), which is homotopic 
to γ in M \ K . More precisely, using the regularity property of S , after a small deformation, the intersection of S and the 
boundary of B R/2(0) is some circle(s). Therefore, the intersection can be chosen as a curve σ , which satisfies the required 
property. This leads to Theorem 1.1, by applying Gromov–Lawson’s argument [5] to this curve σ .

2. The proof of Theorem 1.1

Before the proof of Theorem 1.1, we introduce an important notion and recall a classical result about open 3-manifolds.

Definition 2.1. A topological space X is said to be simply connected at infinity if, for any compact set C , there exists a compact 
set V containing C , such that the induced map i∗ : π1(X \ V ) → π1(X \ C) is trivial, where i : X \ V → X \ C is an inclusion 
map.

It is well known from [21] that the Whitehead manifold is not simply connected at infinity. In fact, there is a unique 
non-compact 3-manifold which is both simply connected at infinity and contractible.

Theorem 2.2. [Stallings] [20] Let X be a contractible 3-manifold, then X is homeomorphic to R3 if and only if X is simply connected 
at infinity.

Here is the idea of proof of Theorem 1.1. In the following, we assume that (M, g) is a contractible 3-manifold as in 
Theorem 1.1. According to Theorem 2.2, it is sufficient to show that M is simply connected at infinity. From the assumption 
about the scalar curvature in Theorem 1.1, there are two positive constants C and R0, such that for r(x) ≥ R0, one has:

Scal(x) ≥ C

r(x)α
.

Compared with the argument of Gromov–Lawson in [5], our main difficulty is the lack of the uniform lower bound of the 
scalar curvature. However, using Theorem 1.3, we obtain the following proposition.

Proposition 2.3. If R > 2 max
{

R0, (
41+α/2π
(3C)1/2 )

2
2−α

}
, then the induced map π1(M \ B4R(0)) → π1(M \ B R(0)) is trivial.

Then, due to Proposition 2.3, M is simply connected at infinity, which implies that M is homeomorphic to R3. It implies 
Theorem 1.1.

We now prove Proposition 2.3. Let us consider a smooth closed curve γ in M \ B4R(0). Because γ may be far away from 
the compact set B R(0), there does not exist a “good” estimate of the lower bound of the scalar curvature along γ . In order 
to overcome it, we establish the following lemma.

Lemma 2.4. For any smooth circle γ in M \ B4R(0), exactly one of the following holds:

• γ is contractible in M \ B R(0),
• for any ε > 0 and any R < Q < 4R, there exists a curve σ̂ in B Q +ε(0) \ B Q (0), which is not contractible in M \ B R(0).

Proof. Let f̂ : D2(1) → M be the solution to the Plateau problem for γ , where D2(1) is the unit disc. Then f̂ |∂ D2(1) is a 
homeomorphism between ∂ D2(1) and γ . Furthermore, the interior of f̂ is an immersion.

Suppose that γ is non-contractible in M \ B R (0). Therefore, f̂ (D2(1)) ∩∂ B Q (0) is nonempty. Furthermore, f̂ −1( f̂ (D2(1)) ∩
B Q (0)) belongs to the interior of D2(1). Then, after a small variation of f̂ in the interior of D2(1), there exists a map 
f : D2(1) → M , such that
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• the interior of f is still an immersion,
• f |∂ D2(1) is a homeomorphic map from ∂ D2(1) to γ ,
• f intersects transversally with ∂ B Q (0).

Therefore, the pre-image of f (D2(1)) ∩ ∂ B Q (0) is a 1-dimensional compact submanifold in D2(1). That is to say: 
f −1( f (D2(1)) ∩ ∂ B Q (0)) is a disjoint union of some circle(s) in D2(1).

Let f −1(∂ B Q (0)) be the disjoint union of {γi}i∈I , where each γi is diffeomorphic to a circle in D2(1) and I is a finite 
set. Let Di be the unique disc bounded by γi in D2(1). Let us consider the set {Di}i∈I and define the partially ordered 
relationship on it, induced by inclusion. For any maximal element D j in ({Di}i∈I , ⊂), γ j = ∂ D j is defined as an outmost 
circle.

Let {γ j} j∈I0 be outermost circles in {γi}i∈I , where I0 ⊂ I . For each outmost circle γ j , we assume that σ j is the boundary 
of a tubular neighborhood of γi in D2(1) \ ∪i∈I Di , contained in f −1(B Q +ε(0) \ B Q (0)) and D̂ j is the unique disc bounded 
by σ j in D2(1).

Claim: some element in { f (σ j)} j∈I0 is not contractible in M \ B R(0).
We argue it by contradiction. Suppose that each f (σ j) is contractible in M \ B R(0). In other words, for each j ∈ I0, 

there exists a continuous map g j : D2(1) → M such that: (1) g j(D2(1)) ∩ B R(0) = ∅; (2) g j|∂ D2(1) is a homomorphism from 
∂ D2(1) to f (σ j).

After changing the coordinate over D2(1), we may suppose that, for each j ∈ I0, D̂ j is a disc with center at x j and 
radius r j . We will construct a new map g : D2(1) → M , such that (1) g|∂ D2(1) is a homeomorphic map from ∂ D2(1) to 
γ ; g(D2(1)) ∩ B R(0) = ∅. It implies that γ is contractible in M \ B R(0), which contradicts our assumption that γ is not 
contractible in M \ B R(0).

Let us describe the construction of g as follows:

g(x) =
{

f (x), x ∈ D2(1) \ ∪ j∈I0 D̂ j

g j(
x−x j

r j
), x ∈ D̂ j,

(2.1)

g is a required map described as above. This finishes the proof of the claim.
We may suppose that f (σ j0 ) is non-contractible in M \ B R(0) and choose σ̂ = f (σ j0 ). It is the required candidate in the 

assertion. This completes the proof. �
Remark 2.5. The proof of Lemma 2.4 just requires that f̂ is an immersion. The reason is described below:

If f̂ is an immersion, we can deform it to obtain a new immersion f which intersects ∂ B Q (0) transversally. It is sufficient 
for our proof.

We now give the proof of Proposition 2.3.

Proof of Proposition 2.3. We prove it by contradiction. First, we assume that for some R > 2 max{R0, ( 41+α/2π
(3C)1/2 )

2
2−α }, there 

is a curve γ ⊂ M \ B4R(0) such that γ is nontrivial in π1(M \ B R(0)).
We take Q = 2R and ε = 1 and apply Lemma 2.4 to γ . There is a non-contractible curve σ̂ ⊂ B2R+1(0) \ B2R(0) in 

M \ B R(0).
Let f : D2(1) → M be the solution to the Plateau problem for the circle σ̂ in M. Then f (D2(1)) ∩ ∂ B R(0) is non-empty, 

since σ̂ is non-contractible in M \ B R(0). Let us consider the set � := f (D2(1)) ∩ (B3R(0) \ B R(0)). By the assumption of the 
scalar curvature, i.e. lim inf

r(x)→∞ rα(x)Scal(x) > 0, one has,

Scal(x) ≥ C

(4R)α
over �.

By Theorem 1.3 and Remark 1.4, we deduce that

� is contained in the
2(4R)α/2π

(3C)1/2
-neighborhood of ∂�.

However, ∂� = σ̂ � (∂ B R(0) ∩ �) is contained in a union of M \ B2R(0) and the closure of B R(0). The above fact gives

R ≤ 4
(4R)α/2π

(3C)1/2
.

That is to say, R ≤
(

41+α/2π
(3C)1/2

) 2
2−α

< 2( 41+α/2π
(3C)1/2 )

2
2−α . This contradicts the choice of R . �

As a corollary, we have the following.
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Corollary 2.6. The Whitehead manifold does not admit a complete metric with lim inf
r(x)→∞ rα(x)Scal(x) > 0, where r is a distance function 

from a given point and α ∈ [0, 2).

3. Application

In this section, we use Theorem 1.1 to prove that any complete open 3-manifold M such that (1) π1(M) = {0} and 
π2(M) = Z; (2) its scalar curvature decays slowly at infinity, is homeomorphic to R × S

2. Let us review the sphere theorem 
and some classical applications of the sphere theorem.

Theorem 3.1 (Sphere theorem [11,2]). Any orientable 3-manifold M with non-trivial π2(M) has an embedded sphere.

The non-trivial embedded sphere plays a crucial role in the prime decomposition of 3-manifolds. In a simply connected 
3-manifold, the non-trivial embedded sphere always separates the 3-manifold into two connected components.

Lemma 3.2. Let M3 be a simply connected open manifold and S ⊂ M a non-trivial sphere, then M \ S is a disjoint union of two non 
relatively compact components.

Proof. First, we claim that S is a separating sphere in M . If M \ S is connected, then there exists a circle α ⊂ M , such that α
intersects S transversally at one point. Hence, the intersection number (S, α) is 1 or −1. However, the intersection number 
between S and α is zero, since α is contractible in M and the intersection number is a homotopic invariant. It leads to a 
contradiction. Therefore, S separates M into two components.

Second, we will show that each component of M \ S is non relatively compact. If one component, denoted by M ′ , 
is relatively compact, we use the Van Kampen Theorem and π1(M) = {1} to obtain that M ′ is also simply connected. 
We define a 3-manifold M ′′ by gluing a 3-ball along the boundary sphere ∂M ′ . Hence, by the Van Kampen theorem, the 
compact 3-manifold M ′′ is also simply connected. By the Poincaré conjecture [12–14], M ′′ is a 3-sphere. Therefore, M ′ is 
homeomorphic to a 3-ball, which contradicts our assumption that S is non-trivial in π2(M). �

The second homotopy group is an important homotopic invariant for the classification of CW complexes. We will use the 
following lemma frequently.

Lemma 3.3. An open 3-manifold M with π1(M) = π2(M) = 0 is contractible.

Proof. Because M is an open manifold, the 0-dimensional cohomology group of M with compact support, denoted by 
H0

c (M, Z), is trivial. The Poincaré duality gives H0
c (M, Z) ∼= H3(M, Z) = {0}. Since π1(M) = π2(M) = {0}, we use the 

Hurewicz Theorem to see that π3(M) ∼= H3(M) = {0}. Then, using the Hurewicz Theorem inductively, we have that 
πn(M) ∼= Hn(M) = 0, for any n ≥ 3. By Whitehead Theorem, M is contractible. �

We now consider a simply connected open 3-manifold M with nontrivial second homotopy group. From Theorem 3.1
and Lemma 3.2, there exists a non-trivial sphere S separating M into two non relatively compact parts: M1 and M2. We 
define M0

i as a union of B3 and Mi along S , where B3 is a 3-ball. Then M can be viewed as the connected sum of M0
0

and M0
1.

The pair (M, M̄i) is a CW pair, where M̄i is the closure of Mi in M , for i ∈ I , where I = (Z/2Z, +). For each CW 
pair (M, M̄i), one has a continuous map f i : M → M/M̄i . Because ∂Mi is a sphere S , M/M̄i is homeomorphic to M0

i+1, 
for i ∈ I = (Z/2Z, +). Therefore, f i can be viewed as a continuous map from M to M0

i+1. Furthermore, the induced map 
( f i)∗ : π2(M) → π2(M0

i+1) verifies the following:

Proposition 3.4. For each i ∈ I , the induced map ( f i)∗ : π2(M) → π2(M0
i+1) is a surjective map with nontrivial kernel.

Proof. In the above statement, S is a non-trivial sphere in M . M0
i+1 is obtained by gluing a 3-ball B3 along S to Mi+1, i.e. 

M0
i+1 = Mi+1

⋃
S B3, for i ∈ I .

The image of S is bounded by a 3-ball, which implies that [ f i(S)] is trivial in π2(M0
i+1). Therefore, the kernel of ( f i)∗ is 

non-trivial.
For each i ∈ I , any continuous map g : S2 → M0

i+1 is homotopic to another continuous map g′ : S2 → Mi+1 in M0
i+1 =

Mi+1
⋃

S B3. Let i : Mi+1 → M be the inclusion map, i ◦ g′ is a map from S2 to M and ( f i)∗([g′]) = [g] in π2(M0
i+1). 

Therefore, ( f i)∗ is surjective. �
In the following, we will use the sphere theorem to analyze the topological structure of a simply connected open 

3-manifold M with π2(M) = Z. Together with the surgery as described above, we prove the following theorem.
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Theorem 3.5. Assume that (M3, g) is a simply connected open 3-manifold with π2(M) = Z. Let 0 ∈ M be a point and r(x) a distance 
function from x to 0. If there exists a real number α ∈ [0, 2) such that

lim inf
r(x)→∞ rα(x)Scal(x) > 0,

then M3 is diffeomorphic to R × S
2 .

Proof. By the Sphere theorem, there exists a non-trivial embedded sphere S cutting M into two non relatively compact 
components M0 and M1. M can be viewed as the connected sum of two simply connected 3-manifolds M0

0 and M0
1, where 

M0
0 = M0

⋃
S B3 and M0

1 = M1
⋃

S B3.
Furthermore, we will construct a metric over M0

i satisfying the curvature condition, as assumed in Theorem 1.1.
First, let Nr(S) be the tubular neighborhood of S in Mi , with radius r. For any constant ε > 0, there exists a smooth 

function φ(x) supported in N2ε(S), such that, φ(x) = 1 on Nε(S). Meanwhile, we may find a smooth function τ (x) on M0
i , 

satisfying the following:

1. τ (x) has support in the compact set M0
i \ (Mi \ N4ε(S)),

2. τ (x) = 1 on M0
i \ (Mi \ N2ε(S)).

Second, choose any smooth metric g′ over M0
i \ (Mi \ N4ε(S)). Define a new metric gi over M0

i :

gi =

⎧⎪⎨
⎪⎩

g, Mi \ N4ε(S);
g′, M0

i \ Mi;
(1 − φ)g + τ g′ otherwise,

(3.1)

where g is a metric in the assumption of Theorem 3.5.
If [S] is a generator of π2(M), from the proof of Proposition 3.4, [S] is contained in the kernel of the induced map 

( f i)∗ . Then π2(M0
i ) = {0} for each i ∈ I . Thanks to Lemma 3.3, M0

i is contractible. Therefore, (M0
i , gi) satisfies the curvature 

condition as assumed in Theorem 3.5. Due to Theorem 1.1, each M0
i is homeomorphic to R3. M is the connected sum of 

two R3s. Hence, M is diffeomorphic to S2 ×R.
If [S] is not a generator, Proposition 3.4 shows that the kernel of the induced map π2(M) → π2(M0

i ) is non-trivial. We 
see that π2(M0

i ) is finite. In this case, there is a unique topological structure of M0
i as follows. By Proposition 3.6 (in the 

following), each M0
i is homeomorphic to R3, which implies that M is homeomorphic to S2 ×R. �

Proposition 3.6. Let (M3, g) be a simply connected open 3-manifold satisfying that π2(M) is a finite group. For 0 ∈ M, assume that r
is the distance function from 0. If there exists a number α ∈ [0, 2) such that

lim inf
r(x)→∞ rα(x)Scal(x) > 0,

then M3 is homeomorphic to R3.

Proof. Suppose that M is not homeomorphic to R3. In addition, we observe that π2(M) is non-trivial. (Otherwise, by 
Lemma 3.3, M is contractible. Combined with Theorem 1.1, M is R3, which contradicts our assumption above.)

By the sphere theorem, there exists a non-trivial embedded sphere S cutting M into two non relatively compact com-
ponents. Two simply connected non-compact manifolds M0

0 and M0
1 are obtained by the process described in the proof of 

Theorem 3.5. Therefore, M0
0 and M0

1 satisfy the following:

• M is the connected sum of M0
0 and M0

1,
• |π2(M0

i )| < |π2(M)|, since the map π2(M) → π2(M0
i ) is surjective with non-trivial kernel (Proposition 3.4).

We observe that one of {π2(M0
i )}i∈I is nontrivial. (Otherwise, from Lemma 3.3, M0

i is contractible. From Theorem 1.1, 
M0

i is R3, which implies that M is S2 ×R. This contradicts the assumption that π2(M) is finite.)
Without loss of generality, we may assume that π2(M0

0) is nontrivial. Set M1 = M0
0. M1

0 and M1
1 can be constructed as 

the above process in the proof of Theorem 3.5. We may suppose that one of π2(M1
i ) is non-trivial. (Otherwise, a similar 

argument for π2(M0
i ) as above will work.) Then we can repeat this process, until the second homotopy groups of two new 

manifolds are both trivial.
After repeating the above process several times, three families of manifolds Mk , Mk

0 and Mk
1 are constructed as in the 

above process. These manifolds satisfy the following:
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• Mk is the connected sum of Mk
0 and Mk

1,
• |π2(Mk)| < |π2(Mk−1)|.

Because π2(M) is finite and |π2(Mk)| < |π2(Mk−1)|, this process will stop after finitely many steps. There exists an integer 
k0 such that π2(Mk0 ) is nontrivial and π2(Mk0

i ) is trivial for each i. From Lemma 3.3, this implies that Mk0
i is contractible. 

Due to Theorem 1.1, Mk0
i is homeomorphic to R3. However, Mk0 is the connected sum of Mk0

0 and Mk0
1 . Hence, Mk0 is 

S
2 ×R, which contradicts the fact that π2(Mk0 ) is finite. �
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