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For 1 < p < ∞ and M the centered Hardy–Littlewood maximal operator on R, we consider 
whether there is some ε = ε(p) > 0 such that ||M f ||p ≥ (1 + ε)|| f ||p . We prove this for 
1 < p < 2. For 2 ≤ p < ∞, we prove the inequality for indicator functions and for unimodal 
functions.
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r é s u m é

Soient 1 < p < ∞ et M la fonction maximale de Hardy–Littlewood sur R. Nous étudions 
l’existence d’un ε = ε(p) > 0 tel que ||M f ||p ≥ (1 + ε)|| f ||p . Nous l’établissons pour 1 <
p < 2. Pour 2 ≤ p < ∞, nous prouvons l’inégalité pour les fonctions indicatrices et les 
fonctions unimodales.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given a locally integrable real-valued function f on Rn define its uncentered maximal function Mu f (x) as follows

Mu f (x) = sup
B�x

1

|B|
∫
B

| f (y)|dy, (1)

where the supremum is taken over all balls B in Rn containing the point x, and |B| denotes the Lebesgue volume of B . In 
studying lower operator norms of the maximal function [4], A. Lerner raised the following question: given 1 < p < ∞, can 
one find a constant ε = ε(p) > 0 such that

‖Mu f ‖L p(Rn) ≥ (1 + ε)‖ f ‖L p(Rn) for all f ∈ Lp(Rn). (2)
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The affirmative answer was obtained in [2], i.e. the Lerner’s inequality (2) holds for all 1 < p < ∞ and for any n ≥ 1. The 
paper also studied the estimate (2) for other maximal functions. For example, the lower bound (2) persists if one takes the 
supremum in (1) over the shifts and dilates of a fixed centrally symmetric convex body K . Similar positive results have 
been obtained for dyadic maximal functions [5]; maximal functions defined over λ-dense family of sets, and almost centered
maximal functions (see [2] for details).

Lerner’s inequality for the centered maximal function

‖M f ‖L p(Rn) ≥ (1 + ε(p,n))‖ f ‖L p(Rn), f ∈ Lp(Rn), M f (x) = sup
r>0

1

|Br(x)|
∫

Br(x)

| f |, (3)

where the supremum is taken over all balls centered at x, is an open question, and the full characterization of the pairs 
(p, n), n ≥ 1, and 1 < p < ∞, for which (3) holds with some ε(p, n) > 0 and for all f ∈ Lp(Rn) seems to be unknown. 
If n ≥ 3 and p > n

n−2 , then one can show that f (x) = min{|x|n−2, 1} ∈ Lp(Rn), and M f (x) = f (x), as f is the pointwise 
minimum of two superharmonic functions. This gives a counterexample to (3). In fact, Korry [3] proved that the centered 
maximal operator does not have fixed points unless n ≥ 3 and p > n

n−2 , but a lack of fixed points does not imply that 
(3) holds. On the other hand, for any n ≥ 1, by comparing M f (x) ≥ C(n)Mu f (x), and using the fact that ‖Mu f ‖Lp(Rn) ≥
(1 + B(n)

p−1 )1/p‖ f ‖Lp(Rn) (see [2]), one can easily conclude that (3) holds true whenever p is sufficiently close to 1. It is 
natural to ask what is the maximal p0(n) for which, if 1 < p < p0(n), then (3) holds.

1.1. New results

In this paper, we study the case of dimension n = 1 and the centered Hardy–Littlewood maximal operator M . We obtain 
the following theorem.

Theorem 1. If 1 < p < 2 and n = 1, then Lerner’s inequality (3) holds true, namely

‖M f ‖p ≥
(

p

2 (p − 1)

)1/p

‖ f ‖p .

Theorem 2. For n = 1, and any p, 1 < p < ∞, inequality (3) holds true a) for the class of indicator functions with ε(p, n) = 1/4p , 
and b) for the class of unimodal functions, with ε(p, n) not explicitly given.

2. Proof of the main results

2.1. Proof of Theorem 1

First, we prove the following modification of the classical Riesz’s sunrise lemma (see Lemma 1 in [1]). Our proof is 
similar to the proof of the lemma.

Lemma 3. For a nonnegative continuous compactly supported f and any λ > 0, we have

|{M f ≥ λ}| ≥ 1

2λ

∫
{ f ≥λ}

f .

Proof. Define an auxiliary function ϕ(x) via

ϕ(x) = sup
y<x

x∫
y

f (t)dt − 2λ (x − y).

Notice that, if f (x) > 2 λ, then ϕ(x) > 0. Indeed,

ϕ(x) = sup
y<x

(x − y)

⎡
⎣ 1

x − y

x∫
y

f − 2λ

⎤
⎦ > 0, (4)

because we can choose y sufficiently close to x, and use the fact that limy→x
1

x−y

∫ x
y f = f (x). On the other hand, if ϕ(x) > 0, 

then M f (x) > λ. Indeed, it follows from (4) that supy<x
1 ∫ x f > 2 λ. Therefore,
x−y y
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M f (x) = sup
r>0

1

2r

x+r∫
x−r

f ≥ 1

2 (x − y)

x∫
y

f ≥ λ.

Thus, we obtain

{M f ≥ λ} ⊇ { f ≥ λ} ∪ {ϕ > 0}; (5)

{ f > 2λ} ⊆ {ϕ > 0}. (6)

Therefore, it follows that

|{M f ≥ λ}| ≥ |{ϕ > 0}| + |{λ ≤ f ≤ 2λ}\{ϕ > 0}|
≥ 1

2λ

∫
{ϕ>0}

f + 1

2λ

∫
{λ≤ f ≤2 λ}\{ϕ>0}

f

≥ 1

2λ

∫
{ f ≥λ}

f . �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Take any continuous bounded compactly supported f ≥ 0. By Lemma 3, for any λ > 0, we have

|{M f ≥ λ}| ≥ 1

2λ

∫
R

f (x)1[λ,∞)( f (x))dx. (7)

Finally, we multiply both sides of (7) by p λp−1, and we integrate the obtained inequality in λ on (0, ∞), so we obtain

∫
R

(M f )p ≥
∞∫

0

∫
R

p λp−2

2
f (x)1[λ,∞)( f (x))dx dλ = p

2 (p − 1)

∫
R

f p,

and p
2p−2 > 1 precisely when p < 2. This finishes the proof of Theorem 1 for continuous compactly supported bounded 

nonnegative f . To obtain the inequality ‖M f ‖p ≥ (
p

2 (p−1)
)1/p‖ f ‖p for an arbitrary nonnegative f ∈ Lp(R), we can approxi-

mate f in Lp by a sequence of compactly supported smooth functions fn , and use the fact that the operator M is Lipschitz 
on Lp (since it is bounded and subadditive). �
Remark 4. The argument presented above is a certain modification of the classical Riesz’s sunrise lemma, and an adaptation 
of an argument of Lerner (see Section 4 in [4]). For p less than about 1.53, it is possible to use Lerner’s result directly, 
together with the fact that M f ≥ (Mu f )/2. We need the modified sunrise lemma to get the result for all p < 2.

2.2. Proof of Theorem 2

2.2.1. Indicator functions

Proof of Theorem 2 for indicator functions 1E . Let 1E ∈ Lp(R) and let δ̂ > 0. We approximate 1E arbitrarily well in Lp by 
a nonnegative continuous compactly supported function f . Then, f approximates 1E and M f also approximates M1E to 
within some δ � δ̂ in Lp .

For a.e. x ∈ E , we have M1E (x) ≥ 1. Additionally, by Lemma 3, we have that

|{M f ≥ 1/4}| ≥ 2
∫

{ f ≥ 1
4 }

f ≥ 2
∫

{ f ≥ 1
4 }∩E

1E − 2
∫
E

|1E − f |.

By making δ is small, we can ensure that {| f − 1E | ≥ 3/4} is small, so

2
∫

{ f ≥ 1
4 }∩E

1E ≥ 2 |E| − δ̂/2.

Also, by Holder’s inequality, we can bound 
∫ |1E − f | in terms of ||1E − f ||p < δ. Thus, when δ is sufficiently small, we get
E
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|{M f ≥ 1/4}| ≥ 2 |E| − δ̂,

so there is a set of measure at least |E| − δ̂, on which 1E = 0 and M f ≥ 1/4. If δ is sufficiently small, we have that 
|{M f − M1E ≥ δ̂}| < δ̂, so there is a set of measure |E| − 2δ̂ on which 1E = 0 and M1E ≥ 1/4 − δ̂. Taking δ̂ → 0, we get

‖M1E‖p
p ≥ (1 + 1/4p)‖1E‖p

p . �
2.2.2. Unimodal functions

Next, we obtain lower bounds on Lp norms of the maximal operator over the class of unimodal functions. By unimodal 
function f ∈ Lp(R), f ≥ 0, we mean any function that is increasing until some point x0 and then decreasing. Without loss 
of generality, we will assume that x0 = 0.

Proof of Theorem 2 for unimodal functions. We can assume that ‖ f 1R+‖p
p ≥ 1

2 ‖ f ‖p
p .

Let f̃ = f 1R+ . We define Mn = M ◦ · · · ◦ M︸ ︷︷ ︸
n

to be the n-th iterate of M . We will find an n, independent of f , such that 

‖Mn f̃ ‖p
p > 2p+1‖ f̃ ‖p

p , independent of the function f . First, for x > 0, let

a(x) = min
k∈Z,2k>x

2k.

Then let

ψ(x) = f̃ (a(x)),

that is, ψ ≤ f̃ , and ψ is a step function approximation from below. Then,

2‖ψ‖p
p = 2

∑
k∈Z

2k f̃ (2k+1)p =
∑
s∈Z

2s f̃ (2s)p ≥ ‖ f̃ ‖p
p .

Now let

ḡ(x) = (1 − √
x)1(0,1](x).

Then for 0 < x ≤ 9/8, we have that

M ḡ(x) ≥ 1

2 x

2 x∫
0

ḡ(y)dy ≥ 1

2 x

2 x∫
0

1 − √
y dy = 1 − 2

3

√
2 x = ḡ(8 x/9),

and for all x /∈ (0, 9/8], we have M ḡ(x) ≥ 0 = ḡ(8 x/9). Thus,

Mn ḡ(x) ≥ ḡ
(
(8/9)nx

)
,

so

(9/8)n∫
1
2 (9/8)n

(Mn1(0,1])p ≥
(9/8)n∫

1
2 (9/8)n

(Mn g)p ≥ (9/8)n

1∫
1
2

ḡ p = C p(9/8)n. (8)

Note that for all k ∈Z, we have ψ ≥ f̃ (2k+1)1(2k,2k+1] . Thus

Mnψ(x) ≥ f̃ (2k+1)Mn1(2k,2k+1](x).

We will use this lower bound for varying values of k for different x. We use (8) in the third inequality below, since 1(2k,2k+1]
is just a horizontal rescaling and translation of 1(0,1] . We have

‖Mnψ‖p
p ≥

∞∑
−∞

2k+(9/8)n2k∫
2k+(9/8)n2k−1

(Mnψ)p

≥
∞∑

−∞
f̃ (2k+1)p

2k+(9/8)n2k∫
k n k−1

(Mn1(2k,2k+1])p
2 +(9/8) 2
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≥
∞∑

−∞
f̃ (2k+1)p C p(9/8)n2k

= C p(9/8)n‖ψ‖p
p

≥ 1

2
C p(9/8)n‖ f̃ ‖p

p,

so by picking n = n(p) sufficiently large, we get

‖Mn f ‖p
p ≥ ‖Mnψ‖p

p ≥ 2p+1‖ f̃ ‖p
p ≥ 2p‖ f ‖p

p,

so

‖Mn f ‖p ≥ 2‖ f ‖p . (9)

Now suppose that ‖M f − f ‖p < ε̃‖ f ‖p for some ε̃ to be chosen later. From the subadditivity of the maximal operator, it 
follows that ‖Mφ1 − Mφ2‖p ≤ Ap‖φ1 − φ2‖p , so

‖Mn f − f ‖p ≤
n∑

j=1

‖M j f − M j−1 f ‖p ≤
n∑

j=1

A j−1
p ‖M f − f ‖p <

⎛
⎝ε̃

n∑
j=1

A j−1
p

⎞
⎠‖ f ‖p

which contradicts (9) for ε̃ = ε̃(p) sufficiently small. Thus ‖M f − f ‖p ≥ ε̃‖ f ‖p , so

‖M f ‖p
p =

∫
(M f )p ≥

∫
f p + (M f − f )p = ‖ f ‖p

p + ‖M f − f ‖p
p ≥ (

1 + ε̃p)‖ f ‖p
p,

which proves the theorem. �
3. Concluding remarks

Take any compactly supported bounded function f ≥ 0 which is not identically zero. One can show that

(9/8)1/p ≤ lim inf
k→∞

‖Mk f ‖1/k
L p ≤ lim sup

k→∞
‖Mk f ‖1/k

L p ≤ ap, (10)

where the number ap > 1 solves M(|x|−1/p) = ap |x|−1/p (such an ap can be seen to exist by a calculation, or by scaling 
considerations). In other words, the growth of ‖Mk f ‖p is exponential, which suggests that Theorem 1 is likely to be true 
for all 1 < p < ∞. To show (10), let us first illustrate the upper bound. Consider the function f̃ (x) := f (Cx)/‖ f ‖∞ . For 
any fixed constant C �= 0, one can easily see that lim supk→∞ ‖Mk f ‖1/k

Lp = lim supk→∞ ‖Mk f̃ ‖1/k
Lp . Therefore, without loss of 

generality, we can assume that f ≤ 1 and the support of f is in [−1, 1]. Next, take any δ ∈ (0, p − 1), and consider

h(x) =
{

1 |x| ≤ 1,

|x|−1/(p−δ) |x| > 1.

Clearly, h ∈ Lp , and f ≤ h. Since M(|x|−1/p) = ap |x|−1/p , it follows that Mh(x) ≤ ap−δh(x) for all x ∈R. Thus

lim sup
k→∞

‖Mk f ‖1/k
p ≤ lim sup

k→∞
‖Mkh‖1/k

p ≤ ap−δ lim sup
k→∞

‖h‖1/k
p = ap−δ.

Finally, taking δ → 0 gives the desired inequality.
To prove the lower bound, we have already seen that the function ḡ(x) = (1 − √

x)1(0,1] satisfies

Mn ḡ(x) ≥ ḡ
(
(8/9)n x

)
,

so we can obtain the growth (9/8)n/p for the function ḡ(x). Now it remains to notice that, for any f ≥ 0, f ∈ Lp not 
identically zero, we can rescale and shift the function ḡ so that M f (x) ≥ A ḡ(Bx + C) for some constants A > 0, B, C �= 0. 
This finishes the proof of the claim.
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