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We prove well-posedness and regularity results for elliptic boundary value problems on 
certain singular domains that are conformally equivalent to manifolds with boundary and 
bounded geometry. Our assumptions are satisfied by the domains with a smooth set of 
singular cuspidal points, and hence our results apply to the class of domains with isolated 
oscillating conical singularities. In particular, our results generalize the classical L2-well-
posedness result of Kondratiev for the Laplacian on domains with conical points. However, 
our domains and coefficients are too general to allow for singular function expansions of 
the solutions similar to the ones in Kondratiev’s theory. The proofs are based on conformal 
changes of metric, on the differential geometry of manifolds with boundary and bounded 
geometry, and on our earlier geometric and analytic results on such manifolds.
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r é s u m é

Nous montrons des résultats de solvabilité et de régularité pour des problèmes de valeurs 
au bord elliptiques dans certains domaines singuliers, conformément équivalents aux va-
riétés avec bord et géométrie bornée. Nos hypothèses sont satisfaites par les domaines 
ayant un ensemble lisse de points cuspidaux singuliers, et nos résultats s’appliquent donc 
à la classe des domaines à singularités coniques oscillantes isolées. En particulier, ils gé-
néralisent le résultat classique de Kondratiev de solvabilité L2 pour le laplacien sur les 
domaines à points coniques. Toutefois, nos domaines et coefficients sont trop généraux 
pour permettre de développer les solutions en fonctions singulières, comme avec la théorie 
de Kondratiev. Les démonstrations reposent sur des changements de métriques conformes, 
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sur la géométrie des variétés à bord et géométrie bornée, ainsi que sur nos travaux anté-
rieurs d’analyse et géométrie sur de telles variétés.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Version française abrégée

Nous prouvons des résultats de solvabilité et régularité pour des systèmes satisfaisants la condition de Legendre forte 
avec conditions au bord mixtes de type Dirichlet–Neumann sur certains domaines singuliers. Notre classe de domaines 
singuliers contient la classe des domaines avec des singularités coniques isolées. Nos résultats généralisent ainsi le théorème 
d’isomorphisme de Kondratiev [17]. Dans la suite, M sera une variété riemannienne lisse à bord de dimension m et E → M
sera un fibré vectoriel hermitien équipé d’une connexion. Pour nos résultats, nous allons aussi supposer que M a une 
géométrie bornée. Soit a une forme sesquilinéaire lisse sur T ∗M ⊗ E et Pa : H1(M; E) → H1(M; E)∗ défini par la formule 
〈Pau, v〉 := ∫

M a(∇u, ∇v) d volg , pour u, v ∈ H1(M; E). Nos espaces de fonctions seront les espaces de Sobolev pondérés de 
type Kondratiev, voir Équation (1). Nous supposons donnée une partition ∂M = ∂0M 	 ∂1M du bord en deux sous-ensembles 
disjoints et ouverts, ainsi que des conditions au bord B j d’ordre j, B j sur ∂ j M . Nos résultats sont alors les suivants.

(i) P satisfait la régularité dans les espaces pondérés f K�,2
(ρ) de l’équation (1) si, et seulement si, les conditions au bord 

B = (B0, B1) satisfont la condition de régularité de Shapiro–Lopatinski uniforme. Ces conditions sont satisfaites pour les 
opérateurs satisfaisant les conditions de Legendre fortes avec des conditions au bord mixtes (Dirichlet/Neumann). On 
obtient en particulier des résultats de régularité pour l’opérateur de Laplace avec conditions au bord mixtes, Théorème 6.

(ii) Si, en plus des conditions explicitées dans (i), P satisfait une inégalité de Hardy–Poincaré, alors le problème au bord 
associé à P est également bien posé.

En principe, la classe des domaines à laquelle nos résultats s’appliquent est assez large, mais, pour des raisons d’espace 
et afin de réduire au minimum les détails techniques, nous considérons dans cette note principalement les exemples de 
domaines cuspidaux et wedge. L’ensemble des points singuliers de ces domaines est une sous-variété lisse compacte.

1. Introduction

We prove well-posedness and regularity results for systems of partial differential equations satisfying the strong Legendre 
condition with mixed Dirichlet–Neumann boundary conditions on certain singular domains. Our class of singular domains 
includes the class of domains with isolated conical singularities and thus they generalize the classical well-posedness result 
of Kondratiev [17]. Unlike Kondratiev’s theory, singular functions expansions are not possible in our setting.

Let us briefly state our main result. Here are first our assumptions. Throughout this paper, (M, g) will be a smooth, 
m-dimensional Riemannian manifold with boundary and E → M will be a Hermitian vector bundle with connection ∇
such that its curvature R E and all its covariant derivatives ∇ j R E , j ≥ 1, are bounded. For our results, we shall also assume 
that M has bounded geometry (a concept recalled below, see, however [6,5,7,14] for the concepts not recalled in this 
paper). Let a be a smooth, sesquilinear form on T ∗M ⊗ E and Pa : H1(M; E) → H1(M; E)∗ be defined by the formula 
〈Pau, v〉 := ∫

M a(∇u, ∇v) d volg , for u, v ∈ H1(M; E). Recall that if a is uniformly positive definite, then a is said to satisfy 
the strong Legendre condition. If P = Pa + Q , where Q is of order ≤ 1, we shall say that P satisfies the strong Legendre 
condition if, and only if, a does. This implies that P is strongly elliptic. For scalar operators, the condition that P satisfies the 
strong Legendre condition is actually equivalent to P being uniformly strongly elliptic. A smooth function f : M → (0, ∞)

will be called an admissible weight if f −1 d f has bounded covariant derivatives of all orders. Let f and ρ be admissible 
weights on M . If g0 := ρ2 g and ∇0 is the Levi-Civita connection associated with g0, then we can describe our function 
spaces as the following Kondratiev-type weighted Sobolev spaces

f K�,p
(ρ)(M, g0; E) := {

ψ | ρ j∇ j
0( f −1ψ) ∈ Lp(M, g0; T ∗M⊗ j ⊗ E), (∀) j ≤ �

}
. (1)

In our applications and in some of our results, the weight ρ is bounded. For simplicity, we will assume this throughout the 
paper. We will also assume that we have a partition ∂M = ∂0M 	 ∂1M of the boundary in two disjoint, open subsets and 
that we are given boundary conditions B j of order j, B j on ∂ j M , satisfying the boundedness and smoothness conditions 
stated before Theorem 6. Our results are then as follows (for (M, g) with bounded geometry):

(i) P satisfies regularity in the weighted spaces f K�,2
(ρ) of Equation (1) if, and only if, B = (B0, B1) satisfies the uniform 

Shapiro–Lopatinski regularity conditions. These conditions are satisfied for operators satisfying the strong Legendre 
conditions with mixed (Dirichlet/Neumann) boundary conditions. In particular, the Laplace operator satisfies regularity 
for mixed boundary conditions (Theorem 6).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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(ii) If, in addition to the conditions of (i), P satisfies a Hardy–Poincaré inequality, then P also satisfies a well-posedness 
result. We provide several examples of how to obtain the Hardy–Poincaré inequality.

In principle, the class of domains to which our results apply is pretty large, but for reasons of space and in order to keep 
the technicalities to a minimum, we mostly consider the examples of canonical cuspidal and wedge domains introduced 
by H. Amann [1], whose definition is recalled below. The set of singular points of such domains is smooth and compact 
(without corners). It is even a finite set for cuspidal domains. Some very general and nice results were obtained in [12,18]
for certain domains with isolated point cusp singularities. Our methods are quite different, relying more on differential 
geometry, and thus allowing us to treat a large class of domains. Moreover, our coefficients are less regular than the ones 
in the references, but we lose the Fredholm properties and the singular function expansions obtained in [12,18] and in 
other papers. Algebras of pseudodifferential operators on manifolds with cuspidal points were considered in [25]. The index 
problem on such manifolds was considered in [19]. We thank Herbert Amann for useful comments.

2. Manifolds with boundary and bounded geometry

In this paper, (M, g) will always be a smooth, m-dimensional Riemannian manifold with boundary and E → M will be an 
vector bundle with metric and metric-preserving connection. A smooth function f : M → (0, ∞) will be called a g-admissible 
weight if f −1 d f has bounded covariant derivatives of all orders. We shall say that E has totally bounded curvature if its 
curvature and all of its covariant derivatives are bounded. We endow T M with the Levi-Civita connection ∇ associated 
with g . Recall that M is said to have bounded geometry if its injectivity radius rinj(M) > 0 is positive and if T M has totally 
bounded curvature. We assume from now on that E is complex and it has totally bounded curvature.

Let us consider a codimension-one submanifold H ⊂ M (i.e. hypersurface). Assume that H carries a globally defined unit 
normal vector field ν and let exp⊥(x, t) := expM

x (tνx) be the exponential in the direction of the chosen unit normal vector. 
By IH we denote the second fundamental form of H . The following two definitions are from [5].

Definition 1. Let (M̂, ̂g) be a Riemannian manifold with bounded geometry. We say that H ⊂ M̂ is a bounded geometry 
hypersurface in M if it is a closed subset of M , if ‖∇kIH‖L∞ < ∞ for all k ≥ 0, and if here is r∂ > 0 such that exp⊥ : H ×
(−r∂ , r∂ ) → M̂ is a diffeomorphism onto its image.

Definition 2. A Riemannian manifold (M, g) with boundary is said to have bounded geometry if there is a Riemannian 
manifold M̂ with bounded geometry containing M as an open subset such that ∂M is a bounded geometry hypersurface 
in M̂ .

Remark 3. In [1], Amann has introduced the class of “singular manifolds.” A singular manifold (M, g0, ρ) is a Rieman-
nian manifold with boundary (M, g0) together with a singularity function ρ satisfying suitable properties. In particular, 
(M, ρ−2 g0) is assumed to be a manifold with boundary and bounded geometry. Conversely, if (M, g) has bounded ge-
ometry and ρ is a g-admissible weight, then (M, g0 := ρ2 g) is a singular manifold with singularity function ρ . In the 
boundaryless case, this was first noticed in [13] (see also [2]). The singularity function ρ is seen to be a g-admissible 
weight. For manifolds with boundary, this result follows from [5] or [15]. The results of [1] apply therefore to the setting 
of manifolds with boundary and bounded geometry endowed with an admissible weight. A triple (M, g, ρ) consisting of a 
manifold with boundary and bounded geometry and a bounded g-admissible weight ρ will be called an Amann triple.

3. Conformal changes of metric

If h1, h2 : X → (0, ∞), we shall write h1 ∼ h2 if h1/h2 and h2/h1 are both bounded. Let g0 be a second Riemannian 
metric on M , whose Levi-Civita connection is denoted ∇0. Let ρ, f : M → (0, ∞) be measurable functions and p ∈ [1, ∞]. 
Recall then from Equation (1) the definition of the spaces f K�,p

(ρ)(M, g0; E), which reduce to the usual Sobolev spaces if 
ρ, f ∼ 1. More precisely, if g := ρ−2 g0 and if ρ is a g-admissible weight and f is continuous, then the weighted and 
classical spaces are related by

f K�,p
(ρ)

(M, g0; E) = f ρ−m/p W �,p(M, g; E), 1 ≤ p ≤ ∞ (2)

(see [1,3,4] and Remark 3). We drop the superscript p for p = 2: K�
(ρ)(M, g0; E) := K�,2

(ρ)(M, g0; E) and so on. We assume 
from now on that g = ρ−2 g0.

Example 4. A typical example is when M ⊂ Rm is the closed unit ball, g0 is the Euclidean metric, and ρ = rλ , where r is 
the distance to the origin. Then (M, g := ρ−2 g0) has bounded geometry if, and only if, λ ≥ 1. Moreover,

f :=
{

e−( r
ε )−ε

, if λ = 1 + ε > 1,

r = ρ, if λ = 1,
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is a g-admissible weight. This example is adapted to a domain with conical points (for instance, a polygonal domain) 
with set of vertices V by taking f (x) = ρ(x) := ∏

P∈V |x − P | and λ = 1. The extra weight f becomes then unnecessary 
(for λ = 1) and the weighted Sobolev spaces K�

(ρ)(M) := {u | ρ |α|∂αu ∈ L2(M), (∀) |α| ≤ � } are the spaces introduced by 
Kondratiev [17].

We shall assume from now that (M, g, ρ) is an Amann triple (see Remark 3) and that f : M → (0, ∞) is a second g-admissible 
weight. In particular, ρ is a bounded g-admissible weight. We have seen in Equation (2) how the Sobolev spaces change 
with respect to conformal changes of metric. Recall that g0 = ρ2 g . For differential operators, a simple calculation based on 
L∞(M; E ⊗ T M⊗p ⊗ T M∗⊗q, g) = ρ p−q L∞(M; E ⊗ T M⊗p ⊗ T M∗⊗q, g0) and the fact that ρ is bounded gives the following 
lemma.

Lemma 5. Let P be an order-k differential operator on M and P1 := ρk P . We have that P satisfies the strong Legendre condition 
with respect to the metric g0 if, and only if, P1 satisfies the strong Legendre condition with respect to the metric g = ρ−2 g0 . If P has 
coefficients in W ∞,∞(g0), then P1 has coefficients in W ∞,∞(g).

A similar result is valid for the boundary differential operators appearing as boundary conditions.

4. Regularity and well-posedness

Let P be a second-order differential operator. We assume from now on that we are given a partition of the boundary 
∂M = ∂0M 	∂1M into two disjoint, open subsets, as in [5], and order i differential boundary conditions Bi on ∂i M . See, for ex-
ample, [7,20] for general results on boundary value problems on smooth domains, [11,18,23,22] for the case of non-smooth 
domains, and [6,14] for more general boundary conditions involving projections. We assume that ρ2 P , ρB1, and B0 have co-
efficients in W ∞,∞(g). The typical assumption is that P , B1, and B0 have coefficients in W ∞,∞(g0), which means that they 
“stabilize” towards the singular points, as in [18], and this is a necessary condition for the existence of singular function 
expansions. In view of Lemma 5, our assumptions are thus weaker, but singular functions expansions are no longer avail-
able in general in our setting. Our more general setting may be needed in applications to non-linear PDEs and uncertainty 
quantification. Also, recall from [14] the uniform Shapiro–Lopatinski regularity conditions and that they are invariant with 
respect to conformal changes of metric. Combining this property with Equation (2) and with Lemma 5, we get the following 
theorem.

Theorem 6. Let P be a g0-uniformly elliptic second-order differential operator acting on sections of E → M and B = (B0, B1) be a 
boundary differential operator. We assume that P and B satisfy the g0-uniform Shapiro–Lopatinski regularity conditions. Then, for any 
� ∈N , there exists C > 0 such that, for all u ∈ f K1

(ρ)(M, g0; E)

‖u‖ f K�+1
(ρ)

(M,g0;E)
≤ C

(‖P u‖ f ρ−2K�−1
(ρ)

(M,g0;E)
+ ‖u‖ f K1

(ρ)
(M,g0;E)

+ ‖B0u‖
f ρ− 1

2 K
�+ 1

2
(ρ)

(∂0 M,g0;E)

+ ‖B1u‖
f ρ− 3

2 K
�− 1

2
(ρ)

(∂1 M,g0;E)

)
.

In particular, we can take P to be a uniformly strongly elliptic scalar operator (such as the Laplacian P = 
g0 ), B0u = u|∂D M (the 
restriction) and B1u = ∂a

νu.

Let (M, g0) be a Riemannian manifold with boundary. We now turn to the well-posedness on (M, g0). Let h : M →
(0, ∞), and A ⊂ ∂M be a measurable subset. We shall say that (M, A, E, g0, h) satisfies the Hardy–Poincaré inequality if there 
exists a constant C > 0 such that, for any u ∈ H1

loc(M, g0; E), u = 0 in L2(A), we have 
∫

M |du|2g0
d volg0 ≥ C

∫
M h−2u2 d volg0 . 

The Hardy–Poincaré inequality implies coercive estimates, and hence well-posedness also for the associated parabolic and 
hyperbolic equations, as in [20]. The Hardy–Poincaré inequality is related to the Poincaré inequality, and hence to the 
concept of “finite width.” If A ⊂ ∂M , recall that (M, A) is said to have finite width if dist(x, A) is uniformly bounded on M
[5] (the distance between two disjoint connected components of M is +∞). Typically, in our results, the set A will be an 
open and closed subset of ∂M .

Example 7. Again, a typical application is when g0 is the Euclidean metric on Rm , r is the distance to the origin, and λ > 0, 
as in Example 4. However, in this case, we let ρ = rλ only for r < 1/2, but set ρ = r for r > 1 and M ⊂ Rm is a closed, 
infinite cone with base a smooth domain of the unit sphere and with vertex at the origin. Then again, (M, g) has bounded 
geometry if, and only if, λ ≥ 1. Also, (M, ∂M, g) has finite width if, and only if λ = 1. Finally, (M, ∂M, g0, ρ) satisfies the 
Hardy–Poincaré inequality (for ρ) if, and only if, λ ≤ 1.
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Recall that we have assumed (M, g) to be a Riemannian manifold with boundary and bounded geometry, ρ, f : M →
(0, ∞) to be g-admissible weights, and g0 := ρ2 g . We define Pa by (Pau, v)g0 := ∫

M a(∇u, ∇v) d volg0 , with a sesquilinear 
form a satisfying the strong Legendre condition with respect to g0. Let ∂a

ν be the conormal derivative associated with P , see 
[14]. Combining Theorem 6 with the Lax–Milgram Lemma and with the fact that the Dirichlet and Neumann boundary 
conditions satisfy the uniform Shapiro–Lopatinski regularity conditions [5,14], we obtain the following theorem.

Theorem 8. We assume that (M, ∂0M, E, g0, ρ) satisfies the Hardy–Poincaré inequality. Let P = Pa satisfy the strong Legendre con-
dition with all ∇ ja bounded. Then there exists ηa, f > 0 such that, for |s| < ηa, f and � ≥ 1, we have an isomorphism

Pa : ρ f sK�+1
(ρ) (M, g0; E) ∩ {u|∂0 M = 0, ∂a

νu|∂1 M = 0} → ρ−1 f sK�−1
(ρ) (M, g0; E).

In particular, we can take P = 
g0 , the Laplacian associated with g0. For � = 0 the result remains true, once one reformulates it in a 
variational (i.e. weak) sense.

5. Examples

We include some basic examples.

5.1. Two-dimensional domains

We consider a (disjoint) partition of the boundary ∂M = ∂0M 	 ∂1M as above (so ∂0 M and ∂1 M are open and closed). 
Recall that Pa is a second-order differential operators on E → M with coefficients in W ∞,∞(g) and satisfying the strong 
Legendre condition with respect to g0. For dimension-two domains M , the Poincaré inequality for (M, A, g) is equivalent 
to the Poincaré inequality for (M, A, g0) (same proof as the conformal invariance of the Laplacian in two dimensions). The 
Poincaré inequality of [5] then gives Theorem 9.

Theorem 9. Assume that (M, ∂0M, g) has finite width and m := dim(M) = 2. Let P = Pa satisfy the strong Legendre condition with 
all ∇ ja bounded. Then there exists ηa, f > 0 such that, for |s| < ηa, f and � ∈Z+ , we have an isomorphism

Pa : ρ f sK�+1
(ρ) (M, g0; E) ∩ {u|∂0 M = 0, ∂a

νu|∂1 M = 0} → ρ−1 f sK�−1
(ρ) (M, g0; E).

In particular, we can take Pa = 
g0 .

5.2. Canonical cuspidal and wedge domains

We continue with some concrete examples. The simplest examples in higher dimensions are those of “model cuspidal 
and wedge domains.” We follow the presentation in [1]. Let 1 < α < ∞ and B ⊂ Rm−1 a compact submanifold, possibly 
with boundary, and

K m
α (B) := {(r, rα y) ∈Rm | 0 < r < 1, y ∈ B}, (3)

which will be called a model canonical cusp of order α. For α = 1, we take B a subset of the unit sphere. A domain with 
canonical cuspidal singularities is a bounded domain � ⊂ M̂ in a Riemannian manifold (M̂, g0) such that, around each singular 
point P of the boundary, it is locally diffeomorphic to K m

αP
(B P ) via a diffeomorphism defined in a neighborhood of the 

ambient manifold. Let V be the set of singular points of the boundary, then V is finite and we let M := ��V . If αP = 1 for 
all P ∈ V , we obtain a domain with conical points. If we replace K m

α (B) with K m−k
α (B) × [0, 1]k , k ≥ 0, we obtain domains 

with canonical wedge singularities, in which case, of course, the set V of singular points of ∂� will no longer be finite.
Let us fix λP ≥ 1 for each singular point P ∈ V . The weight functions ρ and f are then chosen, around each P ∈ V

as in Example 4 for λ = λP . Let g := ρ−2 g0, as before. If λP ≥ αP for all P , then (M, g) has bounded geometry (proved 
in [2] if λP = αP for all P ∈ V) and consequently, we have regularity in the weighted spaces for the mixed Dirichlet–
Neumann problem for operators satisfying the strong Legendre condition. If λP ≤ αP and ∂0 M intersects each V P , then 
(M, ∂0M, g) satisfies the Hardy–Poincaré inequality. This follows from the usual Poincaré inequality on each {r} × rα B by 
also rescaling in r. We work in generalized spherical coordinates (r, y) ∈ (0, ∞) × Sm−1, so dx = rm−1 dr dy. This gives 
r−2α

∫
rα B |u(r, y)|2 dy ≤ C

∫
rα B |∇yu(r, y)|2 dy the Hardy–Poincaré inequality 

∫
K m

α (B)
r−2α |u(r, y)|2 dx ≤ C

∫
K m

α (B)
|∇u(r, y)|2 dx

for u = 0 on ∂1 B . Let us fix λP = αP . By considering the Amann triple (M, g := ρ−2 g, ρ), we obtain that our domain with 
canonical wedge singularities satisfies the conclusion (isomorphism) of Theorem 9. For canonical cuspidal domains and 
constant coefficient operators, this theorem was first proved in [18]. See also [9,10,12,16,21].
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5.3. Other examples

Certain simple examples are not “canonical.”

Example 10. Let � = {(x, y) ∈R2 | x, y > 0, (y − 1)2 + x2 > 1} ∩ [−2, 2] × [0, 2] (see the picture). The corners {Ai}4
i=1 of �

are conical points and are treated as above.

Close to O we have two cuspidal open sets (U and its mirror image), similar to the 
ones treated in the previous subsection, but not canonical. We have λ = 2 for these 
open sets. (We double O , in a certain sense.) Let r be the distance to O . Close to O , 
we then choose ρ ∼ r2, and f ∼ e−r−1

. More precisely, ρ(x) = r2 ∏4
i=1 |x − Ai | and 

f = e−r−1 ∏4
i=1 |x − Ai |. Note that we could have also chosen ρ ∼ x2 near O .

Let g := ρ−2 gE , where gE is the standard (flat) Euclidean metric. We then have that (M, g), M := �� {O , Ai, i = 1, 4}, is a 
manifold with boundary and bounded geometry. Assume that ∂0 M touches each singular point (where O is considered as 
a double point as above). We can then prove that (M, ∂0 M, gE ) satisfies the Hardy–Poincaré inequality as in the previous 
example, and hence Theorem 9 applies. See also [16,21].

Example 11. Let f0, f1 : R → (0, 2π) satisfy ‖ f (k)
i ‖∞ < ∞, k ≥ 0, and f1 − f0 ≥ ε > 0. Let � f0, f1 := {(r cos θ, r sin θ) | f0(log r)

< θ < f1(log r)} and � be a bounded domain, smooth away from a finite number of points, at which it coincides, up 
to a diffeomorphism, with a neighborhood of 0 in a set of the form � f0, f1 . Then � is a domain with oscillating conical 
singularities, similar to the ones studied by [24]. Theorem 9 holds for this domain with ρ = f = r = (x2 + y2)1/2. In general, 
a domain with oscillating conical points is not a domain with conical points.

Finally, in [8], it was proved that the assumptions and the conclusions of Theorem 8 are fulfilled by any polyhedral 
domain � ⊂Rm (defined as a suitable stratified space) with the Euclidean metric g0 for a suitable g-admissible weight ρ ∼
the distance to the singular points of the boundary (g = ρ−2 g0).
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