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In this work, we analyze a nonlinear partial differential equation (PDE) model for the total 
value adjustment on European options in the presence of a counterparty risk. We transform 
the nonlinear PDE into an equivalent one, involving a sectorial operator, and prove the 
existence and uniqueness of a solution.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans ce travail, nous analysons un modèle d’équations aux dérivées partielles (EDP) 
non linéaires pour l’ajustement XVA d’options européennes en présence d’un risque de 
contrepartie. Nous transformons l’EDP non linéaire en une équation équivalente, impliquant 
un opérateur sectoriel, et prouvons l’existence et l’unicité de la solution.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Since the last financial crisis starting in 2007, the credit entities are aware of the default risk of counterparties of a 
contract. Thus, different adjustments such as Credit Value Adjustment (CVA), Funding Value Adjustment (FVA) or Debit 
Value Adjustment (DVA) are now included in contracts in order to take into account the possibility of counterparty default. 
The Total Value Adjustment (XVA) gathers all these adjustments, and its valuation is an important issue for the financial 
entities.
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Among the different strategies currently used to obtain the XVA, we follow the one based on the solution to partial 
differential equations (PDEs) [3]. In [1], hedging arguments have been used to deduce one-factor PDE models for the XVA 
related to European call and put options. Depending on the mark-to-market close-out value, the governing PDE is either 
linear or nonlinear. We also proposed numerical techniques to compute the solutions to both models. However, the existence 
and uniqueness of a solution to the nonlinear model is an open problem that we solve in the present paper. Recently, in 
[2], analogous models depending on two stochastic factors have been posed, analyzed, and numerically solved.

More precisely, in the present paper, we focus on the mathematical analysis of the following nonlinear final value prob-
lem: {

∂t U +AU − rU = (1 − RB)λB(V + U )− + (1 − RC)λC(V + U )+ + sF(V + U )+

U (T , S) = 0 ,
(1)

for S ∈ [0, +∞) and t ∈ [0, T ], where t is the time and S is the asset price. The unknown U = U (t, S) is the XVA, operator 
A is given by

AU ≡ 1

2
σ 2 S2 ∂2U

∂ S2
+ rR S

∂U

∂ S
and V is the given explicit solution to the classical Black–Scholes equation for pricing European options without counter-
party risk [6]. At the expiry time of the option, T , the XVA vanishes, as it is assumed in the final condition. Note that the 
nonlinearities come from the sign functions f + = max( f , 0) and f − = min( f , 0). Concerning the involved constant param-
eters, r denotes the risk-free interest rate, RB and RC ∈ [0, 1] represent the recovery rates on the derivatives positions of 
parties B and C, λB and λC are the default intensities of both parties, sF = rF − r is the funding cost of the entity, rR is the 
rate paid for the underlying asset in a repurchase agreement, and σ is the volatility.

Note that the proposed techniques in this article can be applied to models that include a collateral, which are also 
deduced in [1].

2. Mathematical analysis: existence and uniqueness of a solution

In order to obtain the existence and uniqueness of a solution to problem (1), we transform it into an equivalent one 
governed by a sectorial operator. For this purpose, the changes of variable x = ln(S/K ) and τ = (σ 2/2)(T − t), and the 
change of unknown

u(τ , x) = 1

K
e(γ +α)x+βτ U (t, S)

in terms of a parameter γ ∈ R, with α = −1

2

(
1 − 2rR

σ 2

)
and β =

(
1 − 2rR

σ 2

)2

+ 2r

σ 2 , are introduced in (1) to obtain the 

equivalent problem:⎧⎨
⎩

∂u

∂τ
− ∂2u

∂x2
= J (τ , u), x ∈R, τ ∈

(
0,

σ 2T

2

]
u(0, x) = 0 .

(2)

The functional J :
[

0, σ 2

2 T
]
× H1(R) → L2(R) in (2) is defined as follows:

J (τ ,ϕ)(x) = γ 2ϕ(x) − 2γ
∂ϕ

∂x
(x) + eγ xh(τ ,e−γ xϕ(x)), x ∈R, (3)

for all τ ∈
[

0, σ 2 T
2

]
, ϕ ∈ H1(R), with h : [0, σ

2

2 T ] × H1(R) → L2(R) given by

h(τ ,ϕ)(x) = − eαx+βτ 2

Kσ 2

[
CB

(
G(τ ,ϕ)(x)

)− + CC
(
G(τ ,ϕ)(x)

)+]
,

where

G(τ ,ϕ)(x) = V (τ , K ex) + Kϕ(x)e−αx−βτ , CB = (1 − RB)λB, CC = (1 − RC)λC + sF.

Next, we recall the definition of a sectorial operator (see [4], for example).

Definition 2.1. A linear operator B in a Banach space X is a sectorial operator if it is a closed densely defined operator such 
that, for some φ ∈ (0, π/2), M0 ≥ 1 and a ∈ R, the sector Sa,φ = {λ | φ ≤ |arg(λ − a)| ≤ π, λ �= a} is in the resolvent set of 
B, and∥∥(λ − B)−1

∥∥ ≤ M0

|λ − a| , for any λ ∈ Sa,φ .
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Note that, associated with a sectorial operator B, we can introduce a scale of fractional power spaces Xα = Rang(B−α)

for α > 0, such that X = X0 and X1 = Dom(B), equipped with the norm ‖y‖ = ∥∥Bα y
∥∥ for all y ∈ Xα , where Bα is a 

fractional power of B.

Theorem 2.1 ([4]). Assume that B is a sectorial operator in a Hilbert space X, 0 ≤ α < 1 and f : U → X, with U an open subset of 
R × Xα and f (τ , y) a locally Hölder continuous function in τ and locally Lipschitzian in y. Then, for any (τ0, y0) ∈ U , there exists 
T0 = T0(τ0, y0) > 0 such that the initial-value nonlinear PDE problem:⎧⎨

⎩
dy

dτ
+ By = f (τ , y) , τ > τ0,

y(τ0) = y0 ,
(4)

has a unique solution y on (τ0, τ0 + T0).

In order to apply Theorem 2.1, we consider X = L2(R), Xα = H1(R) with α = 1/2 and U =
(

0, σ 2 T
2

)
× H1(R). From [4], 

the operator −∂2/∂x2 is sectorial in L2(R) and we can prove the following result.

Proposition 2.2. For γ < −1

2
− rR

σ 2 in the case of a call option and for γ >
1

2
− rR

σ 2 in the case of a put option, the function J : U → X

given by (3) is well defined, locally Hölder continuous in τ , and locally Lipschitzian in ϕ .

Proof. First, the Black–Scholes formula for a European call option implies that

V (τ , x) = K exp(x)exp

(
−D0

2

σ 2
τ

)
N(d∗

1) − K exp

(
−r

2

σ 2
τ

)
N(d∗

2) ,

while, for a put option, we have

V (τ , x) = K exp

(
−r

2

σ 2
τ

)
N(−d∗

2) − K exp(x)exp

(
−D0

2

σ 2
τ

)
N(−d∗

1) ,

where

d∗
1 = x + (r − D0 + σ 2/2) 2

σ 2 τ√
2τ

, d∗
2 = x + (r − D0 − σ 2/2) 2

σ 2 τ√
2τ

, (5)

with D0 = r − rR and N(x) represents the distribution function of the standard N (0, 1) random variable.
To prove that J (τ , ϕ) ∈ L2(R), we write J (τ , ϕ) = J1(τ , ϕ) + J2(τ , ϕ), where

J1(τ ,ϕ)(x) = γ 2ϕ(x) − 2γ
∂ϕ

∂x
(x) and J2(τ ,ϕ)(x) = eγ xh(τ ,e−γ xϕ(x)) .

First, as ϕ ∈ H1(R) then J1(τ , ϕ) ∈ L2(R). Secondly, we write

J2(τ ,ϕ)(x) = − 2

Kσ 2

[
CB (F(τ ,ϕ)(x))− + CC (F(τ ,ϕ)(x))+

]
with

F(τ ,ϕ) = e�1x+�2τ V (τ , K ex) + Kϕ(x) ,

�1 = γ − 1

2
+ rR

σ 2
and �2 =

(
1 − 2rR

σ 2

)2

+ 2r

σ 2
.

Next, to prove that J2(τ , ϕ) ∈ L2(R), we consider

J3(τ ,ϕ)(x) = exp
(
�1x + �2τ

)
V (τ , K ex)

and prove that J3(τ , ϕ) ∈ L2(R). For this purpose, we study the limits of J3(τ , ϕ) when x → ±∞.
First, in view of the expressions (5) for d∗

1 and d∗
2, we obtain for i = 1, 2:

lim
x→+∞d∗

i = +∞ implies that lim
x→+∞ N(d∗

i ) = 1, lim
x→+∞ N(−d∗

i ) = 0 ,

lim d∗
i = −∞ implies that lim N(d∗

i ) = 0, lim N(−d∗
i ) = 1 .
x→−∞ x→−∞ x→−∞
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Also note that N(−d∗
i ) → 0 faster than ex → ∞ when x → +∞, while N(d∗

i ) → 0 faster than e−x → ∞ when x → −∞.
For a call option, the expression of J3 is given by

J3(τ ,ϕ)(x) = K e
(�1+1)x+

(
�2−D0

2
σ2

)
τ

N(d∗
1) − K e

�1x+
(
�2−r 2

σ2

)
τ

N(d∗
2) , (6)

so that J3(τ , ϕ)(x) → 0 when x → −∞ for all γ ∈ R. If we impose that �1 + 1 < 0, then e(�1+1)x and e�1x tend to zero 

when x → +∞. Therefore, we obtain that J3(τ , ϕ) ∈ L2(R) for γ < −1

2
− rR

σ 2 .

For a put option, the expression of J3 is given by

J3(τ ,ϕ)(x) = K e
�1x+

(
�2−r 2

σ2

)
τ

N(−d∗
2) − K e

(�1+1)x+
(
�2−D0

2
σ2

)
τ

N(−d∗
1) . (7)

In this case, J3(τ , ϕ)(x) → 0 when x → +∞ for all γ ∈ R. If we choose �1 > 0, we get e(�1+1)x → 0 and e�1x → 0 when 

x → −∞, so that J3(τ , ϕ)(x) → 0. Therefore, J3(τ , ϕ) ∈ L2(R) for γ >
1

2
− rR

σ 2 .

Hence, J2(τ , ϕ) ∈ L2(R) if γ < −1

2
− rR

σ 2 for a European call option and if γ >
1

2
− rR

σ 2 for a European put option. 

Therefore, under these assumptions on γ , J (τ , ·) : H1(R) → L2(R) is well defined.
Next, we prove that J is locally Lipschitz in ϕ , i.e.

‖ J (τ ,ϕ1) − J (τ ,ϕ2)‖L2(R) ≤ L J ‖ϕ1 − ϕ2‖H1(R) , for all ϕ1,ϕ2 ∈ H1(R) .

For this purpose, we consider that∣∣∣ J (τ ,ϕ1)(x) − J (τ ,ϕ2)(x)
∣∣∣ ≤ γ 2 |ϕ1(x) − ϕ2(x)| + 2γ

∣∣∣∣∂ϕ1

∂x
(x) − ∂ϕ2

∂x
(x)

∣∣∣∣
+ eγ xLh

∣∣e−γ xϕ1(x) − e−γ xϕ2(x)
∣∣

≤ (γ 2 + Lh) |ϕ1(x) − ϕ2(x)| + 2γ

∣∣∣∣∂ϕ1(x)

∂x
− ∂ϕ2(x)

∂x

∣∣∣∣ ,

where we have used the fact that 
∣∣χ+

1 − χ+
2

∣∣ ≤ |χ1 − χ2| and 
∣∣χ−

1 − χ−
2

∣∣ ≤ |χ1 − χ2|, with

χi = V (τ , ·) + K e(−(α+γ )x−βτ)ϕi .

Moreover, we have introduced the constant

Lh = 2

σ 2

(
|(1 − RB)λB| + |(1 − RC)λC + sF|

)
.

Next, by integrating, we get∫
R

| J (τ ,ϕ1)(x) − J (τ ,ϕ2)(x)|2 dx

≤ 2(γ 2 + Lh)
2
∫
R

|ϕ1(x) − ϕ2(x)|2 dx + 2(2γ )2
∫
R

∣∣∣∣∂ϕ1

∂x
(x) − ∂ϕ2

∂x
(x)

∣∣∣∣
2

dx , (8)

which is equivalent to

‖ J (τ ,ϕ1) − J (τ ,ϕ2)‖2
L2(R)

≤ L2
J ‖ϕ1 − ϕ2‖2

H1(R)
,

with L J = 2 max{γ 2 + Lh, 2γ }, so that J is locally Lipschitz in the variable ϕ .
Next, we prove that J is Hölder continuous in τ by proving it is locally Lipschitz continuous in τ . First, for τ1, τ2 ∈[

0, σ 2

2 T
]

, we obtain∣∣∣ J (τ1,ϕ)(x) − J (τ2,ϕ)(x)
∣∣∣ = ∣∣eγ x(h(τ1,e−γ xϕ)(x) − h(τ2,e−γ xϕ)(x))

∣∣
=

∣∣∣∣∣ − e(γ +α)x 2

Kσ 2

[
CB

(
G̃(τ1, x)− − G̃(τ2, x)−

)
+ CC

(
G̃(τ1, x)+ − G̃(τ2, x)+

)] ∣∣∣∣∣
≤ M

∣∣V (τ1, ·)eβτ1 − V (τ2, ·)eβτ2
∣∣ ,

where G̃(τ , ϕ) = V (τ , ·)eβτ + K e(−α−γ )xϕ and
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M =
∣∣∣∣−e(γ +α)x 2

Kσ 2

∣∣∣∣ ( |(1 − RB)λB| + |(1 − RC)λC + sF|
)

.

Moreover, the function eβτ is Lipschitz continuous in τ in 
[

0,
σ 2

2
T

]
. Then, using that V ∈ C((0, σ

2

2 T ), X), we can apply 

that V is also Lipschitz continuous in τ . Therefore, in terms of the norm, we get:

‖ J (τ1,ϕ) − J (τ2,ϕ)‖2
L2(R)

=
∫
R

| J (τ1,ϕ)(x) − J (τ2,ϕ)(x)|2 dx ≤ C |τ1 − τ2| ,

where C > 0 is the Hölder constant associated with the function V (τ , x)eβτ . Finally, J (τ , ϕ) is Hölder continuous in the τ
variable. �
Corollary 2.3. For any initial condition u0 ∈ H1(R), there exists T0 = T0(0, u0) > 0, such that the initial value problem (2) has a 
unique solution in (0, T0).

Corollary 2.3 follows from Proposition 2.2 and Theorem 2.1, and provides the existence and uniqueness of a local solution, 
as T0 = T0(0, u0) is a local time. In order to extend it to (0, T ) for any given T > 0, we apply Corollary 3.3.5 in [4].

Proposition 2.4. Under the hypotheses of Proposition 1, the following inequality holds:

‖ J (τ ,ϕ)‖L2(R) ≤ K(τ )
(

1 + ‖ϕ‖H1(R)

)
, for all (τ ,ϕ) ∈ (0,∞) × H1(R) , (9)

where K is continuous in (0, ∞). Therefore, there exists a unique solution to the problem (2) defined on the whole time interval (
0, σ 2

2 T
]

.

Proof. First, we note that the Lipschitz continuity properties also hold for τ ∈ (0, ∞). Next, if we consider the function 
K (τ ) = L J + ‖ J (τ ,0)‖L2(R) , which is continuous in τ on (0, ∞), then, for any (τ , ϕ) ∈ (0, ∞) × H1(R), we have

‖ J (τ ,ϕ)‖L2(R) ≤ ‖ J (τ ,ϕ) − J (τ ,0)‖L2(R) + ‖ J (τ ,0)‖L2(R)

≤ L J ‖ϕ − 0‖H1(R) + ‖ J (τ ,0)‖L2(R) = (
L J + ‖ J (τ ,0)‖L2(R)

) (‖ϕ‖H1(R) + 1
)

,

where L J is the Lipschitz constant for J . Thus, inequality (9) is obtained. Next, we can apply Corollary 3.3.5 in [4]. Thus, we 
consider u(τ , ·) as the unique solution to (2) at time τ0 = T0/2 obtained from Corollary 2.3, so that, from Corollary 3.3.5 in 
[4], the unique solution to (2) through (τ0, u(τ0, ·)) exists for all τ ≥ τ0. Therefore, we obtain the existence and uniqueness 
of a solution to (2) in 

(
0, σ 2

2 T
]

. �
Corollary 2.5. There exists a unique solution to (1).

Proof. It follows from the existence and uniqueness of a solution to the equivalent problem (2) for the appropriate choice 
of parameter γ . �

Further details can be found in [5].

3. Conclusions

Following the theory of sectorial operators, we prove the existence and uniqueness of a solution to an initial value 
problem governed by a nonlinear PDE, which has been recently introduced to model the total value adjustment for European 
options in the presence of counterparty risk. The same methodology can be extended to one-factor models that incorporate 
collateralization of the contracts, which is also used in the financial sector.
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