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r é s u m é

Dans la continuité de notre travail précédent, nous construisons une infinité de nouvelles 
structures lisses sur les variétés de spin simplement connexes, fermées, de dimension 4 et 
de signature positive ou nulle.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper is a short sequel to [1] and addresses the geography problem for closed simply connected spin symplectic 
4-manifolds. For some background and history, we refer the readers to the introductions found in [1] and [2]. First we need 
to recall the following definitions from [1].

Definition 1. We say that a smooth 4-manifold M has ∞2-property if there exist infinitely many pairwise nondiffeomorphic 
irreducible symplectic 4-manifolds and infinitely many pairwise nondiffeomorphic irreducible nonsymplectic 4-manifolds, 
all of which are homeomorphic to M . We also say that a symmetric bilinear form has ∞2-property if it is the intersection 
form of infinitely many pairwise nondiffeomorphic simply connected irreducible symplectic 4-manifolds and infinitely many 
pairwise nondiffeomorphic simply connected irreducible nonsymplectic 4-manifolds.

Definition 2. For an even integer p ≥ 0, let �p denote the smallest positive odd integer such that the symmetric bilinear 
form pE8 ⊕ qH has ∞2-property for every odd integer q ≥ �p .
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Here, we have

E8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and H =
[

0 1
1 0

]

so that the rank and the signature of pE8 ⊕ qH are 8p + 2q and 8p, respectively. Recall from [5] that a closed simply 
connected smooth 4-manifold is spin if and only if its intersection form is pE8 ⊕qH for some integers p and q with p even. 
Also recall that if a closed simply connected smooth spin 4-manifold with the intersection form pE8 ⊕ qH is symplectic, 
then q ≡ 1 (mod 2).

The famous 11/8 Conjecture (Problem 4.92 in [8]), which remains unresolved, would imply an a priori lower bound 
�p ≥ 3

2 p. Accordingly, we made the following optimistic conjecture in [1].

Conjecture 3. �p is the smallest positive odd integer that is greater than or equal to 3
2 p.

Unfortunately, Conjecture 3 seems out of our reach at the moment. The best known lower bound for �p comes from a 
recent work [7], which gives �p ≥ p + εp when p ≥ 4, where

εp =
⎧⎨
⎩

2 if p ≡ 1,2,5,6 (mod 8),

3 if p ≡ 3,4,7 (mod 8),

4 if p ≡ 0 (mod 8).

In [1], we also presented a recipe for checking ∞2-property for pE8 ⊕ qH starting from a suitable surface bundle over a 
surface (see Theorem 6 below). In this paper, we apply our recipe to a surface bundle found in [4] and its analogues, and 
obtain the following new upper bound for �p , which will be proved in the next section.

Theorem 4. Let p ≥ 0 be an even integer. If m is any positive integer satisfying p ≤ 6m − 2, then �p ≤ 162m + 13 − 10p.

Let S2 × S2 denote the Cartesian product of two 2-spheres with the intersection form H . Let q(S2 × S2) denote the 
connected sum of q copies of S2 × S2. Let K 3 denote the complex K 3 surface equipped with the noncomplex orientation 
and thus with the intersection form 2E8 ⊕ 3H . When p = 0 and m = 1, Theorem 4 implies that �0 ≤ 175, i.e. q(S2 × S2)

has ∞2-property for every odd integer q ≥ 175. This is an improvement over the upper bound �0 ≤ 275 in [1]. Similarly, 
when p is 2 or 4 and m = 1, Theorem 4 implies that the connected sum p

2 (K 3)#(q − 23
2 p)(S2 × S2) has ∞2-property for 

every odd integer q ≥ 175. For many small values of p, Theorem 4 provides upper bounds for �p that are lower (and hence 
better) than the upper bounds in [1] and [2].

Given a nonnegative even integer p, there is a positive integer m such that 6m − 6 ≤ p ≤ 6m − 2. Thus Theorem 4
immediately implies the following simpler upper bound on �p .

Corollary 5. For any even p ≥ 0, we have �p ≤ 17p + 175.

The corollary states that �p ≤ 17p + O (1) as p → ∞. This should be compared to the asymptotic upper bound �p ≤
8p + O (p6/7) that was proved in [2].

2. Proof of Theorem 4

We will need the following theorem that was proved in [1].

Theorem 6. Let X be a spin 4-manifold that is the total space of a genus- f surface bundle over a genus-b surface. Assume that the 
signature of X is σ(X) = 16s, and X has a section whose image is a genus-b surface of self-intersection −2t for some integer t. Let r
be a positive integer satisfying

1 − t ≤ r ≤ min{s, f + b + 1 − t}. (1)

If p and q are nonnegative integers satisfying
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p ≡ 0 (mod 2), 0 ≤ p ≤ 2(s − r),

q ≡ 1 (mod 2), q ≥ 2 f b + 12s − 1 − 10p,

then the symmetric bilinear form pE8 ⊕ qH has ∞2-property (cf. Definition 1) and

�p ≤ 2 f b + 12s − 1 − 10p.

We now apply Theorem 6 to the following example and its generalizations. We will let �b denote a closed genus-b
Riemann surface.

Example 7. Recall from Example 5.9 in [4] that there is a genus-7 surface bundle X whose total space is obtained as a 
certain 3-fold cyclic branched cover of �b × �2 with branch locus D ′ , which is a disjoint union of the graphs of 3 maps 
φi : �b → �2 (i = 1, 2, 3). If π : X → �b × �2 is this branched covering map and pr1 : �b × �2 → �b is the projection map 
onto the first factor, then our surface bundle map is the composition � = pr1 ◦ π . In Example 6.5 of [9], it was shown that 
the base genus of this surface bundle X is b = 10 and σ(X) = 48.

We now proceed to construct infinitely many surface bundles that generalize Example 7. For any pair of positive integers 
b and m, there is an m-fold unbranched covering map ρb,m : �m(b−1)+1 → �b . Let �m : Xm → �9m+1 be the pullback of 
the surface bundle � : X → �10 in Example 7 by the covering map ρ10,m : �9m+1 → �10. Of course, we have �1 = �

and X1 = X . The total space Xm is the 3-fold cyclic branched cover of �9m+1 × �2 with branch locus D ′
m , which is the 

disjoint union of the graphs of the compositions φi ◦ρ10,m : �9m+1 → �2 (i = 1, 2, 3). (Note that the homology class [D ′
m] =

(P D ◦ (ρ10,m × id)∗ ◦ P D)[D ′] is divisible by 3, where P D denotes the Poincaré duality map and id : �2 → �2 is the identity 
map.)

By a formula of Brand in [3], the second Stiefel–Whitney class of Xm is

w2(Xm) = 2

3
(π∗

m(P D[D ′
m])) ≡ 0 (mod 2),

where πm : Xm → �9m+1 ×�2 is the 3-fold cyclic branched covering map, and thus Xm is spin. Since the induced map Xm →
X between the total spaces is an unbranched covering map, we have σ(Xm) = mσ(X) = 48m. By Hirzebruch’s signature 
formula in [6], we have

σ(Xm) = −8

9
[D ′

m]2,

and thus [D ′
m]2 = −54m. Since the branching index is the same at each component of D ′

m , the inclusion of each component 
of D ′

m gives a section of the surface bundle �m whose image has self-intersection −54m/3 = −18m inside Xm .
In conclusion, for each positive integer m, we get a surface bundle Xm with parameters f = 7, b = 9m + 1, s = 3m, and 

t = 9m. Plugging these numbers into (1), we get 1 − 9m ≤ r ≤ min{3m, 9}. By choosing r = 1, we obtain Theorem 4 from 
Theorem 6.
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