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Since publishing [2], I have learned that the main result (Theorem 2.1) of that paper has appeared multiple times in the 
literature, with different proofs.

The result is Theorem 5 of [1]; additionally, Bogatyrev’s paper gives a very explicit geometric description of the moduli 
space of real hyperelliptic curves and the solutions to Abel’s equations.

The result is also proved as Theorem 2.1 of [4], with an application to bounding derivatives of polynomials.
Bogatyrev and Totik give independent proofs that the Jacobian of Lemma 4.1 of [2] is surjective at every point of the 

moduli space. This is stronger than the result of [2], where it is merely shown that the Jacobian is generically surjective.
Additionally, the result appears as the main result of [3], in the following form: any finite union E of real disjoint intervals 

can be approximated by a set of the form E ′ = T −1([−1, 1]), with T a polynomial. The set E ′ is obtained constructively by 
continuous deformation of a minimal polynomial.

I would like to thank Andrey Bogatyrev for bringing these results to my attention.
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