ELSEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Group theory

A new canonical induction formula for *p*-permutation modules

Une nouvelle formule d'induction canonique pour modules de p-permutation

Laurence Barker, Hatice Mutlu

Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey

ARTICLE INFO

Article history: Received 1 October 2018 Accepted after revision 9 April 2019 Available online 24 April 2019

Presented by the Editorial Board

ABSTRACT

Applying Robert Boltje's theory of canonical induction, we give a restriction-preserving formula expressing any *p*-permutation module as a $\mathbb{Z}[1/p]$ -linear combination of modules induced and inflated from projective modules associated with subquotient groups. The underlying constructions include, for any given finite group, a ring with a \mathbb{Z} -basis indexed by conjugacy classes of triples (*U*, *K*, *E*) where *U* is a subgroup, *K* is a *p*'-residue-free normal subgroup of *U*, and *E* is an indecomposable projective module of the group algebra of *U*/*K*.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

En application de la théorie de l'induction canonique de Robert Boltje, nous présentons une formule stable par restriction au moyen de laquelle tout module de *p*-permutation est exprimé sous forme de combinaison $\mathbb{Z}[1/p]$ -linéaire des inductions des inflations des modules projectifs associés à des groupes de sous-quotients. Les constructions concernées comprennent, pour tout groupe fini, un anneau qui a une \mathbb{Z} -base indexée par les classes de conjugaison des triplets (*U*, *K*, *E*) avec *U* un sous-groupe, $O^{p'}(K) = K \leq U$ et *E* un module projectif indécomposable de l'algèbre de groupe de *U/K*.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We shall be applying Boltje's theory of canonical induction [2] to the ring of *p*-permutation modules. Of course, *p* is a prime. We shall be considering *p*-permutation modules for finite groups over an algebraically closed field \mathbb{F} of characteristic *p*. A review of the theory of *p*-permutation modules can be found in Bouc–Thévenaz [6, Section 2].

https://doi.org/10.1016/j.crma.2019.04.004

E-mail addresses: barker@fen.bilkent.edu.tr (L. Barker), hatice.mutlu@bilkent.edu.tr (H. Mutlu).

¹⁶³¹⁻⁰⁷³X/ \odot 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

A canonical induction formula for *p*-permutation modules was given by Boltje [3, Section 4] and shown to be \mathbb{Z} -integral. It expresses any *p*-permutation module, up to isomorphism, as a \mathbb{Z} -linear combination of modules induced from a special kind of *p*-permutation module, namely, the 1-dimensional modules.

We shall be inducing from another special kind of *p*-permutation module. Let *G* be a finite group. We understand all $\mathbb{F}G$ -modules to be finite-dimensional. An indecomposable $\mathbb{F}G$ -module *M* is said to be **exprojective** provided the following equivalent conditions hold up to isomorphism: there exists a normal subgroup $K \leq G$ such that *M* is inflated from a projective $\mathbb{F}G/K$ -module; there exists $K \leq G$ such that *M* is a direct summand of the permutation $\mathbb{F}G$ -module $\mathbb{F}G/K$; every vertex of *M* acts trivially on *M*; some vertex of *M* acts trivially on *M*. Generally, an $\mathbb{F}G$ -module *X* is called **exprojective** provided every indecomposable direct summand of *X* is exprojective.

The exprojective modules do already play a special role in the theory of *p*-permutation modules. Indeed, the parametrization of the indecomposable *p*-permutation modules, recalled in Section 2, characterizes any indecomposable *p*-permutation module as a particular direct summand of a module induced from an exprojective module.

We shall give a $\mathbb{Z}[1/p]$ -integral canonical induction formula, expressing any *p*-permutation $\mathbb{F}G$ -module, up to isomorphism, as a $\mathbb{Z}[1/p]$ -linear combination of modules induced from exprojective modules. More precisely, we shall be working with the Grothendieck ring for *p*-permutation modules T(G) and we shall be introducing another commutative ring $\mathcal{T}(G)$ which, roughly speaking, has a free \mathbb{Z} -basis consisting of lifts of induced modules of indecomposable exprojective modules. We shall consider a ring epimorphism $\lim_{G} : \mathcal{T}(G) \to T(G)$ and its \mathbb{Q} -linear extension $\lim_{G} : \mathbb{Q}\mathcal{T}(G) \to \mathbb{Q}T(G)$. The latter is split by a \mathbb{Q} -linear map can_G : $\mathbb{Q}T(G) \to \mathbb{Q}\mathcal{T}(G)$ which, as we shall show, restricts to a $\mathbb{Z}[1/p]$ -linear map can_G : $\mathbb{Z}[1/p]T(G) \to \mathbb{Z}[1/p]\mathcal{T}(G)$.

Let \mathbb{K} be a field of characteristic zero that is sufficiently large for our purposes. To motivate further study of the algebras $\mathbb{Z}[1/p]\mathcal{T}(G)$ and $\mathbb{K}\mathcal{T}(G)$, we mention that, notwithstanding the formulas for the primitive idempotents of $\mathbb{K}T(G)$ in Boltje [4, 3.6], Bouc–Thévenaz [6, 4.12] and [1], the relationship between those idempotents and the basis { $[M_{P,E}^G : (P, E) \in_G \mathcal{P}(E)$ } remains mysterious. In Section 4, we shall prove that $\mathbb{K}\mathcal{T}(G)$ is \mathbb{K} -semisimple as well as commutative, in other words, the primitive idempotents of $\mathbb{K}\mathcal{T}(G)$ comprise a basis for $\mathbb{K}\mathcal{T}(G)$. We shall also describe how, via \lim_{G} , each primitive idempotent of $\mathbb{K}\mathcal{T}(G)$ lifts to a primitive idempotent of $\mathbb{K}\mathcal{T}(G)$.

2. Exprojective modules

We shall establish some general properties of exprojective modules.

Given $H \leq G$, we write ${}_{G}Ind_{H}$ and ${}_{H}Res_{G}$ to denote the induction and restriction functors between $\mathbb{F}G$ -modules and $\mathbb{F}H$ -modules. When $H \leq G$, we write ${}_{G}Inf_{G/H}$ to denote the inflation functor to $\mathbb{F}G$ -modules from $\mathbb{F}G/H$ -modules. Given a finite group L and an understood isomorphism $L \rightarrow G$, we write ${}_{L}Iso_{G}$ to denote the isogation functor to $\mathbb{F}L$ -modules from $\mathbb{F}G$ -modules, we mean to say, ${}_{L}Iso_{G}(X)$ is the $\mathbb{F}L$ -module obtained from an $\mathbb{F}G$ -module X by transport of structure via the understood isomorphism.

Let us classify the exprojective $\mathbb{F}G$ -modules up to isomorphism. We say that *G* is p'-**residue-free** provided $G = O^{p'}(G)$, equivalently, *G* is generated by the Sylow *p*-subgroups of *G*. Let Q(G) denote the set of pairs (K, F), where *K* is a p'-residue-free normal subgroup of *G* and *F* is an indecomposable projective $\mathbb{F}G/K$ -module, two such pairs (K, F) and (K', F') being deemed the same provided K = K' and $F \cong F'$. We define an indecomposable exprojective $\mathbb{F}G$ -module $M_G^{K,F} = _G \ln f_{G/K}(F)$. By considering vertices, we obtain the following result.

Proposition 2.1. The condition $M \cong M_G^{K,F}$ characterizes a bijective correspondence between: (a) the isomorphism classes of indecomposable exprojective $\mathbb{F}G$ -modules M, (b) the elements (K, F) of $\mathcal{Q}(G)$.

In particular, for a *p*-subgroup *P* of *G*, the condition $E \cong_{N_G(P)} \ln f_{N_G(P)/P}(\overline{E})$ characterizes a bijective correspondence between, up to isomorphism, the indecomposable exprojective $\mathbb{F}N_G(P)$ -modules *E* with vertex *P* and the indecomposable projective $\mathbb{F}N_G(P)/P$ -modules \overline{E} . It follows that the well-known classification of the isomorphism classes of indecomposable *p*-permutation $\mathbb{F}G$ -modules, as in Bouc–Thévenaz [6, 2.9] for instance, can be expressed as in the next result. Let $\mathcal{P}(G)$ denote the set of pairs (P, E) where *P* is a *p*-subgroup of *G* and *E* is an exprojective $\mathbb{F}N_G(P)$ -module with vertex *P*, two such pairs (P, E) and (P', E') being deemed the same provided P = P' and $E \cong E'$. We make $\mathcal{P}(G)$ become a *G*-set via the actions on the coordinates. We define $M_{P,E}^G$ to be the indecomposable *p*-permutation $\mathbb{F}G$ -module with vertex *P* in Green correspondence with *E*.

Theorem 2.2. The condition $M \cong M_{P,E}^{G}$ characterizes a bijective correspondence between: (a) the isomorphism classes of indecomposable *p*-permutation \mathbb{F} *G*-modules *M*, (b) the *G*-conjugacy classes of elements $(P, E) \in \mathcal{P}(G)$.

We now give a necessary and sufficient condition for $M_{P,E}^{G}$ to be exprojective.

Proposition 2.3. Let $(P, E) \in \mathcal{P}(G)$. Let K be the normal closure of P in G. Then $M_{P,E}^G$ is exprojective if and only if $N_K(P)$ acts trivially on E. In that case, K is p'-residue-free, P is a Sylow p-subgroup of K, we have $G = N_G(P)K$, the inclusion $N_G(P) \hookrightarrow G$ induces an isomorphism $N_G(P)/N_K(P) \cong G/K$, and $M_{P,E}^G \cong M_G^{K,F}$, where F is the indecomposable projective $\mathbb{F}G/K$ -module determined, up to isomorphism, by the condition $E \cong_{N_G(P)} \ln \ln_{N_G(P)/N_K(P)} \log_{G/K}(F)$.

Proof. Write $M = M_{P,E}^G$. If *M* is exprojective then *K* acts trivially on *M* and, perforce, $N_K(P)$ acts trivially on *E*.

Conversely, suppose $N_K(P)$ acts trivially on E. Then P, being a vertex of E, must be a Sylow p-subgroup of $N_K(P)$. Hence, P is a Sylow p-subgroup of K. By a Frattini argument, $G = N_G(P)K$ and we have an isomorphism $N_G(P)/N_K(P) \cong G/K$ as specified. Let $X = G \operatorname{Ind}_{N_G(P)}(E)$. The assumption on E implies that X has well-defined \mathbb{F} -submodules

$$Y = \left\{ \sum_{k} k \otimes_{N_G(P)} x : x \in E \right\}, \qquad Y' = \left\{ \sum_{k} k \otimes_{N_G(P)} x_k : x_k \in E, \sum_{k} x_k = 0 \right\}$$

summed over a left transversal $kN_K(P) \subseteq K$. Making use of the well-definedness, an easy manipulation shows that the action of $N_G(P)$ on X stabilizes Y and Y'. Similarly, K stabilizes Y and Y'. So Y and Y' are $\mathbb{F}G$ -submodules of X. Since $|K : N_K(P)|$ is coprime to p, we have $Y \cap Y' = 0$. Since $|K : N_K(P)| = |G : N_G(P)|$, a consideration of dimensions yields $X = Y \oplus Y'$.

Fix a left transversal \mathcal{L} for $N_K(P)$ in K. For $g \in N_G(P)$ and $\ell \in \mathcal{L}$, we can write ${}^g \ell = \ell_g h_g$ with $\ell_g \in \mathcal{L}$ and $h_g \in N_K(P)$. By the assumption on E again, $h_g x = x$ for all $x \in E$. So

$$g\sum_{\ell}\ell\otimes x=\sum_{\ell}g_{\ell}\otimes g_{\ell}\otimes g_{\ell}=\sum_{\ell}\ell_{g}\otimes g_{\ell}=\sum_{\ell}\ell\otimes g_{\ell}$$

summed over $\ell \in \mathcal{L}$. We have shown that $_{N_G(P)} \operatorname{Res}_G(Y) \cong E$. A similar argument involving a sum over \mathcal{L} shows that K acts trivially on Y. Therefore, $Y \cong M_G^{K,F}$. On the other hand, Y is indecomposable with vertex P and, by the Green correspondence, $Y \cong M_{P,F}^G$. \Box

We shall be making use of the following closure property.

Proposition 2.4. *Given exprojective* \mathbb{F} *G-modules X and Y, then the* \mathbb{F} *G-module X* $\otimes_{\mathbb{F}}$ *Y is exprojective.*

Proof. We may assume that *X* and *Y* are indecomposable. Then *X* and *Y* are, respectively, direct summands of permutation $\mathbb{F}G$ -modules having the form $\mathbb{F}G/K$ and $\mathbb{F}G/L$ where $K \subseteq G \supseteq L$. By Mackey decomposition and the Krull–Schmidt Theorem, every indecomposable direct summand of $X \otimes Y$ is a direct summand of $\mathbb{F}G/(K \cap L)$. \Box

3. A canonical induction formula

Throughout, we let \mathfrak{K} be a class of finite groups that is closed under taking subgroups. We shall understand that $G \in \mathfrak{K}$. We shall abuse notation, neglecting to use distinct expressions to distinguish between a linear map and its extension to a larger coefficient ring.

Specializing some general theory in Boltje [2], we shall introduce a commutative ring $\mathcal{T}(G)$ and a ring epimorphism $\lim_{G} : \mathcal{T}(G) \to T(G)$. We shall show that the $\mathbb{Z}[1/p]$ -linear extension $\lim_{G} : \mathbb{Z}[1/p]\mathcal{T}(G) \to \mathbb{Z}[1/p]T(G)$ has a splitting can_G : $\mathbb{Z}[1/p]T(G) \to \mathbb{Z}[1/p]\mathcal{T}(G)$. As we shall see, can_G is the unique splitting that commutes with restriction and isogation.

To be clear about the definition of T(G), the Grothendieck ring of the category of *p*-permutation $\mathbb{F}G$ -modules, we mention that the split short exact sequences are the distinguished sequences determining the relations on T(G). The multiplication on T(G) is given by tensor product over \mathbb{F} . Given a *p*-permutation $\mathbb{F}G$ -module *X*, we write [*X*] to denote the isomorphism class of *X*. We understand that $[X] \in T(G)$. By Theorem 2.2,

$$T(G) = \bigoplus_{(P,E) \in_G \mathcal{P}(G)} \mathbb{Z}[M_{P,E}^G]$$

as a direct sum of regular \mathbb{Z} -modules, the notation indicating that the index runs over representatives of *G*-orbits. Let $T^{\text{ex}}(G)$ denote the \mathbb{Z} -submodule of T(G) spanned by the isomorphism classes of exprojective $\mathbb{F}G$ -modules. By Proposition 2.4, $T^{\text{ex}}(G)$ is a subring of T(G). By Proposition 2.1,

$$T^{\text{ex}}(G) = \bigoplus_{(K,F)\in_G \mathcal{Q}(G)} \mathbb{Z}[M_G^{K,F}].$$

For $H \leq G$, the induction and restriction functors ${}_{G}$ Ind ${}_{H}$ and ${}_{H}\text{Res}_{G}$ give rise to induction and restriction maps ${}_{G}$ ind ${}_{H}$ and ${}_{H}\text{res}_{G}$ between T(H) and T(G). Similarly, given $L \in \mathfrak{K}$ and an isomorphism $\theta : L \to G$, we have an evident isogation map ${}_{L}\text{iso}_{G}^{\theta} : T(L) \leftarrow T(G)$. In particular, given $g \in G$, we have an evident conjugation map ${}_{g_{H}}\text{con}_{H}^{g}$. Boltje noted that, when \mathfrak{K} is the set of subgroups of a given fixed finite group, T is a Green functor in the sense of [2, 1.1c]. For arbitrary \mathfrak{K} , a class of admitted isogations must be understood, and the isogations and inclusions between groups in \mathfrak{K} must satisfy the

axioms of a category. Granted that, then T is still a Green functor in an evident sense whereby the conjugations replaced by isogations.

Following a construction in [2, 2.2], adaptation to the case of arbitrary \Re being straightforward, we form the *G*-cofixed quotient \mathbb{Z} -module

$$\mathcal{T}(G) = \Big(\bigoplus_{U \le G} T^{\text{ex}}(U)\Big)_G$$

where *G* acts on the direct sum via the conjugation maps ${}_{gU}$ con ${}_{U}^{g}$. Harnessing the Green functor structure of *T*, the restriction functor structure of T^{ex} and noting that $T^{ex}(G)$ is a subring of T(G), we make \mathcal{T} become a Green functor much as in [2, 2.2], with the evident isogation maps. In particular, $\mathcal{T}(G)$ becomes a ring, commutative because T(G) is commutative. Given $x_U \in T^{ex}(U)$, we write $[U, x_U]_G$ to denote the image of x_U in $\mathcal{T}(G)$. Any $x \in \mathcal{T}(G)$ can be expressed in the form

$$x = \sum_{U \leq_G G} [U, x_U]_G$$

where the notation indicates that the index runs over representatives of the *G*-conjugacy classes of subgroups of *G*. Note that *x* determines $[U, x_U]$ and x_G but not, in general, x_U . Let $\mathcal{R}(G)$ be the *G*-set of pairs (U, K, F) where $U \leq G$ and $(K, F) \in \mathcal{Q}(U)$. We have

$$\mathcal{T}(G) = \bigoplus_{U \leq_G G, (K,F) \in_{N_G(U)} \mathcal{Q}(U)} \mathbb{Z}[U, [M_U^{K,F}]] = \bigoplus_{(U,K,F) \in_G \mathcal{R}(G)} \mathbb{Z}[U, [M_U^{K,F}]].$$

We define a \mathbb{Z} -linear map $\lim_G : \mathcal{T}(G) \to T(G)$ such that $\lim_G [U, x_U] = _G \operatorname{ind}_U(x_U)$. As noted in [2, 3.1], the family ($\lim_G : G \in \mathfrak{K}$) is a morphism of Green functors $\lim_{ \to \infty \to T} T$. In particular, the map $\lim_G : \mathcal{T}(G) \to T(G)$ is a ring homomorphism. Extending to coefficients in \mathbb{Q} , we obtain an algebra map

$$\lim_G : \mathbb{Q}\mathcal{T}(G) \to \mathbb{Q}T(G) .$$

Let $\pi_G : T(G) \to T^{\text{ex}}(G)$ be the \mathbb{Z} -linear epimorphism such that π_G acts as the identity on $T^{\text{ex}}(G)$ and π_G annihilates the isomorphism class of every indecomposable non-exprojective *p*-permutation $\mathbb{F}G$ -module. By \mathbb{Q} -linear extension again, we obtain a \mathbb{Q} -linear epimorphism $\pi_G : \mathbb{Q}T(G) \to \mathbb{Q}T^{\text{ex}}(G)$. After [2, 5.3a, 6.1a], we define a \mathbb{Q} -linear map

$$\operatorname{can}_{G} : \mathbb{Q}T(G) \to \mathbb{Q}T(G), \ \xi \mapsto \frac{1}{|G|} \sum_{U,V \leq G} |U| \operatorname{m\"ob}(U,V)[U, U\operatorname{res}_{V}(\pi_{V}(\operatorname{res}_{G}(\xi)))]_{G}$$

where möb() denotes the Möbius function on the poset of subgroups of G.

Theorem 3.1. Consider the \mathbb{Q} -linear map can_{*G*}.

(1) We have $\lim_{G \circ} \operatorname{can}_{G} = \operatorname{id}_{\mathbb{O}T(G)}$.

(2) For all $H \leq G$, we have $_H \operatorname{res}_{G \circ} \operatorname{can}_G = \operatorname{can}_{H \circ H} \operatorname{res}_G$.

(3) For all $L \in \Re$ and isomorphisms $\theta : L \leftarrow G$, we have $_{I} iso_{G}^{\theta} \circ can_{G} = can_{I} \circ _{I} iso_{G}^{\theta}$.

(4) $\operatorname{can}_{G}[X] = [X]$ for all exprojective $\mathbb{F}G$ -modules X.

Those four properties, taken together for all $G \in \mathfrak{K}$, determine the maps can_G .

Proof. By [2, 6.4], part (1) will follow when we have checked that, for every indecomposable non-exprojective *p*-permutation \mathbb{F} *G*-module *M*, we have $[M] \in \sum_{K < G} Gind_K(\mathbb{Q}T(K))$. By [3, 2.1, 4.7], we may assume that *G* is *p*-hypoelementary. By [3, 1.3(b)], *M* is induced from $N_G(P)$ where *P* is a vertex of *M*. But *M* is non-exprojective, so *P* is not normal in *G*. The check is complete. Parts (2), (3), (4) follow from the proof of [2, 5.3a]. \Box

Parts (2) and (3) of the theorem can be interpreted as saying that $can_*: T \to T$ is a morphism of restriction functors. It is not hard to check that, when \Re is closed under the taking of quotient groups, the functors T, T^{ex} , T can be equipped with inflation maps, and the morphisms lin_* and can_* are compatible with inflation.

The latest theorem immediately yields the following corollary.

Corollary 3.2. Given a *p*-permutation \mathbb{F} *G*-module *X*, then

$$[X] = \frac{1}{|G|} \sum_{U,V \le G} |U| \, m\ddot{o}b(U,V)_G \operatorname{ind}_U \operatorname{res}_V(\pi_V(_V \operatorname{res}_G[X])) \,.$$

Given *p*-permutation \mathbb{F} *G*-modules *M* and *X*, with *M* indecomposable, we write $m_G(M, X)$ to denote the multiplicity of *M* as a direct summand of *X*. We write $\pi_G(X)$ to denote the direct summand of *X*, well-defined up to isomorphism, such that $[\pi_G(X)] = \pi_G[X]$.

Lemma 3.3. Let \mathfrak{p} be a set of primes. Suppose that, for all $V \in \mathfrak{K}$, all *p*-permutation $\mathbb{F}V$ -modules *Y*, all $U \triangleleft V$ such that V/U is a cyclic \mathfrak{p} -group, and all *V*-fixed elements $(K, F) \in \mathcal{Q}(U)$, we have

$$m_U(M_U^{K,F}, \pi_U(U\operatorname{Res}_V(Y))) = \sum_{(J,E)\in \mathcal{Q}(V)} m_U(M_U^{K,F}, U\operatorname{Res}_V(M_V^{J,E})) m_V(M_V^{J,E}, \pi_V(Y)).$$

Then, for all $G \in \mathfrak{K}$, we have $|G|_{\mathfrak{p}'} \operatorname{can}_G[Y] \in \mathcal{T}(G)$, where $|G|_{\mathfrak{p}'}$ denotes the \mathfrak{p}' -part of |G|.

Proof. This is a special case of [2, 9.4].

We can now prove the $\mathbb{Z}[1/p]$ -integrality of can_{*G*}.

Theorem 3.4. The \mathbb{Q} -linear map can_G restricts to a $\mathbb{Z}[1/p]$ -linear map $\mathbb{Z}[1/p]T(G) \to \mathbb{Z}[1/p]\mathcal{T}(G)$.

Proof. Let \mathfrak{p} be the set of primes distinct from p. Let V, Y, U, K, F be as in the latest lemma. We must obtain the equality in the lemma. We may assume that Y is indecomposable. If Y is exprojective, then $\pi_U(_U \operatorname{Res}_V(Y)) \cong _U \operatorname{Res}_V(Y)$ and $\pi_V(Y) \cong X$, whence the required equality is clear. So we may assume that Y is non-exprojective. Then $\pi_V(Y)$ is the zero module. It suffices to show that $M_U^{K,F}$ is not a direct summand of $_U \operatorname{Res}_V(Y)$. For a contradiction, suppose otherwise. The hypothesis on |V : U| implies that U contains the vertices of Y. So $Y |_V \operatorname{Ind}_U(X)$ for some indecomposable p-permutation $\mathbb{F}U$ -module X. Bearing in mind that (K, F) is V-stable, a Mackey decomposition argument shows that $M_U^{K,F} \cong X$. The V-stability of (K, F) also implies that $K \lhd V$. So

 $Y |_V \operatorname{Ind}_U \operatorname{Inf}_{U/K}(F) \cong _V \operatorname{Inf}_{V/K} \operatorname{Ind}_{U/K}(F)$.

We deduce that Y is exprojective. This is a contradiction, as required. \Box

Proposition 3.5. The \mathbb{Z} -linear map $\lim_{G} : \mathcal{T}(G) \to T(G)$ is surjective. However, the $\mathbb{Z}[1/p]$ -linear map $\operatorname{can}_{G} : \mathbb{Z}[1/p]T(G) \to \mathbb{Z}[1/p]\mathcal{T}(G)$ need not restrict to a \mathbb{Z} -linear map $T(G) \to \mathcal{T}(G)$. Indeed, putting p = 3 and $G = \operatorname{SL}_2(3)$, letting Y be the isomorphically unique indecomposable non-simple non-projective p-permutation $\mathbb{F}G$ -module and X the isomorphically unique 2-dimensional simple $\mathbb{F} Q_8$ -module, then the coefficient of the standard basis element $[Q_8, X]_G$ in $\operatorname{can}_G([Y])$ is equal to 2/3.

Proof. Since every 1-dimensional $\mathbb{F}G$ -module is exprojective, the surjectivity of the \mathbb{Z} -linear map \lim_{G} follows from Boltje [3, 4.7]. Routine techniques confirm the counter-example. \Box

4. The \mathbb{K} -semisimplicity of the commutative algebra $\mathbb{KT}(G)$

Let $\mathcal{I}(G)$ be the *G*-set of pairs (P, s) where *P* is a *p*-subgroup of *G* and *s* is a *p'*-element of $N_G(P)/P$. Let \mathbb{K} be a field of characteristic zero such that \mathbb{K} has roots of unity whose order is the *p'*-part of the exponent of *G*. Choosing and fixing an arbitrary isomorphism between a suitable torsion subgroup of $\mathbb{K} - \{0\}$ and a suitable torsion subgroup of $\mathbb{F} - \{0\}$, we can understand Brauer characters of $\mathbb{F}G$ -modules to have values in \mathbb{K} . For a *p'*-element $s \in G$, we define a species $\epsilon_{1,s}^G$ of $\mathbb{K}T(G)$, we mean, an algebra map $\mathbb{K}T(G) \to \mathbb{K}$, such that $\epsilon_{1,s}^G[M]$ is the value, at *s*, of the Brauer character of a *p*-permutation $\mathbb{F}G$ -module *M*. Generally, for $(P, s) \in \mathcal{I}(G)$, we define a species $\epsilon_{P,s}^G$ of $\mathbb{K}T(G)$ such that $\epsilon_{P,s}^G[M] = \epsilon_{1,s}^{N_G(P)/P}[M(P)]$, where *M*(*P*) denotes the *P*-relative Brauer quotient of M^P . The next result, well-known, can be found in Bouc–Thévenaz [6, 2.18, 2.19].

Theorem 4.1. Given $(P, s), (P', s') \in \mathcal{I}(G)$, then $\epsilon_{P,s}^G = \epsilon_{P',s'}^G$ if and only if we have *G*-conjugacy $(P, s) =_G (P', s')$. The set $\{\epsilon_{P,s}^G : (P, s) \in_G \mathcal{I}(G)\}$ is the set of species of $\mathbb{K}T(G)$ and it is also a basis for the dual space of $\mathbb{K}T(G)$. The dual basis $\{e_{P,s}^G : (P, s) \in_G \mathcal{I}(G)\}$ is the set of primitive idempotents of $\mathbb{K}T(G)$. As a direct sum of trivial algebras over \mathbb{K} , we have

$$\mathbb{K}T(G) = \bigoplus_{(P,s)\in_G \mathcal{I}(G)} \mathbb{K}e_{P,s}^G.$$

Let $\mathcal{J}(G)$ be the *G*-set of pairs (L, t) where *L* is a *p*'-residue-free normal subgroup of *G* and *t* is a *p*'-element of *G/L*. We define a species $\epsilon_G^{L,t}$ of $\mathbb{K}T^{\text{ex}}(G)$ such that, given an indecomposable exprojective $\mathbb{F}G$ -module *M*, then $\epsilon_G^{L,t}[M] = 0$ unless *M*

is the inflation of an $\mathbb{F}G/L$ -module \overline{M} , in which case, $\epsilon_G^{L,t}$ is the value, at t, of the Brauer character of \overline{M} . It is easy to show that, given a p-subgroup $P \leq G$ and a p'-element $s \in N_G(P)/P$, then $\epsilon_{P,s}^G[M] = \epsilon_G^{L,t}[M]$ for all exprojective $\mathbb{F}G$ -modules M if and only if L is the normal closure of P in G and t is conjugate to the image of s in G/L. Hence, via the latest theorem, we obtain the following lemma.

Lemma 4.2. Given $(L, t), (L', t') \in \mathcal{J}(G)$, then $\epsilon_G^{L,t} = \epsilon_G^{L',t'}$ if and only if L = L' and $t =_{G/L} t'$, in other words, $(L, t) =_G (L', t')$. The set $\{\epsilon_G^{L,t} : (L, t) \in_G \mathcal{J}(G)\}$ is the set of species of $\mathbb{K}T^{\text{ex}}(G)$ and it is also a basis for the dual space of $\mathbb{K}T^{\text{ex}}(G)$.

Let $\mathcal{K}(G)$ be the *G*-set of triples (V, L, t) where $V \leq G$ and $(L, t) \in \mathcal{J}(V)$. Given $(L, t) \in \mathcal{J}(G)$, we define a species $\epsilon_{G,L,t}^G$ of $\mathbb{KT}(G)$ such that, for $x \in \mathcal{T}(G)$ expressed as a sum as in Section 3,

$$\epsilon_{G,L,t}^G(\mathbf{x}) = \epsilon_G^{L,t}(\mathbf{x}_G)$$

Generally, for $(V, L, t) \in \mathcal{K}(G)$, we define a species $\epsilon_{V,L,t}^G$ of $\mathbb{K}\mathcal{T}(G)$ such that

$$\epsilon_{V,L,t}^G(x) = \epsilon_{V,L,t}^V(v \operatorname{res}_G(x)) \,.$$

Using Lemma 4.2, a straightforward adaptation of the argument in [6, 2.18] gives the next result. This result also follows from Boltje–Raggi-Cárdenas–Valero-Elizondo [5, 7.5].

Theorem 4.3. Given $(V, L, t), (V', L', t') \in \mathcal{K}(G)$, then $\epsilon_{V,L,t}^G = \epsilon_{V',L',t'}^G$ if and only if $(V, L, t) =_G (V', L', t')$. The set $\{\epsilon_{V,L,t}^G : (V, L, t) \in_G \mathcal{K}(G)\}$ is the set of species of $\mathbb{KT}(G)$ and it is also a basis for the dual space of $\mathbb{KT}(G)$. The dual basis $\{e_{V,L,t}^G : (V, L, t) \in_G \mathcal{K}(G)\}$ is the set of primitive idempotents of $\mathbb{KT}(G)$. As a direct sum of trivial algebras over \mathbb{K} , we have

$$\mathbb{K}\mathcal{T}(G) = \bigoplus_{(V,L,t)\in_G \mathcal{K}(G)} \mathbb{K}e_{V,L,t}^G \, .$$

We have the following easy corollary on lifts of the primitive idempotents e_P^G s.

Corollary 4.4. Given $(P, s) \in \mathcal{I}(G)$, then $e_{(P,s),P,s}^G$ is the unique primitive idempotent e of $\mathbb{KT}(G)$ such that $\lim_{G} (e) = e_{P,s}^G$.

References

- [2] R. Boltje, A general theory of canonical induction formulae, J. Algebra 206 (1998) 293-343.
- [3] R. Boltje, Linear source modules and trivial source modules, Proc. Symp. Pure Math. 63 (1998) 7-30.
- [4] R. Boltje, Representation rings of finite groups, their species and idempotent formulae, preprint.
- [5] R. Boltje, G. Raggi-Cárdenas, L. Valero-Elizondo, The -+ and -+ constructions for biset functors, J. Algebra 523 (2019) 241–273.
- [6] S. Bouc, J. Thévenaz, The primitive idempotents of the *p*-permutation ring, J. Algebra 323 (2010) 2905–2915.

L. Barker, An inversion formula for the primitive idempotents of the trivial source algebra, J. Pure Appl. Math. (2019), https://doi.org/10.1016/j.jpaa.2019. 04.008, in press.