Group theory

A new canonical induction formula for p-permutation modules

Une nouvelle formule d'induction canonique pour modules de p-permutation
Laurence Barker, Hatice Mutlu
Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey

A R T I CLE IN F O

Article history:

Received 1 October 2018
Accepted after revision 9 April 2019
Available online 24 April 2019
Presented by the Editorial Board

Abstract

Applying Robert Boltje's theory of canonical induction, we give a restriction-preserving formula expressing any p-permutation module as a $\mathbb{Z}[1 / p]$-linear combination of modules induced and inflated from projective modules associated with subquotient groups. The underlying constructions include, for any given finite group, a ring with a \mathbb{Z}-basis indexed by conjugacy classes of triples (U, K, E) where U is a subgroup, K is a p^{\prime}-residue-free normal subgroup of U, and E is an indecomposable projective module of the group algebra of U / K.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

En application de la théorie de l'induction canonique de Robert Boltje, nous présentons une formule stable par restriction au moyen de laquelle tout module de p-permutation est exprimé sous forme de combinaison $\mathbb{Z}[1 / p]$-linéaire des inductions des inflations des modules projectifs associés à des groupes de sous-quotients. Les constructions concernées comprennent, pour tout groupe fini, un anneau qui a une \mathbb{Z}-base indexée par les classes de conjugaison des triplets (U, K, E) avec U un sous-groupe, $O^{p^{\prime}}(K)=K \unlhd U$ et E un module projectif indécomposable de l'algèbre de groupe de U / K.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We shall be applying Boltje's theory of canonical induction [2] to the ring of p-permutation modules. Of course, p is a prime. We shall be considering p-permutation modules for finite groups over an algebraically closed field \mathbb{F} of characteristic p. A review of the theory of p-permutation modules can be found in Bouc-Thévenaz [6, Section 2].

[^0]A canonical induction formula for p-permutation modules was given by Boltje [3, Section 4] and shown to be \mathbb{Z}-integral. It expresses any p-permutation module, up to isomorphism, as a \mathbb{Z}-linear combination of modules induced from a special kind of p-permutation module, namely, the 1-dimensional modules.

We shall be inducing from another special kind of p-permutation module. Let G be a finite group. We understand all $\mathbb{F} G$-modules to be finite-dimensional. An indecomposable $\mathbb{F} G$-module M is said to be exprojective provided the following equivalent conditions hold up to isomorphism: there exists a normal subgroup $K \unlhd G$ such that M is inflated from a projective $\mathbb{F} G / K$-module; there exists $K \unlhd G$ such that M is a direct summand of the permutation $\mathbb{F} G$-module $\mathbb{F} G / K$; every vertex of M acts trivially on M; some vertex of M acts trivially on M. Generally, an $\mathbb{F} G$-module X is called exprojective provided every indecomposable direct summand of X is exprojective.

The exprojective modules do already play a special role in the theory of p-permutation modules. Indeed, the parametrization of the indecomposable p-permutation modules, recalled in Section 2, characterizes any indecomposable p-permutation module as a particular direct summand of a module induced from an exprojective module.

We shall give a $\mathbb{Z}[1 / p]$-integral canonical induction formula, expressing any p-permutation $\mathbb{F} G$-module, up to isomorphism, as a $\mathbb{Z}[1 / p]$-linear combination of modules induced from exprojective modules. More precisely, we shall be working with the Grothendieck ring for p-permutation modules $T(G)$ and we shall be introducing another commutative ring \mathcal{T} (G) which, roughly speaking, has a free \mathbb{Z}-basis consisting of lifts of induced modules of indecomposable exprojective modules. We shall consider a ring epimorphism $\operatorname{lin}_{G}: \mathcal{T}(G) \rightarrow T(G)$ and its \mathbb{Q}-linear extension $\operatorname{lin}_{G}: \mathbb{Q} \mathcal{T}(G) \rightarrow \mathbb{Q} T(G)$. The latter is split by a \mathbb{Q}-linear map $\operatorname{can}_{G}: \mathbb{Q} T(G) \rightarrow \mathbb{Q} \mathcal{T}(G)$ which, as we shall show, restricts to a $\mathbb{Z}[1 / p]$-linear map $\operatorname{can}_{G}: \mathbb{Z}[1 / p] T(G) \rightarrow \mathbb{Z}[1 / p] \mathcal{T}(G)$.

Let \mathbb{K} be a field of characteristic zero that is sufficiently large for our purposes. To motivate further study of the algebras $\mathbb{Z}[1 / p] \mathcal{T}(G)$ and $\mathbb{K} \mathcal{T}(G)$, we mention that, notwithstanding the formulas for the primitive idempotents of $\mathbb{K} T(G)$ in Boltje [4, 3.6], Bouc-Thévenaz [6, 4.12] and [1], the relationship between those idempotents and the basis $\left\{\left[M_{P, E}^{G}:(P, E) \in_{G} \mathcal{P}(E)\right\}\right.$ remains mysterious. In Section 4, we shall prove that $\mathbb{K} \mathcal{T}(G)$ is \mathbb{K}-semisimple as well as commutative, in other words, the primitive idempotents of $\mathbb{K} \mathcal{T}(G)$ comprise a basis for $\mathbb{K} \mathcal{T}(G)$. We shall also describe how, via lin ${ }_{G}$, each primitive idempotent of $\mathbb{K} T(G)$ lifts to a primitive idempotent of $\mathbb{K} \mathcal{T}(G)$.

2. Exprojective modules

We shall establish some general properties of exprojective modules.
Given $H \leq G$, we write ${ }_{G} \operatorname{Ind}_{H}$ and ${ }_{H} \operatorname{Res}_{G}$ to denote the induction and restriction functors between $\mathbb{F} G$-modules and $\mathbb{F} H$-modules. When $H \unlhd G$, we write ${ }_{G} \operatorname{Inf}_{G / H}$ to denote the inflation functor to $\mathbb{F} G$-modules from $\mathbb{F} G / H$-modules. Given a finite group L and an understood isomorphism $L \rightarrow G$, we write ${ }_{L} \mathrm{Iso}_{G}$ to denote the isogation functor to $\mathbb{F} L$-modules from $\mathbb{F} G$-modules, we mean to say, ${ }_{L} \operatorname{Iso}_{G}(X)$ is the $\mathbb{F} L$-module obtained from an $\mathbb{F} G$-module X by transport of structure via the understood isomorphism.

Let us classify the exprojective $\mathbb{F} G$-modules up to isomorphism. We say that G is p^{\prime}-residue-free provided $G=O^{p^{\prime}}(G)$, equivalently, G is generated by the Sylow p-subgroups of G. Let $\mathcal{Q}(G)$ denote the set of pairs (K, F), where K is a p^{\prime}-residue-free normal subgroup of G and F is an indecomposable projective $\mathbb{F} G / K$-module, two such pairs (K, F) and (K^{\prime}, F^{\prime}) being deemed the same provided $K=K^{\prime}$ and $F \cong F^{\prime}$. We define an indecomposable exprojective $\mathbb{F} G$-module $M_{G}^{K, F}={ }_{G} \operatorname{Inf}_{G / K}(F)$. By considering vertices, we obtain the following result.

Proposition 2.1. The condition $M \cong M_{G}^{K, F}$ characterizes a bijective correspondence between:
(a) the isomorphism classes of indecomposable exprojective $\mathbb{F} G$-modules M,
(b) the elements (K, F) of $\mathcal{Q}(G)$.

In particular, for a p-subgroup P of G, the condition $E \cong N_{G}(P) \operatorname{Inf}_{N_{G}(P) / P}(\bar{E})$ characterizes a bijective correspondence between, up to isomorphism, the indecomposable exprojective $\mathbb{F} N_{G}(P)$-modules E with vertex P and the indecomposable projective $\mathbb{F} N_{G}(P) / P$-modules \bar{E}. It follows that the well-known classification of the isomorphism classes of indecomposable p-permutation $\mathbb{F} G$-modules, as in Bouc-Thévenaz [6, 2.9] for instance, can be expressed as in the next result. Let $\mathcal{P}(G)$ denote the set of pairs (P, E) where P is a p-subgroup of G and E is an exprojective $\mathbb{F} N_{G}(P)$-module with vertex P, two such pairs (P, E) and $\left(P^{\prime}, E^{\prime}\right)$ being deemed the same provided $P=P^{\prime}$ and $E \cong E^{\prime}$. We make $\mathcal{P}(G)$ become a G-set via the actions on the coordinates. We define $M_{P, E}^{G}$ to be the indecomposable p-permutation $\mathbb{F} G$-module with vertex P in Green correspondence with E.

Theorem 2.2. The condition $M \cong M_{P, E}^{G}$ characterizes a bijective correspondence between:
(a) the isomorphism classes of indecomposable p-permutation $\mathbb{F} G$-modules M,
(b) the G-conjugacy classes of elements $(P, E) \in \mathcal{P}(G)$.

We now give a necessary and sufficient condition for $M_{P, E}^{G}$ to be exprojective.

Proposition 2.3. Let $(P, E) \in \mathcal{P}(G)$. Let K be the normal closure of P in G. Then $M_{P, E}^{G}$ is exprojective if and only if $N_{K}(P)$ acts trivially on E. In that case, K is p^{\prime}-residue-free, P is a Sylow p-subgroup of K, we have $G=N_{G}(P) K$, the inclusion $N_{G}(P) \hookrightarrow G$ induces an isomorphism $N_{G}(P) / N_{K}(P) \cong G / K$, and $M_{P, E}^{G} \cong M_{G}^{K, F}$, where F is the indecomposable projective $\mathbb{F} G / K$-module determined, up to isomorphism, by the condition $E \cong N_{G}(P) \operatorname{Inf}_{N_{G}(P) / N_{K}(P)} \operatorname{Iso}_{G / K}(F)$.

Proof. Write $M=M_{P, E}^{G}$. If M is exprojective then K acts trivially on M and, perforce, $N_{K}(P)$ acts trivially on E.
Conversely, suppose $N_{K}(P)$ acts trivially on E. Then P, being a vertex of E, must be a Sylow p-subgroup of $N_{K}(P)$. Hence, P is a Sylow p-subgroup of K. By a Frattini argument, $G=N_{G}(P) K$ and we have an isomorphism $N_{G}(P) / N_{K}(P) \cong G / K$ as specified. Let $X={ }_{G} \operatorname{Ind}_{N_{G}(P)}(E)$. The assumption on E implies that X has well-defined \mathbb{F}-submodules

$$
Y=\left\{\sum_{k} k \otimes_{N_{G}(P)} x: x \in E\right\}, \quad Y^{\prime}=\left\{\sum_{k} k \otimes_{N_{G}(P)} x_{k}: x_{k} \in E, \sum_{k} x_{k}=0\right\}
$$

summed over a left transversal $k N_{K}(P) \subseteq K$. Making use of the well-definedness, an easy manipulation shows that the action of $N_{G}(P)$ on X stabilizes Y and Y^{\prime}. Similarly, K stabilizes Y and Y^{\prime}. So Y and Y^{\prime} are $\mathbb{F} G$-submodules of X. Since $\left|K: N_{K}(P)\right|$ is coprime to p, we have $Y \cap Y^{\prime}=0$. Since $\left|K: N_{K}(P)\right|=\left|G: N_{G}(P)\right|$, a consideration of dimensions yields $X=Y \oplus Y^{\prime}$.

Fix a left transversal \mathcal{L} for $N_{K}(P)$ in K. For $g \in N_{G}(P)$ and $\ell \in \mathcal{L}$, we can write ${ }^{g} \ell=\ell_{g} h_{g}$ with $\ell_{g} \in \mathcal{L}$ and $h_{g} \in N_{K}(P)$. By the assumption on E again, $h_{g} x=x$ for all $x \in E$. So

$$
g \sum_{\ell} \ell \otimes x=\sum_{\ell} g_{\ell} \otimes g x=\sum_{\ell} \ell_{g} \otimes g x=\sum_{\ell} \ell \otimes g x
$$

summed over $\ell \in \mathcal{L}$. We have shown that $N_{G}(P) \operatorname{Res}_{G}(Y) \cong E$. A similar argument involving a sum over \mathcal{L} shows that K acts trivially on Y. Therefore, $Y \cong M_{G}^{K, F}$. On the other hand, Y is indecomposable with vertex P and, by the Green correspondence, $Y \cong M_{P, E}^{G}$.

We shall be making use of the following closure property.
Proposition 2.4. Given exprojective $\mathbb{F} G$-modules X and Y, then the $\mathbb{F} G$-module $X \otimes_{\mathbb{F}} Y$ is exprojective.
Proof. We may assume that X and Y are indecomposable. Then X and Y are, respectively, direct summands of permutation $\mathbb{F} G$-modules having the form $\mathbb{F} G / K$ and $\mathbb{F} G / L$ where $K \unlhd G \unrhd L$. By Mackey decomposition and the Krull-Schmidt Theorem, every indecomposable direct summand of $X \otimes Y$ is a direct summand of $\mathbb{F} G /(K \cap L)$.

3. A canonical induction formula

Throughout, we let \mathfrak{K} be a class of finite groups that is closed under taking subgroups. We shall understand that $G \in \mathfrak{K}$. We shall abuse notation, neglecting to use distinct expressions to distinguish between a linear map and its extension to a larger coefficient ring.

Specializing some general theory in Boltje [2], we shall introduce a commutative ring $\mathcal{T}(G)$ and a ring epimorphism $\operatorname{lin}_{G}: \mathcal{T}(G) \rightarrow T(G)$. We shall show that the $\mathbb{Z}[1 / p]$-linear extension $\operatorname{lin}_{G}: \mathbb{Z}[1 / p] \mathcal{T}(G) \rightarrow \mathbb{Z}[1 / p] T(G)$ has a splitting can $_{G}$: $\mathbb{Z}[1 / p] T(G) \rightarrow \mathbb{Z}[1 / p] \mathcal{T}(G)$. As we shall see, can_{G} is the unique splitting that commutes with restriction and isogation.

To be clear about the definition of $T(G)$, the Grothendieck ring of the category of p-permutation $\mathbb{F} G$-modules, we mention that the split short exact sequences are the distinguished sequences determining the relations on $T(G)$. The multiplication on $T(G)$ is given by tensor product over \mathbb{F}. Given a p-permutation $\mathbb{F} G$-module X, we write $[X]$ to denote the isomorphism class of X. We understand that $[X] \in T(G)$. By Theorem 2.2,

$$
T(G)=\bigoplus_{(P, E) \in_{G} \mathcal{P}(G)} \mathbb{Z}\left[M_{P, E}^{G}\right]
$$

as a direct sum of regular \mathbb{Z}-modules, the notation indicating that the index runs over representatives of G-orbits. Let $T^{\mathrm{ex}}(G)$ denote the \mathbb{Z}-submodule of $T(G)$ spanned by the isomorphism classes of exprojective $\mathbb{F} G$-modules. By Proposition 2.4, $T^{\mathrm{ex}}(G)$ is a subring of $T(G)$. By Proposition 2.1,

$$
T^{\mathrm{ex}}(G)=\bigoplus_{(K, F) \in_{G} \mathcal{Q}(G)} \mathbb{Z}\left[M_{G}^{K, F}\right]
$$

For $H \leq G$, the induction and restriction functors ${ }_{G} \operatorname{Ind}_{H}$ and ${ }_{H} \operatorname{Res}_{G}$ give rise to induction and restriction maps ${ }_{G}$ ind $_{H}$ and ${ }_{H} \operatorname{res}_{G}$ between $T(H)$ and $T(G)$. Similarly, given $L \in \mathfrak{K}$ and an isomorphism $\theta: L \rightarrow G$, we have an evident isogation map ${ }_{L}$ iso $_{G}^{\theta}: T(L) \leftarrow T(G)$. In particular, given $g \in G$, we have an evident conjugation map $g_{H} \operatorname{con}_{H}^{g}$. Boltje noted that, when \mathfrak{K} is the set of subgroups of a given fixed finite group, T is a Green functor in the sense of [2, 1.1c]. For arbitrary \mathfrak{K}, a class of admitted isogations must be understood, and the isogations and inclusions between groups in \mathfrak{K} must satisfy the
axioms of a category. Granted that, then T is still a Green functor in an evident sense whereby the conjugations replaced by isogations.

Following a construction in [2, 2.2], adaptation to the case of arbitrary \mathfrak{K} being straightforward, we form the G-cofixed quotient \mathbb{Z}-module

$$
\mathcal{T}(G)=\left(\bigoplus_{U \leq G} T^{\mathrm{ex}}(U)\right)_{G}
$$

where G acts on the direct sum via the conjugation maps $g_{U} \operatorname{con}_{U}^{g}$. Harnessing the Green functor structure of T, the restriction functor structure of T^{ex} and noting that $T^{\mathrm{ex}}(G)$ is a subring of $T(G)$, we make \mathcal{T} become a Green functor much as in [2, 2.2], with the evident isogation maps. In particular, $\mathcal{T}(G)$ becomes a ring, commutative because $T(G)$ is commutative. Given $x_{U} \in T^{\text {ex }}(U)$, we write $\left[U, x_{U}\right]_{G}$ to denote the image of x_{U} in $\mathcal{T}(G)$. Any $x \in \mathcal{T}$ (G) can be expressed in the form

$$
x=\sum_{U \leq G G}\left[U, x_{U}\right]_{G}
$$

where the notation indicates that the index runs over representatives of the G-conjugacy classes of subgroups of G. Note that x determines $\left[U, x_{U}\right]$ and x_{G} but not, in general, x_{U}. Let $\mathcal{R}(G)$ be the G-set of pairs (U, K, F) where $U \leq G$ and $(K, F) \in \mathcal{Q}(U)$. We have

$$
\mathcal{T}(G)=\bigoplus_{U \leq G G,(K, F) \in_{N_{G}(U)} \mathcal{Q}(U)} \mathbb{Z}\left[U,\left[M_{U}^{K, F}\right]\right]=\bigoplus_{(U, K, F) \in_{G} \mathcal{R}(G)} \mathbb{Z}\left[U,\left[M_{U}^{K, F}\right]\right]
$$

We define a \mathbb{Z}-linear map $\operatorname{lin}_{G}: \mathcal{T}(G) \rightarrow T(G)$ such that $\operatorname{lin}_{G}\left[U, x_{U}\right]={ }_{G} \operatorname{ind}_{U}\left(x_{U}\right)$. As noted in [2, 3.1], the family (lin ${ }_{G}$: $G \in \mathfrak{K})$ is a morphism of Green functors $\operatorname{lin}: \mathcal{T} \rightarrow T$. In particular, the map $\operatorname{lin}_{G}: \mathcal{T}(G) \rightarrow T(G)$ is a ring homomorphism. Extending to coefficients in \mathbb{Q}, we obtain an algebra map

$$
\operatorname{lin}_{G}: \mathbb{Q} \mathcal{T}(G) \rightarrow \mathbb{Q} T(G)
$$

Let $\pi_{G}: T(G) \rightarrow T^{\mathrm{ex}}{ }_{(G)}$ be the \mathbb{Z}-linear epimorphism such that π_{G} acts as the identity on $T^{\mathrm{ex}}(G)$ and π_{G} annihilates the isomorphism class of every indecomposable non-exprojective p-permutation $\mathbb{F} G$-module. By \mathbb{Q}-linear extension again, we obtain a \mathbb{Q}-linear epimorphism $\pi_{G}: \mathbb{Q} T(G) \rightarrow \mathbb{Q} T^{\text {ex }}(G)$. After [2,5.3a, 6.1a], we define a \mathbb{Q}-linear map

$$
\operatorname{can}_{G}: \mathbb{Q} T(G) \rightarrow \mathbb{Q} \mathcal{T}(G), \xi \mapsto \frac{1}{|G|} \sum_{U, V \leq G}|U| \operatorname{möb}(U, V)\left[U,{ }_{U} \operatorname{res}_{V}\left(\pi_{V}\left({ }_{V} \operatorname{res}_{G}(\xi)\right)\right)\right]_{G}
$$

where möb() denotes the Möbius function on the poset of subgroups of G.

Theorem 3.1. Consider the \mathbb{Q}-linear map can $_{G}$.
(1) We have $\operatorname{lin}_{G} \circ \operatorname{can}_{G}=\mathrm{id}_{\mathbb{Q} T(G)}$.
(2) For all $H \leq G$, we have ${ }_{H}$ res $_{G} \circ$ can $_{G}=\operatorname{can}_{H \circ H}$ res $_{G}$.
(3) For all $L \in \mathfrak{K}$ and isomorphisms $\theta: L \leftarrow G$, we have $L_{L} \mathrm{iso}_{G}^{\theta} \circ \operatorname{can}_{G}=\operatorname{can}_{L} \circ{ }_{L} \mathrm{iso}_{G}^{\theta}$.
(4) $\operatorname{can}_{G}[X]=[X]$ for all exprojective $\mathbb{F} G$-modules X.

Those four properties, taken together for all $G \in \mathfrak{K}$, determine the maps can_{G}.
Proof. By [2, 6.4], part (1) will follow when we have checked that, for every indecomposable non-exprojective p-permutation $\mathbb{F} G$-module M, we have $[M] \in \sum_{K<G} G^{\operatorname{ind}}{ }_{K}(\mathbb{Q} T(K))$. By [3, 2.1, 4.7], we may assume that G is p-hypoelementary. By [3, 1.3(b)], M is induced from $N_{G}(P)$ where P is a vertex of M. But M is non-exprojective, so P is not normal in G. The check is complete. Parts (2), (3), (4) follow from the proof of [2,5.3a].

Parts (2) and (3) of the theorem can be interpreted as saying that can $_{*}: T \rightarrow \mathcal{T}$ is a morphism of restriction functors. It is not hard to check that, when \mathfrak{K} is closed under the taking of quotient groups, the functors $T, T^{\text {ex }}, \mathcal{T}$ can be equipped with inflation maps, and the morphisms lin_{*} and can_{*} are compatible with inflation.

The latest theorem immediately yields the following corollary.

Corollary 3.2. Given a p-permutation $\mathbb{F} G$-module X, then

$$
[X]=\frac{1}{|G|} \sum_{U, V \leq G}|U| m o ̈ b(U, V)_{G} \operatorname{ind}_{U} \operatorname{res}_{V}\left(\pi_{V}\left(V \operatorname{res}_{G}[X]\right)\right) .
$$

Given p-permutation $\mathbb{F} G$-modules M and X, with M indecomposable, we write $m_{G}(M, X)$ to denote the multiplicity of M as a direct summand of X. We write $\pi_{G}(X)$ to denote the direct summand of X, well-defined up to isomorphism, such that $\left[\pi_{G}(X)\right]=\pi_{G}[X]$.

Lemma 3.3. Let \mathfrak{p} be a set of primes. Suppose that, for all $V \in \mathfrak{K}$, all p-permutation $\mathbb{F} V$-modules Y, all $U \triangleleft V$ such that V / U is a cyclic \mathfrak{p}-group, and all V-fixed elements $(K, F) \in \mathcal{Q}(U)$, we have

$$
m_{U}\left(M_{U}^{K, F}, \pi_{U}\left({ }_{U} \operatorname{Res}_{V}(Y)\right)\right)=\sum_{(J, E) \in \mathcal{Q}(V)} m_{U}\left(M_{U}^{K, F},{ }_{U} \operatorname{Res}_{V}\left(M_{V}^{J, E}\right)\right) m_{V}\left(M_{V}^{J, E}, \pi_{V}(Y)\right)
$$

Then, for all $G \in \mathfrak{K}$, we have $|G|_{\mathfrak{p}^{\prime}} \operatorname{can}_{G}[Y] \in \mathcal{T}(G)$, where $|G|_{\mathfrak{p}^{\prime}}$ denotes the \mathfrak{p}^{\prime}-part of $|G|$.
Proof. This is a special case of $[2,9.4]$.
We can now prove the $\mathbb{Z}[1 / p]$-integrality of can_{G}.

Theorem 3.4. The \mathbb{Q}-linear map can $_{G}$ restricts to a $\mathbb{Z}[1 / p]$-linear map $\mathbb{Z}[1 / p] T(G) \rightarrow \mathbb{Z}[1 / p] \mathcal{T}(G)$.
Proof. Let \mathfrak{p} be the set of primes distinct from p. Let V, Y, U, K, F be as in the latest lemma. We must obtain the equality in the lemma. We may assume that Y is indecomposable. If Y is exprojective, then $\pi_{U}\left(U \operatorname{Res}_{V}(Y)\right) \cong \cong_{U} \operatorname{Res}_{V}(Y)$ and $\pi_{V}(Y) \cong X$, whence the required equality is clear. So we may assume that Y is non-exprojective. Then $\pi_{V}(Y)$ is the zero module. It suffices to show that $M_{U}^{K, F}$ is not a direct summand of ${ }_{U} \operatorname{Res}_{V}(Y)$. For a contradiction, suppose otherwise. The hypothesis on $|V: U|$ implies that U contains the vertices of Y. So $Y \mid{ }_{V} \operatorname{Ind}_{U}(X)$ for some indecomposable p-permutation $\mathbb{F} U$-module X. Bearing in mind that (K, F) is V-stable, a Mackey decomposition argument shows that $M_{U}^{K, F} \cong X$. The V-stability of (K, F) also implies that $K \triangleleft V$. So

$$
\left.Y\right|_{V} \operatorname{Ind}_{U} \operatorname{Inf}_{U / K}(F) \cong{ }_{V} \operatorname{Inf}_{V / K} \operatorname{Ind}_{U / K}(F)
$$

We deduce that Y is exprojective. This is a contradiction, as required.
Proposition 3.5. The \mathbb{Z}-linear map $\operatorname{lin}_{G}: \mathcal{T}(G) \rightarrow T(G)$ is surjective. However, the $\mathbb{Z}[1 / p]$-linear map $\operatorname{can}_{G}: \mathbb{Z}[1 / p] T(G) \rightarrow$ $\mathbb{Z}[1 / p] \mathcal{T}(G)$ need not restrict to a \mathbb{Z}-linear map $T(G) \rightarrow \mathcal{T}(G)$. Indeed, putting $p=3$ and $G=\mathrm{SL}_{2}(3)$, letting Y be the isomorphically unique indecomposable non-simple non-projective p-permutation $\mathbb{F} G$-module and X the isomorphically unique 2-dimensional simple $\mathbb{F} Q_{8}$-module, then the coefficient of the standard basis element $\left[Q_{8}, X\right]_{G}$ in $\operatorname{can}_{G}([Y])$ is equal to $2 / 3$.

Proof. Since every 1-dimensional $\mathbb{F} G$-module is exprojective, the surjectivity of the \mathbb{Z}-linear map lin $_{G}$ follows from Boltje [3, 4.7]. Routine techniques confirm the counter-example.

4. The \mathbb{K}-semisimplicity of the commutative algebra $\mathbb{K} \mathcal{T}$ (G)

Let $\mathcal{I}(G)$ be the G-set of pairs (P, s) where P is a p-subgroup of G and s is a p^{\prime}-element of $N_{G}(P) / P$. Let \mathbb{K} be a field of characteristic zero such that \mathbb{K} has roots of unity whose order is the p^{\prime}-part of the exponent of G. Choosing and fixing an arbitrary isomorphism between a suitable torsion subgroup of $\mathbb{K}-\{0\}$ and a suitable torsion subgroup of $\mathbb{F}-\{0\}$, we can understand Brauer characters of $\mathbb{F} G$-modules to have values in \mathbb{K}. For a p^{\prime}-element $s \in G$, we define a species $\epsilon_{1, s}^{G}$ of $\mathbb{K} T(G)$, we mean, an algebra map $\mathbb{K} T(G) \rightarrow \mathbb{K}$, such that $\epsilon_{1, s}^{G}[M]$ is the value, at s, of the Brauer character of a p-permutation $\mathbb{F} G$-module M. Generally, for $(P, s) \in \mathcal{I}(G)$, we define a species $\epsilon_{P, s}^{G}$ of $\mathbb{K} T(G)$ such that $\epsilon_{P, s}^{G}[M]=\epsilon_{1, s}^{N_{G}(P) / P}[M(P)]$, where $M(P)$ denotes the P-relative Brauer quotient of M^{P}. The next result, well-known, can be found in Bouc-Thévenaz [6, 2.18, 2.19].

Theorem 4.1. Given $(P, s),\left(P^{\prime}, s^{\prime}\right) \in \mathcal{I}(G)$, then $\epsilon_{P, s}^{G}=\epsilon_{P^{\prime}, s^{\prime}}^{G}$ if and only if we have G-conjugacy $(P, s)={ }_{G}\left(P^{\prime}, s^{\prime}\right)$. The set $\left\{\epsilon_{P, s}^{G}\right.$: $\left.(P, s) \in_{G} \mathcal{I}(G)\right\}$ is the set of species of $\mathbb{K} T(G)$ and it is also a basis for the dual space of $\mathbb{K} T(G)$. The dual basis $\left\{e_{P, s}^{G}:(P, s) \in_{G} \mathcal{I}(G)\right\}$ is the set of primitive idempotents of $\mathbb{K} T(G)$. As a direct sum of trivial algebras over \mathbb{K}, we have

$$
\mathbb{K} T(G)=\bigoplus_{(P, s) \in_{G} \mathcal{I}(G)} \mathbb{K} e_{P, s}^{G}
$$

Let $\mathcal{J}(G)$ be the G-set of pairs (L, t) where L is a p^{\prime}-residue-free normal subgroup of G and t is a p^{\prime}-element of G / L. We define a species $\epsilon_{G}^{L, t}$ of $\mathbb{K} T^{\mathrm{ex}}(G)$ such that, given an indecomposable exprojective $\mathbb{F} G$-module M, then $\epsilon_{G}^{L, t}[M]=0$ unless M
is the inflation of an $\mathbb{F} G / L$-module \bar{M}, in which case, $\epsilon_{G}^{L, t}$ is the value, at t, of the Brauer character of \bar{M}. It is easy to show that, given a p-subgroup $P \leq G$ and a p^{\prime}-element $s \in N_{G}(P) / P$, then $\epsilon_{P, s}^{G}[M]=\epsilon_{G}^{L, t}[M]$ for all exprojective $\mathbb{F} G$-modules M if and only if L is the normal closure of P in G and t is conjugate to the image of s in G / L. Hence, via the latest theorem, we obtain the following lemma.

Lemma 4.2. Given $(L, t),\left(L^{\prime}, t^{\prime}\right) \in \mathcal{J}(G)$, then $\epsilon_{G}^{L, t}=\epsilon_{G}^{L^{\prime}, t^{\prime}}$ if and only if $L=L^{\prime}$ and $t={ }_{G / L} t^{\prime}$, in other words, $(L, t)={ }_{G}\left(L^{\prime}, t^{\prime}\right)$. The set $\left\{\epsilon_{G}^{L, t}:(L, t) \in_{G} \mathcal{J}(G)\right\}$ is the set of species of $\mathbb{K} T^{\mathrm{ex}}(G)$ and it is also a basis for the dual space of $\mathbb{K} T^{\mathrm{ex}}(G)$.

Let $\mathcal{K}(G)$ be the G-set of triples (V, L, t) where $V \leq G$ and $(L, t) \in \mathcal{J}(V)$. Given $(L, t) \in \mathcal{J}(G)$, we define a species $\epsilon_{G, L, t}^{G}$ of $\mathbb{K} \mathcal{T}(G)$ such that, for $x \in \mathcal{T}(G)$ expressed as a sum as in Section 3,

$$
\epsilon_{G, L, t}^{G}(x)=\epsilon_{G}^{L, t}\left(x_{G}\right) .
$$

Generally, for $(V, L, t) \in \mathcal{K}(G)$, we define a species $\epsilon_{V, L, t}^{G}$ of $\mathbb{K} \mathcal{T}(G)$ such that

$$
\epsilon_{V, L, t}^{G}(x)=\epsilon_{V, L, t}^{V}\left(V \operatorname{res}_{G}(x)\right)
$$

Using Lemma 4.2, a straightforward adaptation of the argument in [6, 2.18] gives the next result. This result also follows from Boltje-Raggi-Cárdenas-Valero-Elizondo [5, 7.5].

Theorem 4.3. Given $(V, L, t),\left(V^{\prime}, L^{\prime}, t^{\prime}\right) \in \mathcal{K}(G)$, then $\epsilon_{V, L, t}^{G}=\epsilon_{V^{\prime}, L^{\prime}, t^{\prime}}^{G}$ if and only if $(V, L, t)={ }_{G}\left(V^{\prime}, L^{\prime}, t^{\prime}\right)$. The set $\left\{\epsilon_{V, L, t}^{G}\right.$: $\left.(V, L, t) \in_{G} \mathcal{K}(G)\right\}$ is the set of species of $\mathbb{K} \mathcal{T}(G)$ and it is also a basis for the dual space of $\mathbb{K} \mathcal{T}(G)$. The dual basis $\left\{e_{V, L, t}^{G}:(V, L, t) \in_{G}\right.$ $\mathcal{K}(G)\}$ is the set of primitive idempotents of $\mathbb{K} \mathcal{T}(G)$. As a direct sum of trivial algebras over \mathbb{K}, we have

$$
\mathbb{K} \mathcal{T}(G)=\bigoplus_{(V, L, t) \in_{G} \mathcal{K}(G)} \mathbb{K} e_{V, L, t}^{G}
$$

We have the following easy corollary on lifts of the primitive idempotents $e_{P, s}^{G}$.
Corollary 4.4. Given $(P, s) \in \mathcal{I}(G)$, then $e_{\langle P, s\rangle, P, s}^{G}$ is the unique primitive idempotent e of $\mathbb{K} \mathcal{T}(G)$ such that $\operatorname{lin}_{G}(e)=e_{P, s}^{G}$.

References

[1] L. Barker, An inversion formula for the primitive idempotents of the trivial source algebra, J. Pure Appl. Math. (2019), https://doi.org/10.1016/j.jpaa.2019. 04.008, in press.
[2] R. Boltje, A general theory of canonical induction formulae, J. Algebra 206 (1998) 293-343.
[3] R. Boltje, Linear source modules and trivial source modules, Proc. Symp. Pure Math. 63 (1998) 7-30.
[4] R. Boltje, Representation rings of finite groups, their species and idempotent formulae, preprint.
[5] R. Boltje, G. Raggi-Cárdenas, L. Valero-Elizondo, The $-_{+}$and $-^{+}$constructions for biset functors, J. Algebra 523 (2019) 241-273.
[6] S. Bouc, J. Thévenaz, The primitive idempotents of the p-permutation ring, J. Algebra 323 (2010) 2905-2915.

[^0]: E-mail addresses: barker@fen.bilkent.edu.tr (L. Barker), hatice.mutlu@bilkent.edu.tr (H. Mutlu).
 https://doi.org/10.1016/j.crma.2019.04.004
 1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

