On the representation as exterior differentials of closed forms with L^{1}-coefficients

Sur la représentation comme différentielles extérieures des formes fermées à coefficients L^{1}

Eduard Curcă

Université de Lyon, Université Lyon-1, CNRS UMR 5208, Institut Camille-Jordan, 43, bd du 11-Novembre-1918, 69622 Villeurbanne cedex, France

A R T I C L E IN F O

Article history:

Received 23 April 2019
Accepted 28 April 2019
Available online 10 May 2019
Presented by Haïm Brézis

Abstract

Let $N \geq 2$. If $g \in L_{c}^{1}\left(\mathbf{R}^{N}\right)$ has zero integral, then the equation $\operatorname{div} X=g$ need not have a solution $X \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ [6] or even $X \in L_{\text {loc }}^{N /(N-1)}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ [2]. Using these results, we prove that, whenever $N \geq 3$ and $2 \leq \ell \leq N-1$, there exists some ℓ-form $f \in L_{c}^{1}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)$ such that $\mathrm{d} f=0$ and the equation $\mathrm{d} \lambda=f$ has no solution $\lambda \in W_{\operatorname{loc}}^{1,1}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$. This provides a negative answer to a question raised by Baldi, Franchi, and Pansu [1]. © 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit $N \geq 2$. Si $g \in L_{c}^{1}\left(\mathbf{R}^{N}\right)$ est d'intégrale nulle, alors en général il n'est pas possible de résoudre l'équation div $X=g$ avec $X \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ [6], ou même $X \in L_{\text {loc }}^{N /(N-1)}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ [2]. En utilisant ces résultats, nous prouvons que, pour $N \geq 3$ et $2 \leq \ell \leq N-1$, il existe une ℓ-forme $f \in L_{c}^{1}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)$ avec $\mathrm{d} f=0$ et telle que l'équation $\mathrm{d} \lambda=f$ n'a pas de solution $\lambda \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$. Ceci donne une réponse négative à une question posée par Baldi, Franchi et Pansu [1].
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Répondant à une question posée par Baldi, Franchi et Pansu ([1]), nous montrons le résultat suivant :
Théorème 1. Soit N, ℓ des entiers tels que $N \geq 3$ et $2 \leq \ell \leq N-1$. Il existe une ℓ-forme différentielle fermée à coefficients L^{1}, $f \in L_{c}^{1}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)$, telle que l'équation $\mathrm{d} \lambda=f$ n'a pas de solution $\lambda \in W_{\mathrm{loc}}^{1,1}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$.

[^0]La preuve est faite par l'absurde et repose sur un résultat de non-existence bien connu pour l'équation div $X=g$. Plus précisément, il existe des fonctions $g \in L_{c}^{1}\left((0,1)^{\ell} ; \mathbf{R}\right)$ avec $\int g=0$ et telles que l'équation $\operatorname{div} X=g$ n'a pas de solution $X \in L_{\text {loc }}^{\ell /(\ell-1)}\left(\mathbf{R}^{\ell} ; \mathbf{R}^{\ell}\right)$ (voir Bourgain et Brézis [2]). À partir d'une telle fonction g, nous construisons une forme différentielle explicite f, fermée, à support compact et à coefficients L^{1}. En supposant le Théorème 1 faux, nous obtenons l'existence d'une fonction $G \in C_{c}^{2}\left((0,1)^{\ell} ; \mathbf{R}\right)$ et d'un champ $Y \in L_{\text {loc }}^{\ell /(\ell-1)}\left(\mathbf{R}^{\ell} ; \mathbf{R}^{\ell}\right)$ tels que $\operatorname{div} Y=g+G$, ce qui contredit les propriétés de la fonction g.

En combinant ce résultat avec les résultats de [6], [2], nous obtenons la conséquence suivante.
Corollaire 2. Soient $N \geq 2$ et $1 \leq \ell \leq N$. Soit \mathcal{A} la classe des ℓ-formes $f \in L_{c}^{1}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)$ satisfaisant la condition de compatibilité $\mathrm{d} f=0$ (si $1 \leq \ell \leq N-1$), respectivement $\int f=0($ si $\ell=N)$. Alors, nous avons l'équivalence $1 \Longleftrightarrow 2$, où
(1) l'équation $\mathrm{d} \lambda=f$ a une solution $\lambda \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$ pour tout $f \in \mathcal{A}$.
(2) $\ell=1$.

1. Introduction

We consider the Hodge system

$$
\begin{equation*}
\mathrm{d} \lambda=f \text { in } \mathbf{R}^{N} \tag{1}
\end{equation*}
$$

where f and λ are ℓ and $(\ell-1$)-forms respectively, f being given and satisfying the compatibility condition $\mathrm{d} f=0$. We focus on the case where f has L^{1} coefficients.

To start with, let us recall some known facts about the cases $\ell=N$ and $\ell=1$.
In the case $\ell=N$, (1) reduces to the divergence equation. It was first shown by Wojciechowski [6] that there exists $g \in L_{c}^{1}\left(\mathbf{R}^{N}\right)$, with zero integral, such that the equation $\operatorname{div} X=g$ has no solution $X \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$. On the other hand, Bourgain and Brézis [2] proved, using a different method, the following: there exists $g \in L_{c}^{1}\left(\mathbf{R}^{N}\right)$ with zero integral, such that the equation $\operatorname{div} X=g$ has no solution $X \in L_{\text {loc }}^{N /(N-1)}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$. In view of the embedding $W_{\text {loc }}^{1,1} \hookrightarrow L_{\text {loc }}^{N /(N-1)}$, this improves [6].

In the case $\ell=1$, (1) reduces to the following "gradient" equation

$$
\begin{equation*}
\nabla \lambda=f \tag{2}
\end{equation*}
$$

where f is a vector field satisfying the compatibility condition $\nabla \times f=0$ and λ is a function. Unlike the case $\ell=N$, this time (2) has a solution $\lambda \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N}\right)$. Actually, any solution to (2) belongs to $W_{\text {loc }}^{1,1}$ and, moreover, if f is compactly supported, then we may choose $\lambda \in W^{1,1}$.

The question of the solvability in $W_{\text {loc }}^{1,1}$ of the system (1) with datum in L^{1} in the remaining cases, i.e. $2 \leq \ell \leq N-1$, has been recently raised by Baldi, Franchi, and Pansu [1]. Our main result settles this problem.

Theorem 3. Let $N \geq 3$. Let $2 \leq \ell \leq N-1$. Then there exists some $f \in L_{c}^{1}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)$ such that $\mathrm{d} f=0$ and the equation $\mathrm{d} \lambda=f$ has no solution $\lambda \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$.

The proof of Theorem 3 that we present is a simplification, communicated to the author by P. Mironescu, of the original one. This simplified version has the advantage of being relatively self-contained and elementary.

2. Proof of Theorem 3

We start with some auxiliary results.
Lemma 4. Let $1 \leq \kappa \leq N-1$ and $f \in L_{c}^{1}\left(\mathbf{R}^{N} ; \Lambda^{\kappa)}\right.$ be such that $d f=0$. Then there exists some $\omega \in L_{\text {loc }}^{q}\left(\mathbf{R}^{N} ; \Lambda^{\kappa-1}\right)$, for all $1 \leq q<$ $N /(N-1)$, such that $\mathrm{d} \omega=f$.

Proof. Let E be "the" fundamental solution to Δ and set $\eta:=E * f$. Let $\omega:=\mathrm{d}^{*} \eta$. First, $\eta \in W_{\text {loc }}^{1, q}\left(\mathbf{R}^{N}\right)$ (by elliptic regularity) and thus $\omega \in L_{\mathrm{loc}}^{q}\left(\mathbf{R}^{N}\right), 1 \leq q<N /(N-1)$. Next, $\mathrm{d} \eta=E * \mathrm{~d} f=0$. Finally,

$$
\mathrm{d} \omega=\mathrm{dd}^{*} \eta=\left(\mathrm{dd}^{*}+\mathrm{d}^{*} \mathrm{~d}\right) \eta=\Delta \eta=f
$$

Hence, ω has the required properties.
A similar argument leads to the following.

Lemma 5. Let $1<r<\infty, k \in \mathbf{N}$. Let $1 \leq \kappa \leq N-1$. Let $f \in W_{c}^{k, r}\left(\mathbf{R}^{N} ; \Lambda^{\kappa}\right)$ be such that $d f=0$. Then there exists some $\omega \in W_{\text {loc }}^{k+1, r}\left(\mathbf{R}^{N} ; \Lambda^{\kappa-1}\right)$ such that $\mathrm{d} \omega=f$.

We next recall the following "inversion of d with loss of regularity". It is folklore, and one possible proof consists in using Bogovskii's formula (see for example [4, Corollary 3.3 and Corollary 3.4] for related arguments).

Lemma 6. Let $1 \leq \kappa \leq N-1$. Let Q be an open cube in \mathbf{R}^{N}. Then there exists some integer $m=m(N, \kappa)$ such that if $f \in C_{c}^{k}\left(Q ; \Lambda^{\kappa-1}\right)$, with $k \in\{m, m+1, \ldots\} \cup\{\infty\}$, satisfies $\mathrm{d} f=0$, then there exists some $\omega \in C_{c}^{k-m}\left(Q ; \Lambda^{\kappa-1}\right)$ such that $\mathrm{d} \omega=f$.

Combining Lemmas 4-6, we obtain the following proposition.
Proposition 7. Let $1 \leq \kappa \leq N-1$. Let Q be an open cube in \mathbf{R}^{N}. Let $f \in L_{c}^{1}\left(Q ; \Lambda^{\kappa}\right)$ be such that $\mathrm{d} f=0$. Then there exists some $\omega \in L_{c}^{q}\left(Q ; \Lambda^{\kappa-1}\right)$, for all $1 \leq q<N /(N-1)$, such that $\mathrm{d} \omega=f$.

Proof. Set $f_{0}:=f$. We consider a sequence $\left(\zeta_{j}\right)_{j \geqslant 0}$ in $C_{c}^{\infty}(Q ; \mathbf{R})$ such that $\zeta_{0}=1$ on supp f_{0} and, for $j \geqslant 1$, $\zeta_{j}=1$ on $\operatorname{supp} \zeta_{j-1}$. We let η_{0} be a solution to $\mathrm{d} \eta_{0}=f_{0}$, constructed as in Lemma 4. We set $\omega_{0}:=\zeta_{0} \eta_{0}$, so that $\omega_{0} \in L_{c}^{q}\left(Q ; \Lambda^{\kappa-1}\right)$, $1 \leq q<N /(N-1)$ and

$$
\mathrm{d} \omega_{0}=\mathrm{d} \zeta_{0} \wedge \eta_{0}+\zeta_{0} \mathrm{~d} \eta_{0}=\mathrm{d} \zeta_{0} \wedge \eta_{0}+\zeta_{0} f_{0}=\underbrace{\mathrm{d} \zeta_{0} \wedge \eta_{0}}_{-f_{1}}+f_{0}
$$

Let us note that $\mathrm{d} f_{1}=-\mathrm{d}^{2} \omega_{0}+\mathrm{d} f_{0}=0$ and that $f_{1} \in L_{c}^{q}\left(Q ; \Lambda^{\kappa}\right), 1 \leq q<N /(N-1)$.
Fix some $1<r<N /(N-1)$. By Lemma 5 , there exists some $\eta_{1} \in \bar{W}_{\text {loc }}^{1, r}\left(\mathbf{R}^{N} ; \Lambda^{\kappa-1}\right)$ such that $\mathrm{d} \eta_{1}=f_{1}$. Set $\omega_{1}:=\zeta_{1} \eta_{1}$. Then $\omega_{1} \in W_{c}^{1, r}\left(Q ; \Lambda^{\kappa-1}\right)$ and, as above, $f_{2}:=f_{1}-\mathrm{d} \omega_{1}$ satisfies $\mathrm{d} f_{2}=0$ and $f_{2} \in W_{c}^{1, r}\left(Q ; \Lambda^{\kappa}\right)$. Applying again Lemma 5, we may find $\eta_{2} \in W_{\text {loc }}^{2, r}\left(\mathbf{R}^{N}\right)$ such that $\mathrm{d} \eta_{2}=f_{2}$.

Iterating the above, we have

$$
\begin{aligned}
& \omega_{0}+\cdots+\omega_{j} \in L_{c}^{q}\left(Q ; \Lambda^{\kappa-1}\right), 1 \leq q<N /(N-1) \\
& d\left(\omega_{0}+\cdots+\omega_{j}\right)=f_{0}-f_{j}, \text { with d } f_{j}=0 \text { and } f_{j} \in W_{c}^{j, r}\left(Q ; \Lambda^{\kappa}\right)
\end{aligned}
$$

Let now j be such that $W^{j, q}(Q) \hookrightarrow C^{m}(Q)$, with m as in Lemma 6. Let $\xi \in C_{c}^{0}\left(Q ; \Lambda^{\kappa-1}\right)$ be such that $\mathrm{d} \xi=-f_{j}$. Set $\omega:=\omega_{0}+\cdots+\omega_{j}+\xi$. Then ω has all the required properties.

Let us note the following consequence of hypoellipticity of Δ and of the proofs of Proposition 7 and Lemmas 4 and 5 (but not of their statements).

Corollary 8. Assume, in addition to the hypotheses of Proposition 7, that $f \in C^{\infty}(U)$ for some open set $U \subset Q$. Let $s \in \mathbf{N}$. Then we may choose ω such that, in addition, $\omega \in C^{s}(U)$.

Proof of Theorem 3. We write the variables in \mathbf{R}^{N} as follows: $x=\left(x^{\prime}, x^{\prime \prime}\right)$, with $x^{\prime} \in \mathbf{R}^{\ell}$ and $x^{\prime \prime} \in \mathbf{R}^{N-\ell}$.
Pick some $g \in L_{c}^{1}\left((0,1)^{\ell} ; \mathbf{R}\right)$ with zero integral, such that the equation $\operatorname{div} X=g$ has no solution $X \in L_{\text {loc }}^{\ell /(\ell-1)}\left(\mathbf{R}^{\ell} ; \mathbf{R}^{\ell}\right)$ (see [6], [2]). Clearly, for any $G \in C_{c}^{2}\left((0,1)^{\ell} ; \mathbf{R}\right)$,
the equation $\operatorname{div} Y=g+G$ has no solution $Y \in L_{\text {loc }}^{\ell /(\ell-1)}\left(\mathbf{R}^{\ell} ; \mathbf{R}^{\ell}\right)$.
Let $\psi \in C_{c}^{\infty}\left((0,1)^{N-\ell}\right)$ be such that $\psi \equiv 1$ in some nonempty open set $V \subset(0,1)^{N-\ell}$. Set $Q:=(0,1)^{N}$ and $\eta:=$ $g\left(x^{\prime}\right) \psi\left(x^{\prime \prime}\right) \mathrm{d} x^{\prime} \in L_{c}^{1}\left(Q ; \Lambda^{\ell}\right)$. We note that $\mathrm{d} \eta=g\left(x^{\prime}\right) \mathrm{d} \psi\left(x^{\prime \prime}\right) \wedge \mathrm{d} x^{\prime} \in L_{c}^{1}\left(Q ; \Lambda^{\ell+1}\right)$. Let us also note that $\mathrm{d} \eta=0$ in $\mathbf{R}^{\ell} \times V$. By Corollary 8 with $U=(0,1)^{\ell} \times V$, there exists some $\omega \in L_{c}^{q}\left(Q ; \Lambda^{\ell}\right), 1 \leq q<N /(N-1)$, such that $\mathrm{d} \omega=\mathrm{d} \eta$ and $\omega \in C^{2}\left((0,1)^{\ell} \times V\right)$.

Consider now the closed form $f:=\eta-\omega \in L_{c}^{1}\left(Q ; \Lambda^{\ell}\right)$. We claim that there exists no $\lambda \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$ such that $\mathrm{d} \lambda=f$. Argue by contradiction and let λ_{i} denote the coefficient, in λ, of $\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \cdots \wedge \mathrm{~d} x_{i-1} \wedge \mathrm{~d} x_{i+1} \wedge \cdots \wedge \mathrm{~d} x_{\ell}, 1 \leq i \leq \ell$. Let ω_{0} denote the coefficient of $\mathrm{d} x^{\prime}$ in ω. Then, in $\mathbf{R}^{\ell} \times V$, we have:

$$
\begin{equation*}
\sum_{i=1}^{\ell}(-1)^{i+1} \partial_{i} \lambda_{i}\left(x^{\prime}, x^{\prime \prime}\right)=g\left(x^{\prime}\right) \psi\left(x^{\prime \prime}\right)-\omega_{0}\left(x^{\prime}, x^{\prime \prime}\right)=g\left(x^{\prime}\right)-\omega_{0}\left(x^{\prime}, x^{\prime \prime}\right) \tag{4}
\end{equation*}
$$

Hence, for a.e. $x^{\prime \prime} \in V$, the following equation is satisfied in $\mathcal{D}^{\prime}\left(\mathbf{R}^{\ell}\right)$:

$$
\begin{equation*}
\sum_{i=1}^{\ell}(-1)^{i+1} \partial_{i} \lambda_{i}^{\prime}=g-\omega_{0}^{\prime} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{i}^{\prime}:=\lambda_{i}\left(\cdot, x^{\prime \prime}\right) \in W_{\mathrm{loc}}^{1,1}\left(\mathbf{R}^{\ell}\right) \text { and } \omega_{0}^{\prime}=\omega_{0}\left(\cdot, x^{\prime \prime}\right) \in C_{c}^{2}\left((0,1)^{\ell}\right) \tag{6}
\end{equation*}
$$

The above properties (5) and (6), combined with the embedding $W_{\text {loc }}^{1,1}\left(\mathbf{R}^{\ell}\right) \hookrightarrow L^{\ell /(\ell-1)}\left(\mathbf{R}^{\ell}\right)$, contradict (3).
Remark 1. We have actually proved the following improvement of Theorem 3. Let $N \geq 3$ and $2 \leq \ell \leq N-1$. Then there exists some $f \in L_{c}^{1}\left(\mathbf{R}^{d} ; \Lambda^{\ell}\right)$ satisfying $\mathrm{d} f=0$ and such that the system $\mathrm{d} \lambda=f$ has no solution

$$
\lambda \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{(N-\ell)} ; L_{\mathrm{loc}}^{\ell /(\ell-1)}\left(\mathbf{R}^{\ell} ; \Lambda^{\ell-1}\right)\right)
$$

Remark 2. A similar question can be raised in L^{∞}. We have the following analogue of Theorem 3.
Theorem 9. Let $N \geq 3$. Let $2 \leq \ell \leq N-1$. Then there exists some $f \in L_{c}^{\infty}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)$ such that $\mathrm{d} f=0$ and the equation $\mathrm{d} \lambda=f$ has no solution $\lambda \in W_{\text {loc }}^{1, \infty}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$.

The proof of Theorem 9 is very similar to the one of Theorem 3. The main difference is the starting point, in dimension ℓ. Here, we use the fact that there exists some $g \in L_{c}^{\infty}\left(\mathbf{R}^{\ell}\right)$, with zero integral, such that the equation $\operatorname{div} X=g$ has no solution $X \in W_{\text {loc }}^{1, \infty}\left(\mathbf{R}^{\ell} ; \mathbf{R}^{\ell}\right)$ (see [5]).

3. Solution in $L^{N /(N-1)}$ when $1 \leq \ell \leq N-1$

As mentioned in the introduction, when $\ell=N$, the system (1) with right-hand side $f \in L^{1}$ need not have a solution $\lambda \in L_{\text {loc }}^{N /(N-1)}$. In view of Theorem 3 and of Proposition 7 , it is natural to ask whether, in the remaining cases $1 \leq \ell \leq N-1$, given a closed ℓ-form $f \in L_{c}^{1}$, it is possible to solve (1) with $\lambda \in L_{\text {loc }}^{N /(N-1)}$. This is clearly the case when $\ell=1$ (by the Sobolev embedding $W_{\text {loc }}^{1,1} \hookrightarrow L_{\text {loc }}^{N /(N-1)}$). Moreover, we may pick $\lambda \in W^{1,1}$. The remaining cases are settled by our next result. In what follows, we do not make any support assumption on f, and, therefore, the case where $\ell=1$ is also of interest.

Proposition 10. Let $N \geq 2$ and $1 \leq \ell \leq N-1$. Then, for every $f \in L^{1}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)$ with $\mathrm{d} f=0$, there exists some $\lambda \in L^{N /(N-1)}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$ such that $f=\mathrm{d} \lambda$.

Proof. Suppose $f \in L^{1}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$ with $\mathrm{d} f=0$ as above. According to Bourgain and Brézis [3] (see Corollary 20 in [3] for a very similar statement; see also Theorem 3 in [7]), we have:

$$
\begin{equation*}
\left|\int_{\mathbf{R}^{d}}\langle\psi, f\rangle\right| \lesssim\|f\|_{L^{1}}\left\|\mathrm{~d}^{*} \psi\right\|_{L^{N}}, \forall \psi \in C_{c}^{\infty}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right) \tag{7}
\end{equation*}
$$

Consider the functional

$$
L_{f}: S=\left\{\mathrm{d}^{*} \psi ; \quad \psi \in C_{c}^{\infty}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)\right\} \rightarrow \mathbf{R}, L_{f}\left(\mathrm{~d}^{*} \psi\right):=\int_{\mathbf{R}^{d}}\langle\psi, f\rangle
$$

Here, S is endowed with the L^{N}-norm. The inequality (7) shows that L_{f} is well defined and bounded. By the HahnBanach theorem, there exists an extension $\widetilde{L}_{f}: L^{N}\left(\mathbf{R}^{N} ; \Lambda^{\ell+1}\right) \rightarrow \mathbf{R}$ of L_{f} with $\left\|\widetilde{L}_{f}\right\|=\left\|L_{f}\right\|$. Hence, there exists an ($\ell-1$)-form $\lambda \in L^{N /(N-1)}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$ such that

$$
\int_{\mathbf{R}^{N}}\langle\psi, f\rangle=L_{f}\left(\mathrm{~d}^{*} \psi\right)=\widetilde{L}_{f}\left(\mathrm{~d}^{*} \psi\right)=\int_{\mathbf{R}^{N}}\left\langle\mathrm{~d}^{*} \psi, \lambda\right\rangle=\int_{\mathbf{R}^{N}}\langle\psi, \mathrm{~d} \lambda\rangle
$$

for all ℓ-forms $\psi \in C_{c}^{\infty}\left(\mathbf{R}^{N} ; \Lambda^{\ell}\right)$.
This implies that $\lambda \in L^{N /(N-1)}\left(\mathbf{R}^{N} ; \Lambda^{\ell-1}\right)$ satisfies $\mathrm{d} \lambda=f$.

References

[1] A. Baldi, B. Franchi, P. Pansu, L^{1}-Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups, hal-02015047, 2019.
[2] J. Bourgain, H. Brézis, On the equation div $Y=f$ and application to control of phases, J. Amer. Math. Soc. 16 (2) (2003) 393-426.
[3] J. Bourgain, H. Brézis, New estimates for eliptic equations and Hodge type systems, J. Eur. Math. Soc. 9 (2) (2007) 277-315.
[4] M. Costabel, A. Mcintosh, On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z. 265 (2) (2010) 297-320.
[5] C.T. McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8 (1998) 304-314.
[6] M. Wojciechowski, On the representation of functions as a sum of derivatives, C. R. Acad. Sci. Paris, Ser. I 328 (4) (1999) 303-306.
[7] J. Van Schaftingen, Limiting Bourgain-Brezis estimates for systems of linear differential equations: theme and variations, J. Fixed Point Theory Appl. 15 (2) (2014) 273-297.

[^0]: E-mail address: curca@math.univ-lyon1.fr.
 https://doi.org/10.1016/j.crma.2019.04.011
 1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

