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r é s u m é

Cet article donne une caractérisation de la compacité des commutateurs maximaux avec 
des noyaux grossiers dans des espaces de Lebesgue pondérés, ce qui est nouveau et 
intéressant, même dans les cas non pondérés. Entretemps, une nouvelle caractérisation de 
la limite pondérée pour ces opérateurs est également établie.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let Rn , n ≥ 2, be the n-dimensional Euclidean space and Sn−1 be the unit sphere in Rn . Let � be a homogeneous 
function of degree zero on Rn and � ∈ L1(Sn−1). For 0 ≤ β < n, k ∈Z+ and a locally integrable function b, we consider the 
maximal operator

M�,β f (x) := sup
r>0

1

rn−β

∫
|x−y|≤r

|�(x − y)|| f (y)|dy,

and the corresponding maximal commutator
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(M�,β)k
b f (x) := sup

r>0

1

rn−β

∫
|x−y|≤r

|b(x) − b(y)|k|�(x − y) f (y)|dy,

which play key roles in studying the boundedness of the following commutators of singular and fractional integrals

(
T�,β

)k
b f (x) :=

∫
Rn

[b(x) − b(y)]k �(x − y)

|x − y|n−β
f (y)dy,

where, for β = 0, the integral is in the principal value sense and � satisfies the vanishing property in Sn−1.
Obviously, when � ≡ 1, M1,0, denoted by M , is the Hardy–Littlewood maximal operator, and M1,β , denoted by Mβ for 

0 < β < n, is the fractional maximal operators. Also, we denote (M0,1)
k
b by Mk

b , and (M1,β )k
b by Mk

β,b . In 1991, García-Cuerva 
and Harboure et al. [12] showed that Mk

b is bounded on Lp(ω) for ω ∈ Ap , 1 < p < ∞, if and only if b ∈ BMO(Rn). 
Segovia and Torrea [19] proved that Mk

β,b is bounded from Lp(ωp) to Lq(ωq) if and only if b ∈ BMO(Rn), provided that 
0 < β < n, 1 < p < q < ∞ with 1/q = 1/p − β/n, ω ∈ Ap,q . Recently, Zhang [22] (for β = 0) and Guliyev, Deringoz, and 
Hasanov [13] (for 0 < β < n) showed that, for 0 < α ≤ 1, M1

β,b is bounded from Lp(Rn) to Lq(Rn) for 1 < p < q < ∞ with 
1/q = 1/p − (α + β)/n, if and only if b ∈ BMOα(Rn) (the Lipschitz spaces, see Definition 2.1 in Section 2). In addition, 
Ding and Lu [10] proved that, for 0 < β < n and b ∈ BMO(Rn), (M�,β)k

b is bounded from Lp(ωp) to Lq(ωq), provided that 
� ∈ Ls(Sn−1) for some s > 1 with 1 ≤ s′ < p < n/β , 1/q = 1/p − β/n, and ωs′ ∈ Ap/s′,q/s′ , where s′ = s/(s − 1) denotes the 
conjugate number of s throughout this paper.

In this paper, we will focus on the compactness of (M�,β )k
b . We first recall the definition of compact operators.

Definition 1.1. (cf. [2]) Let X , Y be Banach spaces. A mapping T from X to Y is compact if T is continuous and maps 
bounded subsets of X into precompact subsets of Y .

The investigation on the compactness of commutators dates back to Uchiyama’s work [20], in which the author proved 
that, for � ∈ Lip1(Sn−1), 1 < p < ∞, (T�,0)

1
b is compact on Lp(Rn) if and only if b ∈ CMO(Rn), where CMO(Rn) is the 

closure of C∞
c (Rn) in the BMO(Rn) topology. Afterwards, this result was extensively improved and extended: see, for 

example, [5,4,14–16,21] et al. In particular, inspired by Lerner–Ombrosi–Rivera–Ríos [17], our second and third authors and 
others recently gave in [14,15] some new characterizations of the compactness of (T�,β )k

b via CMOα(Rn), which can be 
regarded as the generalization of CMO(Rn), see Definition 2.6 in Section 2.

Although many authors studied the compactness of linear operators, the literature is not so rich regarding the com-
pactness of nonlinear operators, one can see [3,11] for the commutators of Littlewood–Paley operators and the maximal 
truncated commutators for singular integrals, etc. The main purpose of this paper is to establish the characterization theo-
rem on the compactness of (M�,β)k

b via CMOα(Rn), which can be formulated as follows.

Theorem 1.2. Let k ∈ Z+ , 0 ≤ α ≤ 1, 0 ≤ β < n with kα + β < n, 1 < p, q < ∞ with 1/q = 1/p − (kα + β)/n. Assume that �
is a homogeneous function of degree 0 on Rn, � ∈ Ls(Sn−1) for some s > 1 with s′ < p, ωs′ ∈ Ap/s′,q/s′ . If � does not change sign 
and is not equivalent to zero on some open set of Sn−1, then (M�,β)k

b is a compact operator from Lp(ωp) to Lq(ωq) if and only if 
b ∈ CMOα(Rn).

Our main novelty will be embodied in the arguments on compactness of (M�,β )k
b . To achieve our goal, we prefer to 

choose a soft but elegant way. First, we use the Cauchy integral trick to get the boundedness of a maximal iterated commu-
tator. Then, combining this boundedness result and some basic properties derived from the definition of (M�,β )k

b , we give 
a reduction of such a deep degree, that the part of “checking the conditions of the Fréchet–Kolmogorov theorem” becomes 
very concise. We would like to point out that, in every previous article, the process of “checking the conditions of the 
Fréchet–Kolmogorov theorem” is the most tedious part. In order to prove our theorem, the necessity of bounded maximal 
commutators will also be established, which can be deduced by means of the known estimate in [14,17]. Then, we use the 
same ideas from [14,15] to obtain further lower and upper estimates of (M�,β )k

b . These estimates yield the necessity of 
compactness of (M�,β)k

b .
Take � ≡ 1, we obtain the characterization of compactness for the maximal commutators corresponding to the Hardy–

Littlewood maximal function and fractional maximal functions.

Corollary 1.3. Let k ∈Z+ , 0 ≤ α ≤ 1, 0 ≤ β < n with kα + β < n, 1 < p, q < ∞ with 1/q = 1/p − (kα + β)/n, and ω ∈ Ap,q. Then 
the maximal commutator (Mβ)k

b is a compact operator from Lp(ωp) to Lq(ωq) if and only if b ∈ CMOα(Rn).

The rest of the paper is organized as follows. In Section 2, we will recall some relevant definitions and auxiliary lemmas. 
We will prove the sufficiency of Theorem 1.2 in Section 3. Finally, the proof of the necessity of Theorem 1.2 and the 
characterization of weighted boundedness will be given in Section 4.
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Throughout the rest of our paper, we will denote positive constants by C , which may change at each occurrence. If 
f ≤ C g and f � g � f , we denote f � g , f ∼ g , respectively. For a given cube Q , we use cQ , lQ , χQ and A�B to denote 
the center, side length, characteristic function of Q and (A \ B) ∪ (B \ A), respectively.

2. Preliminaries

In this section, we will recall some relevant concepts and auxiliary lemmas.
A weight ω is a nonnegative and locally integrable function on Rn . For 1 < p < ∞, we say that ω ∈ Ap if there exists a 

constant C > 0 such that

sup
Q

( 1

|Q |
∫
Q

ω(y)dy
)( 1

|Q |
∫
Q

ω(y)1−p′
dy

)p−1 ≤ C,

where 1/p + 1/p′ = 1 and the supremum is taken over all cubes Q ⊂Rn . We call ω ∈ Ap,q for 1 < p, q < ∞ if there exists 
a constant C > 0 such that:

sup
Q

( 1

|Q |
∫
Q

ω(x)q dx
)( 1

|Q |
∫
Q

ω(x)−p′
dx

)q/p′
≤ C .

From the definition of Ap,q , we know that ω ∈ Ap,q implies ωq ∈ Aq and ωp ∈ Ap . Define the A∞ class of weights by 
A∞ := ∪p>1 Ap , the A∞ constant is given by

[ω]A∞ := sup
Q

∫
Q

M(χQ ω)(x)dx.

We will frequently use the doubling property of weight: for λ > 1, and all cubes Q , if ω ∈ A p , we have ω(λQ ) ≤
λnp[ω]Ap ω(Q ). We proceed to the definition of BMOα .

Definition 2.1. Let Q be a cube, α ∈ [0, 1], for any f ∈ L1
loc(R

n), we denote BMOα(Rn) the space of functions with 
‖ f ‖BMOα(Rn) < ∞, where

‖ f ‖BMOα(Rn) := sup
Q ⊂Rn

Oα( f ; Q ) := sup
Q ⊂Rn

1

|Q |1+ α
n

∫
Q

| f (x) − f Q |dx,

where f Q = 1
|Q |

∫
Q f (y) dy. We also define

Õα( f ; Q ) := inf
c∈C

1

|Q |1+ α
n

∫
Q

| f (x) − c|dx.

It is easy to check that Õα( f ; Q ) ≤Oα( f ; Q ) ≤ 2Õα( f ; Q ). Clearly, BMO0(Rn) is BMO(Rn). As mentioned in Section 1, 
CMO(Rn) denotes the closure of C∞

c (Rn) in BMO(Rn). In order to prove our results, we will use the following new charac-
terization of CMO established in [15].

Definition 2.2. By a median value of a real-valued measurable function f over a measure set E of positive finite measure, 
we mean a possibly non-unique, real number m f (E) such that

max(|{x ∈ E : f (x) > m f (E)}|, |{x ∈ E : f (x) < m f (E)}|) ≤ |E|
2

.

Definition 2.3. For a real-valued measurable function f , we define the local oscillation of f over a cube Q by

ωλ( f ; Q ) := (( f − m f (Q ))χQ )∗(λ|Q |) (0 < λ < 1),

where f ∗ is the non-increasing rearrangement.

We recall the new characterization of CMO as follows.
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Lemma 2.4. (cf. [15]) Let f ∈ BMO. Then f ∈ CMO if and only if the following three conditions hold:
(1) lima→0 sup

|Q |=a
ωλ( f ; Q ) = 0,

(2) lima→+∞ sup
|Q |=a

ωλ( f ; Q ) = 0,

(3) limb→+∞ sup
|Q |∩[−b,b]n=∅

ωλ( f ; Q ) = 0.

For 0 < α ≤ 1, for a continuous function f on Rn , the (homogeneous) α-order Lipschitz norm is defined by

‖ f ‖Lipα(Rn) := sup
x�=y

| f (x) − f (y)|
|x − y|α ,

and we denote the space of all continuous functions on Rn such that ‖ f ‖Lipα(Rn) < ∞ by Lipα(Rn). Meyers [18] showed 
that Lipα(Rn) = BMOα(Rn). Moreover, he gave the following lemma.

Lemma 2.5. (cf. [15]) Let α ∈ (0, 1]. Then

Lipα(Rn) = BMOα(Rn).

Moreover, if f ∈ Lipα(Rn), p ∈ [1, ∞], we have

‖ f ‖Lipα(Rn) ∼ sup
Q

Oα( f ; Q ) ∼ sup
Q

1

|Q |α/n

( 1

|Q |
∫
Q

| f (y) − f Q |p dy
)1/p

.

Now we give the definition of CMOα(Rn) in [14].

Definition 2.6. Let α ∈ [0, 1]. A BMOα function f belongs to CMOα if it satisfies the following three conditions:

(1) limr→0 sup
|Q |=r

Oα( f ; Q ) = 0;

(2) limr→∞ sup
|Q |=r

Oα( f ; Q ) = 0;

(3) limd→∞ sup
Q ∩[−d,d]n=∅

Oα( f ; Q ) = 0.

Remark 2.7. When α = 0, the characterization of Uchiyama [20] yields that CMO0 is just the CMO space. When 0 < α ≤ 1, in 
[14] our second and third authors et al. proved that CMOα is the appropriate function space to characterize the compactness 
of the commutator. Denote by C̃MOα(Rn) the C∞

c (Rn) closure in BMOα(Rn); in [14], it showed that C̃MOα(Rn) = CMOα

when α ∈ [0, 1), and CMOα(Rn) � C̃MOα(Rn) when α = 1, in fact, CMO1(Rn) is equal to the constant space C containing 
all complex numbers with usual norm.

Finally, we give some necessary lemmas, which will be used in our proofs.

Lemma 2.8. (cf. [8]) Suppose that s > 1 with s′ ≤ p < ∞, p �= 1. If � is a homogeneous function of degree 0 on Rn, � ∈ Ls(Sn−1)

and ω ∈ Ap/s′ , then

‖M�,0( f )‖L p(ω) ≤ C‖�‖Ls(Sn−1)‖ f ‖L p(ω).

Lemma 2.9. (cf. [9]) Suppose that 0 < β < n, s > 1 with s′ < p < n/β and 1/q = 1/p − β/n. If � is a homogeneous function of 
degree 0 on Rn, � ∈ Ls(Sn−1) and ωs′ ∈ Ap/s′,q/s′ , then there exists a constant C independent of f such that

‖M�,β( f )‖Lq(ωq) ≤ C‖�‖Ls(Sn−1)‖ f ‖L p(ωp).

Lemma 2.10. (cf. [15]) Let λ ∈ (0, 1), b be a real-valued measurable function. Suppose that � is a measurable function on Sn−1 and 
does not change sign and is not equivalent to zero on some open set of Sn−1. Then there exist ε0 > 0 and K0 > 10

√
n depending 

only on � and n such that the following holds: for every cube Q , there exists another cube P with the same length of Q satisfying 
|cQ − cP | = K0lQ , and measurable sets E ⊂ Q with |E| = λ

2 |Q |, and F ⊂ P with |F | = |Q |/2, and G ⊂ E × F with |G| ≥ λ|Q |2
8 such 

that
(1) ωλ(b; Q ) ≤ |b(x) − b(y)| for all (x, y) ∈ E × F ;
(2) �(x − y) and b(x) − b(y) do not change sign in E × F ;
(3) �(x − y) ≥ ε0 for all (x, y) ∈ G.
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Lemma 2.11. (cf. [14]) Let b be a real-valued measurable function. Suppose that � is a measurable function on Sn−1 and does not 
change sign and is not equivalent to zero on some open set of Sn−1. For every γ ∈ (0, 1), there exist ε0 > 0 and K0 > 10

√
n depending 

only on �, γ and n such that the following holds. For every cube Q , there exists another cube P with the same length of Q satisfying 
|cQ − cP | = K0lQ , and measurable sets E1, E2 ⊂ Q with Q = E1 ∪ E2 , and F1, F2 ⊂ P with |F1| = |F2| = |Q |/2, such that

(1) b(x) − b(y) do not change sign in Ei × Fi , i = 1, 2;
(2) |b(x) − mb(P )| ≤ |b(x) − b(y)| in Ei × Fi , i = 1, 2;
(3) �(x − y) does not change sign in Q × P ;
(4) |Nx ∩ P | ≤ γ |Q | for all x ∈ Q , where Nx := {y ∈Rn : |�(x − y)| < ε0}.

3. Compactness of the maximal commutators

This section is devoted to the proof of the sufficiency of Theorem 1.2. We first establish the boundedness of (M�,β )k
�b

defined by

(M�,β)k
�b( f )(x) := sup

r>0

1

rn−β

∫
B(x,r)

|�(x − y)|| f (y)|
k∏

j=1

|b j(x) − b j(y)|dy,

which will be used to give the first reduction of the compactness of (M�,β )k
b . We also point out that this boundedness result 

has its own interest since it improves and extends the corresponding results in [13,22]. Here, we will use the Cauchy integral 
trick to prove this boundedness result. This idea can be tracked back to the pioneering work of Coifman–Rochberg–Weiss [7]. 
Recently, there is a comprehensive study originating from this idea, see [1]. One can also see [15] for a specific application 
for the iterated commutator of the Calderón–Zygmund operator.

Theorem 3.1. Let k ∈ Z+ , 0 ≤ α ≤ 1, 0 ≤ β < n with kα + β < n, 1 < p, q < ∞ with 1/q = 1/p − (kα + β)/n. Assume that �
is a homogeneous function of degree 0 on Rn, � ∈ Ls(Sn−1) for some s > 1 with s′ < p, ωs′ ∈ Ap/s′,q/s′ . Then, for �b = (b1, . . . , bk), 
b j ∈ BMOα ,

‖(M�,β)k
�b( f )‖Lq(ωq) �

k∏
j=1

‖b j‖BMO‖�‖Ls(Sn−1)‖ f ‖L p(ωp).

Before giving the proof, we first recall the following lemma in [15].

Lemma 3.2. (cf. [15]) Let p, q ∈ (1, ∞), ω ∈ Ap,q, b j ∈ BMO(Rn) for j = 1, . . . , k. There exists a constant κn,p,q,k depending only on 
the indicated parameters such that

[eRe(
∑k

j=1 b j z j)ω]A p,q ≤ 41+q/p′ [ω]A p,q

for all z j with

|z j| ≤ κn,p,q,k

‖b j‖BMO(Rn)(1 + (ω)A∞)
,

where (ω)A∞ := max{[ω]A∞ , [ω1−p′ ]A∞}.

Proof of Theorem 3.1. When 0 < α ≤ 1, since b j ∈ BM Oα , we have

(M�,β)k
�b( f )(x) ≤

k∏
j=1

‖b j‖BMOα sup
r>0

1

rn−(β+kα)

∫
B(x,r)

|�(x − y) f (y)|dy.

Then the result follows from Lemma 2.9. In the following, we prove the case for α = 0. For z j ∈C, j = 1, . . . , k, set F (z j) =
ez j [b j(x)−b j(y)] . Then for any ε j > 0, by the Cauchy integral formula,

b j(x) − b j(y) = F ′(0) = 1

2π i

∫
|z j |=ε j

F (z j)

z2
j

dz j,

it follows that
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k∏
j=1

(b j(x) − b j(y)) = 1

(2π i)k

∫
|zk|=εk

· · ·
∫

|z1|=ε1

e� j z j(b j(x)−b j(y))

k
j=1z2

j

dz1 · · · dzk.

From this, we have:

(M�,β)k
�b( f )(x) = sup

r>0

1

rn−β

∫
B(x,r)

| f (y)�(x − y)|
k∏

j=1

|b j(x) − b j(y)|dy

≤ eRe(�k
j=1 z jb j(x))

k
j=1ε j

sup
r>0

1

rn−β

∫
B(x,r)

| f (y)�(x − y)e−Re(�k
j=1 z jb j(y))|dy

= eRe(�k
j=1 z jb j(x))

k
j=1ε j

M�,β( f e−Re(�k
j=1 z jb j(·)))(x).

Invoking Lemma 3.2 and taking |z j | ≤ κn,p,q,k,s′
‖b j‖BMO(1+(ωs′ )A∞ )

yield that (eRe(�k
j=1 z jb j)ω)s′ ∈ Ap/s′,q/s′ . This, together with Lem-

mas 2.8 and 2.9, allows us to deduce that

‖(M�,β)k
�b( f )‖Lq(ωq) ≤ 1∏k

j=1 ε j

‖M�,β( f e−Re(� jb j z j))‖
Lq(ωqeqRe(� j z j b j ))

�
k∏

j=1

‖b j‖BMO‖�‖Ls(Sn−1)‖ f ‖L p(ωp).

Theorem 3.1 is proved. �
Next, we recall the weighted Fréchet–Kolmogorov theorem on compact sets.

Lemma 3.3. (cf. [6]) Let p ∈ (1, ∞), ω ∈ Ap, a subset E of Lp(ω) is precompact (or totally bounded) if the following statements hold:
(a) E is uniformly bounded, i.e., sup f ∈E ‖ f ‖Lp(ω) � 1;
(b) E uniformly vanishes at infinity, that is,

lim
N→∞

∫
|x|>N

| f (x)|pω(x)dx = 0,

uniformly for all f ∈ E;
(c) E is uniformly equicontinuous, that is,

lim
ρ→0

sup
y∈B(0,ρ)

∫
Rn

| f (x + y) − f (x)|pω(x)dx = 0,

uniformly for all f ∈ E.

Now, the sufficiency of Theorem 1.2 can be proved as follows.

The sufficiency of Theorem 1.2. It is obvious that the conclusion holds for α = 1 by Remark 2.7. In the following, we con-
sider the case for 0 ≤ α < 1. By the definition of a compact operator, we only need to check that the set

A(�,b) := {(M�,β)k
b( f ) : ‖ f ‖L p(ωp) ≤ 1}

is precompact. Applying Theorem 3.1 and the same method in [14], it suffices to verify the precompactness of A(�, b) for 
b ∈ C∞

c and � ∈ Lip1(Sn−1). Without loss of generality, we assume that b is supported in a cube Q centered at the origin.
Let us proceed a further reduction. For fixed r0, r1 > 0, we claim that it suffices to check that

A(�r0,r1 ,b) := {(Mr0,r1
�,β )k

b( f ) : ‖ f ‖L p(ωp) ≤ 1}
is precompact, where

(Mr0,r1
�,β )k

b( f )(x) = sup
r0<r<r1

1

rn−β

∫
|b(x) − b(y)|k| f (y)�(x − y)|dy.
B(x,r)
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By a direct computation,

(M�,β)k
b( f )(x) − (Mr0,r1

�,β )k
b( f )(x) ≤ sup

r≤r0

1

rn−β

∫
B(x,r)

|b(x) − b(y)|k| f (y)�(x − y)|dy

+ sup
r≥r1

1

rn−β

∫
B(x,r)

|b(x) − b(y)|k| f (y)�(x − y)|dy

=: I(x) + II(x).

(3.1)

Since b ∈ C∞
c and � ∈ Lip1(Sn−1), we have

I(x) � sup
r≤r0

rk

rn−β

∫
B(x,r)

| f (y)|dy

≤ rk(1−α)
0 sup

r≤r0

1

rn−β−kα

∫
B(x,r)

| f (y)|dy ≤ rk(1−α)
0 Mβ+kα f (x).

This implies that

‖I‖Lq(ωq) � rk(1−α)
0 ‖Mβ+kα f ‖Lq(ωq) � rk(1−α)

0 ‖ f ‖L p(ωp), (3.2)

which tends to zero as r0 → 0.
Now we deal with II(x). For sufficiently large R > 2

√
nlQ such that Q ⊂ B(0, R), we write II(x) = II1(x) + II2(x) :=

II(x)χB(0,R)c (x) + II(x)χB(0,R)(x). Observe that if x ∈ B(0, R)c with B(x, r) ∩ Q �= ∅ implies that r > |x| − √
nlQ . From this, for 

x ∈ B(0, R)c we have:

II1(x) = sup
r≥r1

1

rn−β

∫
B(x,r)∩Q

|b(y)|k| f (y)||�(x − y)|dy

≤ sup
r≥|x|−√

nlQ

1

rn−β

∫
B(x,r)∩Q

|b(y)|k| f (y)||�(x − y)|dy � 1

|x|n−β
.

Thus,

‖II1‖Lq(ωq) �
( ∫

B(0,R)c

1

|x|(n−β)q
ω(x)q dx

)1/q
.

Observe that ωq ∈ A1+q/p′−τ for some τ > 0. We have∫
B(0,2 j R)

ω(x)q dx ≤ (2 j R)n(1+q/p′−τ )[ωq]A1+q/p′−τ

∫
B(0,1)

ω(x)q dx.

As a result, ∫
B(0,2 j+1 R)\B(0,2 j R)

ω(x)q

|x|(n−β)q
dx � (2 j R)n(1+q/p′−τ )

2 jq(n−β)R(n−β)q
= 1

(2 j R)nτ
.

From above, we have:

‖II1‖Lq(ωq) �
( ∫

B(0,R)c

ω(x)q

|x|(n−β)q
dx

)1/q

≤
( ∞∑

j=0

∫
B(0,2 j+1 R)\B(0,2 j R)

ω(x)q

|x|(n−β)q
dx

)1/q

� R−nτ/q
( ∞∑

2− jnτ
)1/q

� R−nτ/q.

(3.3)
j=0
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Next, we consider II2(x), since ω−p′ ∈ A1+p′/q−τ for some τ > 0, we have:∫
B(0,2r)

ω(y)−p′
dy ≤ (2r)n(1+p′/q−τ )[ω−p′ ]A1+p′/q−τ

∫
B(0,1)

ω(y)−p′
dy.

Choose r1 sufficiently large (may depending on R) such that B(x, r) ⊂ B(0, 2r) for any x ∈ B(0, R), r ≥ r1. From this and the 
L∞-boundedness of b and �, we have

‖II2‖Lq(ωq) � sup
x∈B(0,R)

sup
r≥r1

1

rn−β

∫
B(x,r)

|b(x) − b(y)|k| f (y)�(x − y)|dy

� sup
r≥r1

1

rn−β

∫
B(0,2r)

| f (y)|dy

≤ sup
r≥r1

1

rn−β

(∫
Rn

| f (y)|pω(y)p dy
)1/p( ∫

B(0,2r)

ω(y)−p′
dy

)1/p′

� sup
r≥r1

1

rn−β
(rn(1+p′/q−τ ))1/p′ = r−nτ/p′

1 .

(3.4)

By (3.3), for a fixed large R such that ‖II1‖Lq(ωq) < ε/3, we choose r1 sufficiently large such that ‖II2‖Lq(ωq) < ε/3 by (3.4). 
Moreover, from (3.2), we can choose a sufficiently small r0 such that ‖I‖Lq(ωq) < ε/3. Hence, for any ε > 0, we have

‖(M�,β)k
b( f ) − (Mr0,r1

�,β )k
b( f )‖Lq(ωq) < ε (3.5)

for sufficiently small r0 and sufficiently large r1. Thus, the remaining thing is to prove that A(�r0,r1 , b) is precompact. We 
will verify that A(�r0,r1 , b) satisfies the three conditions in Lemma 3.3.

The condition (a) is automatically valid because of the weighted Lq-boundedness of (Mr0,r1
�,β )k

b .

Next, for sufficiently large N such that Q ⊂ B(0, N) and N > r1 + √
nlQ , we have

(Mr0,r1
�,β )k

b( f )(x) = 0, (|x| ≥ N). (3.6)

Hence, condition (b) is valid. Finally, it remains to check whether condition (c) holds. Take z ∈ Rn with |z| ≤ min{δ/8, r0}; 
note that∣∣∣ 1

rn−β

∫
B(x+z,r)

|b(x + z) − b(y)|k|�(x + z − y)|| f (y)|dy

− 1

rn−β

∫
B(x,r)

|b(x) − b(y)|k|�(x − y)|| f (y)|dy
∣∣∣

≤ 1

rn−β

∫
B(x+z,r)�B(x,r)

|b(x + z) − b(y)|k|�(x + z − y) f (y)|dy

+ 1

rn−β

∫
B(x,r)

∣∣|b(x + z) − b(y)|k − |b(x) − b(y)|k∣∣|�(x − y) f (y)|dy

+ 1

rn−β

∫
B(x,r)

|b(x + z) − b(y)|k|�(x + z − y) − �(x − y)|| f (y)|dy

=: D1(x) + D2(x) + D3(x).

Observe that

|�(x + z − y) − �(x − y)|� |z|, |b(x + z) − b(y)|k � 1.

We have

sup
r0<r<r1

D3(x) � |z|Mβ+kα( f )(x).



432 Y. Wen et al. / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 424–435
This and the weighted boundedness of Mβ+kα yield that

‖ sup
r0<r<r1

D3‖Lq(ωq) � |z|‖ f ‖L p(ωp) ≤ |z|. (3.7)

On the other hand, we have

|�(x − y)|� 1,
∣∣|b(x + z) − b(y)|k − |b(x) − b(y)|k∣∣� |z|,

then

sup
r0<r<r1

D2(x) � |z|Mβ+kα( f )(x),

which implies that

‖ sup
r0<r<r1

D2‖Lq(ωq) � |z|‖ f ‖L p(ωp). (3.8)

Finally, let us consider D1(x). Note that for |x − y| ≤ r1 or |x + z − y| ≤ r1,

|b(x + z) − b(y)| ≤ |b(x + z) − b(y)|χB(0,R ′)(x)χB(0,R ′)(y),

where R ′ = √
nlQ + δ + r1. From this, we have:

‖ sup
r0<r<r1

D1‖Lq(ωq)

� sup
x∈B(0,R ′)

sup
r0<r<r1

∫
B(x+z,r)�B(x,r)

| f (y)||b(x + z) − b(y)|k dy

� sup
x∈B(0,R ′)

sup
r0<r<r1

‖ f ‖L p(ωp)

( ∫
B(x+z,r)�B(x,r)

ω(y)−p′
dy

)1/p′
.

For any x ∈ B(0, R ′), r0 < r < r1, we have

|B(x + z, r)�B(x, r)| ≤ 2(|B(0, r)| − |B(0, r − |z|)|)
� rn−1

1 |z|,
which implies that |B(x + z, r)�B(x, r)| → 0 as |z| → 0. Using this and the fact ω−p′ ∈ A1+p′/q ⊂ L1(B(0, R ′)), we get

‖ sup
r0<r<r1

D1‖Lq(ωq)

� sup
x∈B(0,R ′)

sup
r0<r<r1

( ∫
B(x+z,r)�B(x,r)

ω(y)−p′
dy

)1/p′
→ 0

as |z| → 0. This, together with (3.7) and (3.8), yields the desired conclusion and completes the proof. �
4. Necessity of boundedness and compactness for commutators

This section is devoted to the proof of the necessity of Theorem 1.2. As a first step, we give the necessity of boundedness 
of (M�,β)k

b . Thanks to the breakthrough work of Lerner–Ombrosi–Rivera–Ríos [17], the following theorem can be presented 
as it is now.

Theorem 4.1. Let k ∈ Z+ , 0 ≤ α ≤ 1, 0 ≤ β < n with kα + β < n, 1 < p, q < ∞ with 1/q = 1/p − (kα + β)/n. Suppose that � is 
a measurable function on Sn−1 and does not change sign and is not equivalent to zero on some open set of Sn−1, ω ∈ Ap,q. If for any 
bounded measurable set E ⊂Rn,

‖(M�,β)k
b(χE)‖Lq(ωq) � (ωp(E))1/p,

then b ∈ BMOα .
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Remark 4.2. Compared to the previous results, for example, in [12,13,19,22], our theorem relaxes the condition of kernel 
� and restrict the bounded condition of the operator to the characteristic functions. The original idea of the proof of 
Theorem 4.1 comes from [14,17], in which the corresponding results are established for the singular and fractional integral 
operators. Here, we only give some pointwise estimates in our proof; then the conclusion will be valid automatically by the 
same method in [14,17].

Proof of Theorem 4.1. We first prove the case for α = 0. Given a cube Q , let E, F , be the sets given in Lemma 2.10. Take 
f = (

∫
F ω(x)p dx)−1/pχF . Then for x ∈ E , by Lemma 2.10,

(M�,β)k
b( f )(x) = sup

r>0

1

rn−β

∫
|x−y|≤r

|b(x) − b(y)|k|�(x − y) f (y)|dy

≥ ωλ(b; Q )k
(∫

F

ω(x)p dx
)−1/p

sup
r>0

1

rn−β

∫
{y:|x−y|≤r}∩F

|�(x − y)|dy.

Observe that {y : |x − y| ≤ r} ∩ F = F when r ≥ (K0 + 1)
√

nlQ , which implies that

(M�,β)k
b( f )(x) �ωλ(b; Q )k

(∫
F

ω(x)p dx
)−1/p|Q |−1+β/n

∫
F

|�(x − y)|dy.

For the rest of the proof, we refer to [15] or [17].
Next, we deal with the case where 0 < α ≤ 1. Given a cube Q , let γ , P , Ei, Fi be given in Lemma 2.11, and take γ = 1/4, 

f i = [ωp(Fi)]−1/pχFi , i = 1, 2. For x ∈ Ei , using Hölder’s inequality,

(M�,β)k
b( f i)(x) = sup

r>0

1

rn−β

∫
|x−y|≤r

|b(x) − b(y)|k|�(x − y) f i(y)|dy

= |ωp(Fi)|−1/p sup
r>0

1

rn−β

∫
Fi∩B(x,r)

|b(x) − b(y)|k|�(x − y)|dy.

Since Fi ⊂ P , |Fi| = |P |/2, ωp ∈ Ap and again note that {y : |x − y| ≤ r} ∩ Fi = Fi provided that r ≥ (K0 + 1)
√

nlQ , which 
yields that

(M�,β)k
b( f i)(x) ∼ |ωp(Fi)|−1/p|Q |−1+β/n

∫
Fi

|b(x) − b(y)|k|�(x − y)|dy.

Then, following the method in [14, Proposition 2.5], we complete our proof. �
As a corollary of Theorems 4.1 and 3.1, we give the characterization of the boundedness of (M�,β )k

b .

Corollary 4.3. Let k ∈Z+ , 0 ≤ α ≤ 1, 0 ≤ β < n with kα + β < n, 1 < p, q < ∞ with 1/q = 1/p − (kα + β)/n. Suppose that � is a 
homogeneous function of degree 0 on Rn, � ∈ Ls(Sn−1) for some s > 1 with s′ < p, ωs′ ∈ Ap/s′,q/s′ . If � does not change sign and is 
not equivalent to zero on some open set of Sn−1, then b ∈ BMOα if and only if (M�,β)k

b is bounded from Lp(ωp) to Lq(ωq).

Next, we prove the necessity of Theorem 1.2. To do this, we still follow the ideals in [14,15] by giving four lemmas about 
the lower and upper estimates of (M�,β)k

b . Lemmas 4.4 and 4.5 are used for the proof of the necessity of Theorem 1.2 for 
the case of α = 0, while Lemmas 4.6 and 4.7 are used for the case of 0 < α ≤ 1.

Lemma 4.4. Let k ∈Z+, ω ∈ Ap,q, 1 < p, q < ∞, 0 ≤ β < n, 1/q = 1/p −β/n, λ ∈ (0, 1) and b be a real-valued measurable function. 
Given a cube Q , let E, F be the sets associated with Q given as in Lemma 2.10, set f = (

∫
F ω(x)p dx)−1/pχF . Suppose that � is a 

homogeneous function of degree 0 on Rn and a measurable function on Sn−1 , which does not change sign and is not equivalent to zero 
on some open set of Sn−1. Then there exists a constant C > 0, which is independent of Q , such that for any measurable set B with 
|B| ≤ λ

8 |Q |,( ∫
E\B

(M�,β)k
b( f )(x)qω(x)q dx

)1/q ≥ Cωλ(b; Q )k.

Proof. Similarly to the proof of Theorem 4.1, we can get the desired result. �
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Lemma 4.5. Let k ∈ Z+, b ∈ BMO and ω ∈ Ap,q. Given a cube Q , let F be the set associated with Q given as in Lemma 2.10, set 
f = (

∫
F ω(x)p dx)−1/pχF . Suppose that � is a homogeneous function of degree 0 on Rn and � ∈ L∞(Sn−1). Then there exists a 

constant ζ > 0 such that( ∫
2d+1 Q \2d Q

(M�,β)k
b( f )(x)qω(x)q dx

)1/q
� dk2−ζdn/p

holds for d large enough, uniformly for all cubes Q .

Proof. Observe that (M�,β)k
b( f )(x) ≤ (T |�|,β )k

b(| f |)(x), where

(T |�|,β )k
b(| f |)(x) =

∫
Rn

|�(x − y)|| f (y)|
|x − y|n−β

|b(x) − b(y)|k dy.

By this fact and the known results for (T |�|,β )k
b( f )(x) in [15, Proposition 4.4], the desired conclusion for (M�,β)k

b( f ) fol-
lows. �
Lemma 4.6. Let 1 < p, q < ∞, α ∈ (0, 1], 0 ≤ β < n, kα + β < n, 1/q = 1/p − (kα + β)/n, ω ∈ Ap,q and � be stated as in 
Theorem 4.1. Given a real-valued function b ∈ Lipα(Rn), for arbitrary given Q with Õα(b; Q ) ≥ η0 > 0, let P̃ := 2P be the set 

associated with Q̃ := 2Q as stated in Lemma 2.11 and γ = 1/2n+1
(

min
{(

η0/4‖b‖Lipα(Rn)

)1/α
/
√

n, 1/2
})n

. Suppose that there 
are cubes E ⊂ 2Q and F ⊂ 2P satisfy

|E| = |F | ≥ C̃ min{(Oα(b; Q ))n/α,1}|Q |,
where C̃ is independent of Q . Set f := (

∫
F ω(x)p dx)−1/pχF . Then for any measurable set B with |B| ≤ |E|/2, we have

‖(M�,β)k
b( f )‖Lq(E\B,ωq) ≥ C min{(Oα(b; Q ))2n/α,1}Oα(b; Q )k.

Proof. Just as in the proof of Theorem 4.1,∫
E\B

(M�,β)k
b( f )(x)dx

≥
(∫

F

ω(x)p dx
)−1/p

∫
E\B

sup
r≥(K0+1)

√
nlQ

1

rn−β

∫
B(x,r)∩F

|b(x) − b(y)|k|�(x − y)|dy dx

∼
(∫

F

ω(x)p dx
)−1/p|Q |β/n−1

∫
E\B

∫
F

|b(x) − b(y)|k|�(x − y)|dy dx.

Then the desired conclusion follows by [14, Proposition 4.1]. �
Lemma 4.7. Let p, q, α, β, k, ω be stated as in Lemma 4.6. Let b ∈ Lipα and � ∈ L∞(Sn−1). Given a cube Q , let F be the set associated 
with Q given as in Lemma 2.11, and set f = (

∫
F ω(x)p dx)−1/pχF . Then there is a constant ζ > 0 such that( ∫

2d+1 Q \2d Q

(M�,β)k
b( f )(x)qω(x)q dx

)1/q
� 2−ζdn/p

holds for d large enough.

Proof. Observe that (M�,β)k
b( f )(x) ≤ (T |�|,β (| f |))k

b(x), where

(T |�|,β )k
b(| f |)(x) =

∫
Rn

|�(x − y)|| f (y)|
|x − y|n−β

|b(x) − b(y)|k dy.

Then, the desired conclusion follows by [14, Proposition 4.2]. �
Necessity of Theorem 1.2. Using the lower and upper estimates for (M�,β)k

b in Lemmas 4.4, 4.5, 4.6 and 4.7, the proof of 
necessity of Theorem 1.2 follows from the same arguments in [14,15]. We omit the details. �
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