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A group G is said to be (2, 3)-generated if it can be generated by an involution x and an 
element y of order three. For G a sporadic simple group, it was proved by the third author 
Woldar (1989) [26] that G is (2, 3)-generated if and only if G /∈ {M11, M22, M23, McL}. In 
this paper, we investigate all possible (2, 3)-generations of Fischer’s largest sporadic simple 
group F i ′

24 under the assumption that the product xy has prime order.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Un groupe G est dit (2, 3)-engendré s’il peut être engendré par une involution x et 
un élément y d’ordre trois. Pour un groupe simple sporadique G , il a été montré par 
le troisième auteur Woldar (1989) [26] que G est (2, 3)-engendré si et seulement si 
G /∈ {M11, M22, M23, McL}. Nous étudions ici toutes les (2, 3)-générations du plus grand 
groupe simple sporadique de Fischer F i′24, en supposant que le produit xy est d’ordre 
premier.
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1. Introduction

A group G is said to be (l, m, n)-generated if G = 〈x, y〉 where the elements x, y, xy have respective orders o(x) =
l, o(y) = m, o(xy) = n. In such case, G is a quotient group of the Von Dyck group D(l, m, n), and therefore it is also 
(π(l), π(m), π(n))-generated for any π ∈ S3. Thus we may assume throughout that l ≤ m ≤ n.

Initially, the study of (l, m, n)-generations of a group G had deep connections to the topological problem of determining 
the least genus of an orientable surface on which G admits an effective, orientation-preserving, conformal action. In [24], 
such investigations were extended well beyond the “minimum genus problem” to all possible (p, q, r)-generations, assuming 
G to be finite non-abelian simple and p, q, r distinct primes.

In this paper, we restrict attention to (2, 3, r)-generations of Fischer’s largest sporadic group F i ′
24 where r is prime. The 

non-prime case will be treated in a separate article.
Groups that are (2, 3)-generated have been of particular interest to combinatorists and group theorists. The quintessential 

example of an infinite (2, 3)-generated group is the modular group P S L(2, Z) which, being the free product of the groups 
Z2 and Z3, acts as a universal cover. This implies that any (2, 3)-generated group is a quotient of P S L(2, Z). Connections 
with Hurwitz groups, regular maps, Beauville surfaces and structures provide additional motivation for the study of these 
groups, e.g., see [7,8,17]. (Recall that a Hurwitz group is one that can be (2, 3, 7)-generated.)

The following simple groups are known to be (2, 3)-generated: the alternating group An , 2 < n �= 6, 7, 8 [23]; the projec-
tive special linear group P S L(2, q), q �= 9 [22]; all sporadic simple groups with the exception of M11, M22, M23, and McL
[26]. Also, a large number of classical linear groups and exceptional Lie groups are known to be (2, 3)-generated [12]. Re-
cently, Liebeck & Shalev [19,20,18] showed, using probabilistic methods, that all finite classical groups are (2, 3)-generated 
with the exception of the families P Sp(4, 2k), P Sp(4, 3k) and finitely many other groups. In addition to the references pro-
vided above, we direct the reader’s attention to [11] for further details related to the generation of finite simple groups by 
two elements.

In a series of papers, the authors established all possible (2, 3, r)-generations of the sporadic groups He, H S , Co1, Co2, 
J3, J4, and F i22 (cf. [1–6], [12], [21], [26]) for r a prime. Presently, we focus our attention on Fischer’s sporadic group
F i ′

24.
Groups that act conformally on the sphere (genus 0) and the torus (genus 1) have been classified, see [15], and the only 

simple group among them is A5, which acts conformally on the sphere. The implication of this is that if S is a surface 
admitting a conformal action of a simple group G �= A5, then genus (S) ≥ 2. Applying the Reimann–Hurwitz formula, we 
see that G can only be (2, 3, r)-generated provided 1

2 + 1
3 + 1

r < 1. Thus F i ′
24 cannot be (2, 3, r)-generated for any r < 7, in 

which case we need only consider the primes r = 7, 11, 13, 17, 23, 29 in what follows. A separate section will be devoted to 
each such value of r.

For convenience, we summarize the main results of our paper as follows.

Theorem. Fischer’s largest sporadic simple group F i ′
24 is (2, 3, r)-generated for every prime divisor r of |F i ′

24| with r ≥ 7. More 
explicitly, denoting by r Z the F i ′

24-class containing the element xy, we have that F i ′
24 = 〈x, y〉 if and only if

(1) x ∈ 2A, y ∈ 3E and r Z ∈ {17A, 23A/B, 29A/B}.
(2) x ∈ 2B, y ∈ 3C and r Z ∈ {17A, 23A/B, 29A/B}.
(3) x ∈ 2B, y ∈ 3D and r Z ∈ {11A, 13A, 17A, 23A/B, 29A/B}.
(4) x ∈ 2B, y ∈ 3E and r Z ∈ {7B, 11A, 13A, 17A, 23A/B, 29A/B}.

2. Preliminaries

Throughout this article, we use the same notation and terminology as can be found in [1,2,6,14,25]. In particu-
lar, for a finite group G with conjugacy classes C1, C2, C3, we denote the corresponding structure constant of G by 
�(G) = �G(C1, C2, C3), which, by definition, is the cardinality of the set � = {(x, y)|xy = z} where x ∈ C1, y ∈ C2 and z
is a fixed representative in the conjugacy class C3. It is well known that the value of �(G) can be computed from the 
character table of G (e.g., see [16, p.45]) via the formula

�G(C1, C2, C3) = |C1||C2|
|G|

m∑

i=1

χi(x)χi(y)χi(z)

χi(1)

where χ1, χ2, . . . , χm are the irreducible complex characters of G , and the bar denotes complex conjugation. We denote by 
�∗(G) = �∗

G(C1, C2, C3) the number of distinct ordered pairs (x, y) ∈ � such that G = 〈x, y〉. Clearly, if �∗(G) > 0 then G
is (l, m, n)-generated where l, m, n are the respective orders of elements from C1, C2, C3. In this instance we shall also say 
that G is (C1, C2, C3)-generated and we shall refer to (C1, C2, C3) as a generating triple for G .

Further, if H is a subgroup of G containing the fixed element z ∈ C3 above, we denote by �(H) = �H (C1, C2, C3) the 
total number of distinct ordered pairs (x, y) ∈ � such that 〈x, y〉 ≤ H . The value of �H (C1, C2, C3) is obtained as the sum 
of all structure constants �H (c1, c2, c3) where the ci are conjugacy classes of H that fuse to Ci in G , i.e., ci ⊆ H ∩ Ci . The 
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Table 1
The maximal subgroups of F i ′

24.

Group Order Group Order

F i23 218.313.52.7.11.13.17.23 2.F i22:2 219.39.52.7.11.13
(3×O +

8 (3):3):2 213.314.52.7.13 O −
10(2) 220.36.52.7.11.17

37·O 7(3) 29.316.5.7.13 31+10:U5(2):2 211.316.5.11
211·M24 221.33.5.7.11.23 22·U6(2):S3 218.37.5.7.11
21+12.3U4(3).22 221.37.5.7 33.[310].GL3(3) 25.316.13
32+4+8.(A5×2A4).2 26.316.5 (A4×O +

8 (2).3).2 215.37.52.7
He:2 (2 classes) 211.33.52.73.17 23+12.(L3(2)×A6) 221.33.5.7
26+8.(S3 × A8) 221.33.5.7 (32:2×G2(3)).2 28.38.7.13
(A5×A9):2 29.35.52.7 A6×L2(8):3 26.33.5.72

7:6×A7 24.33.5.72 U3(3).2 (2 classes) 26.33.7
L2(13):2 (2 classes) 23.3.7.13 29:14 2.7.29

number of pairs (x, y) ∈ � generating a subgroup H of G will be denoted by �∗(H) = �∗
H (C1, C2, C3), and the centralizer of 

a representative of the conjugacy class C by CG(C). A general conjugacy class of a proper subgroup H of G whose elements 
are of order n will be denoted by nx, reserving the notation nX for the case where H = G .

The number of conjugates of a given subgroup H of G containing a fixed element g is given by π(g), where π is the 
permutation character corresponding to the action of G on the conjugates of H , i.e. π is the induced character (1H )G (cf.
[16, Lemma 5.14]). As the stabilizer of H in this action is clearly NG (H), in many cases, one can more easily compute the 
value π(g) from the fusion map from NG (H) into G in conjunction with Lemma 2.1 below. We emphasize that this is an 
especially useful strategy when the decomposition of π into irreducible characters is not known explicitly.

Lemma 2.1. [14] Let G be a finite group and let H be a subgroup of G containing a fixed element g such that gcd(o(g), |NG(H) : H |) =
1. Then the number of conjugates of H containing g is given by

π(g) =
m∑

i=1

|CG(g)|
|CNG (H)(gi)|

where π is the permutation character corresponding to the action of G on the cosets of H, and g1, g2, . . . , gm are representatives of 
the NG(H)-conjugacy classes that fuse to the G-class containing g.

Below we provide some useful techniques for establishing non-generation.

Lemma 2.2. [27] Let G be a finite group and let x, y ∈ G. Suppose that �(G) < |CG(xy)|, where �(G) = �G(lX, mY , nZ) with x ∈ lX , 
y ∈ mY and xy ∈ nZ . Then CG (〈x, y〉) is non-trivial.

Lemma 2.3. [9] Let G be a finite centerless group and suppose lX , mY , nZ are G-conjugacy classes for which

�∗(G) := �∗
G(lX,mY ,nZ) < |CG(nZ)|.

Then �∗(G) = 0, hence G is not (lX, mY , nZ)-generated.

Note that for all triples we consider in this paper, it is the case that �(F i24) = �(F i ′
24). Thus, since C F i24 (F i ′

24) = 1, 
we obtain �∗(F i ′

24) < |C F i24(nZ)| as a sufficient condition for non-generation of F i ′
24 via Lemma 2.2 applied to G = F i24. 

(Compare this result to Lemma 2.3 applied to G = F i ′
24.) Frequently, we shall invoke Lemma 2.2 in exactly this manner, 

while at other times Lemma 2.3 will suffice for our purposes.
We list all maximal subgroups of F i ′

24 in Table 1. In Table 2 we indicate the fusion map from each maximal subgroup M

into F i ′
24, and we calculate the corresponding value of π(z) where π is the permutation character (1M)F i ′

24 and z ∈ M has 
prime order o(z) ≥ 7. Many of our computations relied heavily on the use of GAP , as well as certain subroutines provided 
in [5]. As always, the ATLAS [10] served as an invaluable source of information, and we adopt its notation for conjugacy 
classes, maximal subgroups, etc.

3. (2, 3)-Generation of F i ′
24

A group G is said to be a 3-transposition group if it is generated by a conjugacy class D of involutions in G such that 
o(de) ≤ 3 for all d, e ∈ D . In this case, the conjugacy class D is called a 3-transposition class. Fischer [13] introduced the 
notion of a 3-transposition group, and further classified all finite 3-transposition groups with no non-trivial normal soluble 
subgroups. In the process of his classification, Fischer discovered three new groups, F i22, F i23 and F i24, with 3-transposition 
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13b 17a 23a 23b
13A 17A 23A 23B
6 1 1 1

3d 7a 11a 13a
3D 7A 11A 13A

105 3 9

3t/u 7a 13a 13b

3E 7A 13A 13A
35 1 1

11a 11b 17a 17b

11A 11A 17A 17A
8 8 2 2

3h 3i 3 j 3k
3A 3B 3D 3C

13b
13A
12

3 l/m 3o/p/u 3q/r/v 11a
3D 3D 3E 11A

4

23a 23b
23A 23B
1 1

3 f 3 g 7a 11a
3D 3E 7A 11A

105 1

3d 3e 3 g 7a
3A 3D 3C 7B

49

ag 3ai/al 3aw 3b/ f 3i/k
3C 3C 3D 3D

ak 3an/ao ap 13a/b 13 c/d
3E 3E 13A 13A

12 12

3 m/n 3o/p 7a 13a
3E 3E 7A 13A

1 70
Table 2
Partial fusion maps from maximal subgroups into F i ′

24.

F i23–class 2a 2b 2 c 3a 3b 3 c 3d 7a 11a 13a
→ F i ′24 2A 2A 2B 3A 3B 3C 3D 7A 11A 13A
π(z) 21 3 6

2.F i22 :2–class 2a 2b 2 c 2d 2e 2 f 2 g 3a 3b 3 c
→ F i ′24 2A 2A 2A 2B 2B 2A 2B 3A 3B 3C
π(z)

(3×O+
8 (3):3):2–class 2a/c 2b/d 3a/d/l 3b/ f 3 m/o 3 c/h 3 j/k 3e/g/i 3n/p/q 3r/s

→ F i ′24 2A 2B 3B 3C 3C 3A 3A 3D 3D 3E
π(z)

O−
10(2)–class 2a 2b 2 c 2d 3a 3b 3 c 3d/e 3 f 7a

→ F i ′24 2B 2A 2A 2B 3A 2B 3B 3C 3F 7A
π(z) 42

37 ·O 7(3)–class 2a 2b 2 c 3a 3b 3 c 3d 3e 3 f 3 g
→ F i ′24 2B 2A 2B 3B 3C 3A 3D 3C 3D 3D
π(z)

37 ·O 7(3)–class 3 l 3 m 3n 3o 3p 3q 3r 3 s 7a 13a
→ F i ′24 3B 3C 3D 3D 3A 3E 3E 3E 7B 13A
π(z) 49 12

31+10 :U5(2):2–class 2a 2b 2 c 3a/c 3 g/ j 3b/ f 3n 3d/h 3k/s/t 3e/i
→ F i ′24 2B 2A 2B 3B 3B 3A 3A 3C 3C 3D
π(z)

211 ·M24–class 2a 2b 2 c 2d 2e 3a 3b 7a 7b 11a
→ F i ′24 2A 2B 2A 2B 2B 3C 3E 7A 7A 11A
π(z) 210 6

22 ·U6(2):S3–class 2a 2b 2 c/d 2e 2 f 2 g 2h 3a 3b/d 3 c/e
→ F i ′24 2A 2B 2A 2B 2B 2A 2B 3A 3B 3C
π(z)

21+12 .3U4(3).22 2a 2b 2 c 2d 2e/ f 2 g 2h/i 3a/ f 3b 3 c
→ F i ′24 2B 2A 2B 2A 2B 2A 2B 3C 3D 3B
π(z)

33 .[310].GL3(3)–class 2a 2b/c 3a/c/g 3h/o 3u/z 3ac/ar 3 l/t/x 3d/e/ j 3r/v/w 3ac/
→ F i ′24 2A 2B 3B 3A 3A 3A 3B 3C 3C 3C
π(z)
33 .[310].GL3(3)–class 3 m/n 3p/q 3 s/y 3aa/ab 3ad/af 3ah/am 3aq/as 3at/au 3av/ax 3aj/
→ F i ′24 3D 3D 3D 3D 3D 3D 3D 3D 3D 3E
π(z)

He:2–class 2a 2b 2 c 3a 3b 7a 7b 7 c 17a
→ F i ′24 2A 2B 2B 3C 3E 7A 7B 7B 17A
π(z) 15 22 22 1

(32 :2×G2(3)).2–class 2a 2b 2 c 3a/b 3e/ f 3d 3 c/g 3h 3i/ j 3k/l
→ F i ′24 2B 2A 2B 3B 3A 3C 3D 3D 3D 3E
π(z)

U3(3).2–class 2a 2b 3ac 3b 7a
→ F i ′24 2B 2B 3D 3E 7B
π(z) 294

L2(13):2–class 2a 2b 3a 7a 7b 7 c 13a
→ F i ′24 2B 2B 3D 7B 7B 7B 13A
π(z) 441 441 441 18
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classes of respective sizes 3 510, 31 671, and 306 936. Of these, the first two groups are simple, whereas the third group has 
simple commutator subgroup F i ′

24 of index 2 and order

1 255 205 709 190 661 721 292 800 = 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29.

The group F i ′
24 has 108 conjugacy classes in total, including two classes of involutions (viz. 2A, 2B) and five classes of 

elements of order 3 (viz. 3A, 3B, 3C, 3D, 3E). Linton & Wilson [21] investigated the subgroup structure of F i ′
24 and classified 

all maximal subgroups of F i ′
24 as well as those of its automorphism group F i24.

We now proceed to a case-by-case analysis of all (2, 3, r)-generations of F i ′
24.

3.1. The case r = 7

In all, there are 20 triples of classes in F i ′
24 to consider, two classes of elements of order 2, five of order 3, and two of 

order 7.
We begin with the triple (2B, 3D, 7B). By [21] every proper (2B, 3D, 7B)-subgroup of F i ′

24 lies in some conjugate of 
H = 37·O 7(3). Thus, to investigate (2B, 3D, 7B)-generation of F i ′

24, we may apply the principle of inclusion–exclusion to 
the 49 conjugates of H that contain a fixed z ∈ 7B .

Lemma 3.1. A fixed element z ∈ 7B lies in 18 conjugates of a fixed L = L2(13) in H = 37·O 7(3). As there are two classes of L2(13)

in H, this implies that z lies in a total of 36 copies of L in H (i.e. 18 conjugates from each class).

Proof. The number of such conjugates is given by k = |NH (〈z〉)|/|NK (〈z〉)|, where K = NH (L). We first claim that K = L. 
Indeed suppose that L is a proper subgroup of K . Then K must contain an element w of order 3 that is not in L. As 
Aut(L) = L : 2, w must centralize L. In particular, w centralizes z, hence w must be of F i ′

24-type 3C. However, elements of 
F i ′

24 type 3C do not commute with elements of order 13. Thus w = 1 so K = L as claimed. As |NL(〈z〉)| = 14, we therefore 
have k = NH (〈z〉)/14.

Now as NH (〈z〉) < N F i ′
24

(〈z〉), we see that |NH (〈z〉)| must divide 22 · 32 · 7 and be divisible by 2 · 7. By Sylow’s theorem, 
|Syl7(H)| = |H : NH (〈z〉)| ≡ 1( mod 7), which can only occur if |NH (〈z〉)| = 22 · 32 · 7. Thus k = (22 · 32 · 7)/14 = 18, which 
proves the claim. �
Lemma 3.2. Every L = L2(13) containing z lies in exactly two conjugates of H = 37·O 7(3).

Proof. By [21], each L lies in some conjugate of H . However, L : 2 does not lie in H , in which case we have L = H ∩ Ht , 
where t is an outer involution in L : 2. We claim that H and Ht are the only conjugates of H that contain L. We proceed as 
follows.

Let L and L′ be representatives of the two conjugacy classes of L2(13) in F i ′
24. We count the set

{(L∗, H∗)|L∗ is conjugate to either L or L′, H∗ is conjugate to H , z ∈ L∗ < H∗}.
On one hand, this set has size 49 × 36 since for each of the 49 choices of H∗ there are 36 choices for L∗. On the other 

hand, this set has size at least 882 × 2. Indeed, by the above each L∗ lies in at least two H∗ . But 49 × 36 = 882 × 2, from 
which we conclude that each L∗ lies in exactly two H∗ . �
Lemma 3.3. Every non-splitting K = 37·L2(13) containing z lies in exactly one conjugate of H.

Proof. Suppose K < H ∩ H g with H g �= H . Let T denote the normal subgroup of K with T ∼= 37. As K ≤ H g and T g � H g , 
we have that L = K T g is a subgroup of H g .

Observe that L must properly contain K . Indeed, if L = K then T g ≤ K in which case T T g � K . As L2(13) is simple, this 
implies T g = T . However, it now follows that g ∈ N(T ) = H , contradicting H g �= H .

We therefore conclude that either L = H g ∼= 37·O 7(3) or L ∼= 37·G2(3). But this implies that the quotient group L/T g is 
isomorphic to either O 7(3) or G2(3). However, we also have that L/T g = K T g/T g ∼= K/(K ∩ T g), which is clearly impossible 
as neither O 7(3) nor G2(3) can be a homomorphic image of K ∼= 37·L2(13). The result follows. �
Lemma 3.4. Let I denote the intersection of any three distinct conjugates of H = 37·O 7(3). Then �(I) = 0.

Proof. The only proper (2B, 3D, 7B)-subgroups of F i ′
24 are L2(13) and 37·L2(13) (non-splitting), see [21]. But by Lem-

mas 3.2 and 3.3, neither group can occur in a triple intersection of such conjugates. �
Proposition 3.5. F i ′

24 is not (2B, 3D, 7B)-generated.
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Table 3
Contributions toward �G (2B, 3D, 7A) where G = F i24.

〈S〉 S7 S6 S5 S5 × S2 S4 S4 × S2 S4 × S3

CG (S) 7:6 L2(8) : 3 S9 2 × S7 O +
8 (2) : S3 2 × S6(2) U3(3) : 2

�(CG (S)) 0 0 0 0 0 0 0

〈S〉 S3 S3 × S2 S3 × S 2
2 S 2

3 S2 S 2
2 S 3

2

CG (S) O +
8 (3) : S3 2 × O 7(3) 2 × 2U4(3) G2(3) 2 × F i23 2 × 2F i22 2 × 22U6(2)

�(CG (S)) 756 182 0 42 15680 1848 0

Proof. We compute the structure constant �F i ′
24

(2B, 3D, 7B) = 61 740. As alluded to earlier, we will apply the principle of 
inclusion–exclusion to the 49 conjugates of H that contain a fixed z ∈ 7B . By Lemma 3.2, those subgroups isomorphic to 
L2(13) are counted exactly twice, while Lemma 3.3 asserts that those isomorphic to 37·L2(13) (non-splitting) are counted 
only once. By Lemma 3.4, there is no contribution coming from intersections of three or more distinct conjugates of H . Thus 
the number of triples that generate a proper (2B, 3D, 7B)-subgroup of F i ′

24 is given by

49 · �(37·O 7(3)) − 882 · �(L2(13)) = 49(1512) − 882(14) = 61740.

However, this is precisely the structure constant of F i ′
24 from which the result follows. �

The case (2B, 3D, 7A) is quite more delicate, and its treatment will require some additional lemmas.

Lemma 3.6. Let G = F i24 (so that G ′ = F i ′
24) and fix z ∈ 7A. Then CG(z) = 〈z〉 × H with H ∼= S7 . Identifying H with S7 , we have 

that the 21 transpositions (a, b) ∈ H are of G-class 2C , the 105 involutions of type (a, b)(c, d) ∈ H are of G-class 2A, and the 105 
involutions of type (a, b)(c, d)(e, f ) ∈ H are of G-class 2D. Finally, the 70 elements of type (a, b, c) ∈ H are of G-class 3A.

Proof. As CG ′ (z) ∼= 7 × A7, we see at once that elements of type (a, b) ∈ H and those of type (a, b)(c, d)(e, f ) ∈ H must lie 
outside G ′ . Thus elements of each type are either of G-class 2C or 2D . Since (1, 2) ∈ H centralizes z(3, 4, 5, 6, 7) ∈ CG (z), 
we see that w = z(1, 2)(3, 4, 5, 6, 7) is of order 70 and w35 = (1, 2). But this can only occur if (1, 2) ∈ 2C .

Note that despite the fact that (a, b) ∈ H and (a, b)(c, d)(e, f ) ∈ H are obviously not conjugate in H , they could be 
conjugate in G . However, by character computation, we know that z lies in exactly 21 G ′-conjugates of F ∼= F i23 (see 
Table 2). Thus z lies in exactly 21 G-conjugates of CG (t) = 〈t〉 × F where t ∈ 2C . These 21 conjugates correspond to the 21 
elements (a, b) ∈ 2C , hence there can be no other elements in CG(z) of type 2C . Thus elements of type (a, b)(c, d)(e, f ) ∈ H
must be in the G-class 2D .

As elements of the form (a, b)(c, d) are in H ′ ∼= A7, they must be in G ′ , and thus they are either of class 2A or 2B . 
However, nothing in class 2B commutes with z ∈ 7A, hence (a, b)(c, d) ∈ 2A.

Finally, elements of type (a, b, c) are of G-class 3A because v = z(1, 2, 3)(4, 5, 6, 7) is of order 84 with v28 = (1, 2, 3). 
But this can only occur if (1, 2, 3) ∈ 3A. (Alternatively, one could argue that the product of two non-commuting involutions 
of F i24-type 2C must be of F i24-type 3A, a known property of the 3-transposition class 2C .) �
Lemma 3.7. With notation as in Lemma 3.6, let S be any set of transpositions in H. Then the subgroup 〈S〉 < H generated by S is 
isomorphic to one of the following groups: S7, S6 , S5 , S5 × S2 , S4 , S4 × S2 , S4 × S3 , S3 , S3 × S2 , S3 × S 2

2 , S 2
3 , S2 , S 2

2 , S 3
2 . Moreover, 

the numbers of such subgroups of H that so arise are indicated as follows:

S7 S6 S5 S5 × S2 S4 S4 × S2 S4 × S3 S3 S3 × S2 S3 × S 2
2 S 2

3 S2 S 2
2 S 3

2

1 7 21 21 35 105 35 35 210 105 70 21 105 105

Proof. This is an easy counting exercise which we leave to the reader. �
Again set G = F i24. Our next goal is to determine the centralizer CG (S) of each subgroup 〈S〉 ≤ H ∼= S7, as well as its 

contribution �(CG(S)) to the structure constant �(G) = 147 000 of type (2B, 3D, 7A). All results, which depend on our 
Lemma 3.6 and are corroborated by [21, Table 10.2, p. 153], are indicated in Table 3. Note that if S and T are sets of 
transpositions in H ∼= S7 with 〈S〉 ∼= 〈T 〉, then 〈S〉 and 〈T 〉 are conjugate in H , hence they are conjugate in G .

In Table 4, we indicate the number of ways a fixed subgroup 〈S〉 of H ∼= S7 of given isomorphism type can be generated 
by exactly n transpositions. This information is crucial to us, since n is also the precise number of transposition-centralizers 
whose intersection gives the corresponding group CG (S). (Indeed, CG (S) = ⋂

s∈S CG (s).) We shall use this information later 
on, when we invoke the principle of inclusion–exclusion to prove that F i ′

24 is not (2B, 3D, 7A)-generated.
The reader will observe that the table stops at n = 11. This is because larger values of n fail to contribute to �(F i24). 

We also remark that if one multiplies each entry in Table 4 by the number of subgroups 〈S〉 ≤ H of indicated isomorphism 
type, then the resulting column sums will be 

(21), 1 ≤ n ≤ 11. This provides a valuable check on the accuracy of Table 4.
n
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Table 4
Number of ways a specified subgroup of H can be generated by a set S of n transpositions (1 ≤ n ≤ 11).

〈S〉 1 2 3 4 5 6 7 8 9 10 11

S7 0 0 0 0 0 17227 68295 156555 258125 331506 343140

S6 0 0 0 0 1296 3660 5700 6165 4945 2997 1365

S5 0 0 0 125 222 205 120 45 10 1 0

S5 × S2 0 0 0 0 125 222 205 120 45 10 1

S4 0 0 16 15 6 1 0 0 0 0 0

S4 × S2 0 0 0 16 15 6 1 0 0 0 0

S4 × S3 0 0 0 0 48 61 33 9 1 0 0

S3 0 3 1 0 0 0 0 0 0 0 0

S3 × S2 0 0 3 1 0 0 0 0 0 0 0

S3 × S 2
2 0 0 0 3 1 0 0 0 0 0 0

S 2
3 0 0 0 9 6 1 0 0 0 0 0

S2 1 0 0 0 0 0 0 0 0 0 0

S 2
2 0 1 0 0 0 0 0 0 0 0 0

S 3
2 0 0 1 0 0 0 0 0 0 0 0

Proposition 3.8. F i ′
24 is not (2B, 3D, 7A)-generated.

Proof. As discussed above, we proceed by inclusion–exclusion, but first we must lay some additional groundwork. Note that 
all computations will proceed in F i24 rather than in F i ′

24.
We start by determining the precise number of CG (z)-conjugates of the centralizer CG (t) ∼= 2 × F i23 where t ∈ H ≤ CG (z), 

as well as the contribution to �(F i24) coming from all (2B, 3D, 7A)-subgroups contained in these conjugates. In subsequent 
steps, we do this for intersections of two CG (z)-conjugates of CG (t), and then for intersections of three such conjugates and 
so on, ultimately reaching 11.

All data used in the following computations may be gleaned from Tables 3 and 4 as well as from Lemma 3.7. Observe 
that there are only five rows of Table 4 that are relevant to our proof, viz. those headed by S3, S3 × S2, S2

3, S2, S2
2, S3

2, as 
these are the only subgroups 〈S〉 < H ∼= S7 for which CG(S) contributes a positive value to �F i24 (2B, 3D, 7A).

One conjugate. There are 21 CG(z)-conjugates of CG (t) ∼= 2 × F i23 and each contributes 15680 to �(F i24). This gives a total 
contribution of 21 × 15 680 = 329 280.

Two conjugates. There are 210 intersections of two CG (z)-conjugates of CG (t) and these are of two types: (1) 3 × 35 = 105
intersections isomorphic to O +

8 (3) : S3, giving a contribution of 105 × 756 = 79 380, and (2) 1 × 105 = 105 intersections 
isomorphic to 2 × 2F i22, giving a contribution of 105 × 1 848 = 19 404. Thus the total contribution to �(F i24) coming from 
intersections of two conjugates is 79 380 + 194 040 = 273 420.

Three conjugates. Relevant intersections here are of two types: (1) 1 ×35 = 35 intersections isomorphic to O +
8 (3) : S3, giving 

a contribution of 35 × 756 = 26 460 and (2) 3 × 210 = 630 intersections isomorphic to 2 × O 7(3), giving a contribution of 
630 × 182 = 114 660. Thus the total contribution to �(F i24) coming from intersections of three conjugates is 26 460 +
114 660 = 141 120.

Four conjugates. Relevant intersections here are of two types: (1) 1 × 210 = 210 intersections isomorphic to 2 × O 7(3), 
giving a contribution of 210 × 182 = 38 220 and (2) 9 × 70 = 630 intersections isomorphic to G2(3), giving a contribution of 
630 × 42 = 26 460. Thus the total contribution to �(F i24) coming from intersections of four conjugates is 38 220 + 26 460 =
64 680.

Five conjugates. The only relevant intersections of five conjugates are the 6 × 70 = 420 ones isomorphic to G2(3). They 
contribute 420 × 42 = 17 640 to �(F i24).

Six conjugates. The only relevant intersections of six conjugates are the 1 × 70 = 70 ones isomorphic to G2(3). They con-
tribute 70 × 42 = 2 940 to �(F i24).

Finally observe from Tables 3 and 4 that the intersection of seven or more conjugates contribute zero to �(F i24).
We are now prepared to invoke the principle of inclusion–exclusion to account for all (2B, 3D, 7A)-triples in G = F i24

that lie in at least one conjugate of CG (t), t ∈ CG(z). This involves adding all contributions coming from intersections of 
an odd number of conjugates, from which we subtract all contributions coming from intersections of an even number of 
conjugates. Specifically, this gives

329 280 − 273 420 + 141 120 − 64 680 + 17 640 − 2 940 = 147 000

which is the precise value of �(G). We conclude that every (2B, 3D, 7A)-subgroup of G = F i24 must lie in at least one 
CG(z)-conjugate of CG (t) ∼= F i23 × 2, whence F i ′ is not (2B, 3D, 7A)-generated. �
24
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Theorem 3.9. The only (2, 3, 7)-triple that generates F i ′
24 is of type (2B, 3E, 7B).

Proof. We first establish that F i ′
24 is (2B, 3E, 7B)-generated. The only maximal subgroups of F i ′

24 with non-empty 
intersection with all three conjugacy classes are 37·O 7(3), 21+12.3U4(3).22 and U3(3).2 (two classes). We compute 
�F i ′

24
(2B, 3E, 7B) = 224322, �(37·O 7(3)) = 2079, �(21+12.3U4(3).22) = 322 and �(U3(3).2) = 7. For a fixed subgroup of 

F i ′
24 isomorphic to each of 37·O 7(3), 21+12.3U4(3).22 and U3(3).2, a fixed element z ∈ 7B is contained in precisely 49, 

49, and 294 conjugates thereof, respectively. In particular, z lies in 588 copies of U3(3).2 in all, i.e. 294 from each class. 
Consulting Table 2, we therefore have

�∗
F i ′

24
(2B,3E,7B) ≥ �(F i ′

24) − 49�(37·O 7(3)) − 49�(21+12.3U4(3).22)

−588�(U3(3).2)

= 224 322 − 49(2 079) − 49(322) − 588(7) > 0,

which proves that F i ′
24 is (2B, 3E, 7B)-generated.

We now establish non-generation in all remaining cases.
Non-generation by triples of type (2B, 3D, 7B) and (2B, 3D, 7A) follows from Propositions 3.5 and 3.8, respectively. To 

prove non-generation of type (2B, 3E, 7A), we compute �F i ′
24

(2B, 3E, 7A) = 70 560 and �(23.L2(7)) = 14. As the elementary 
abelian subgroup 23 of 23.L2(7) is an irreducible L2(7)-module, we further have �∗(23.L2(7)) = 14. (Indeed, by [21, p.156]
all (2, 3E, 7)-subgroups of F i ′

24 have trivial centralizer and L2(7) does not meet the class 3E .) As there are 5040 conjugates 
of 23.L2(7) containing a fixed element z ∈ 7A, we thereby obtain

�∗(F i ′
24) = �(F i ′

24) − 5 040�(23.L2(7)) = 70 560 − 5 040 × 14 = 0,

which establishes that F i ′
24 is not (2B, 3E, 7A).

Of the remaining triples, the only ones that contribute a positive value to �(F i ′
24) are the following:

(2A,3C,7A), (2A,3E,7B), (2B,3B,7A), (2B,3C,7A).

However, we easily compute

�F i ′
24

(2A,3C,7A) = 294 < 17 640 = |C F i ′
24

(7A)|
�F i ′

24
(2A,3E,7B) = 196 < 2 058 = |C F i ′

24
(7B)|

�F i ′
24

(2B,3B,7A) = 49 < 17 640 = |C F i ′
24

(7A)|
�F i ′

24
(2B,3C,7A) = 5 439 < 17 640 = |C F i ′

24
(7A)|

from which the result follows from Lemma 2.3. �
3.2. The case r = 11

As F i ′
24 has a unique class of elements of order 11, we have 10 triples of classes to consider in this case.

Proposition 3.10. F i ′
24 is not (2A, 3E, 11A)-generated.

Proof. The only maximal subgroups of F i ′
24 with nonzero structure constant are conjugates of M ∼= 31+10:U5(2):2 and 

K ∼= 211·M24 for which we have �M(2A, 3E, 11A) = �K (2A, 3E, 11A) = 44. We further observe that a fixed element z ∈ 11A
is contained in four conjugates of M in F i ′

24. Specifically, these are M , Mu , M v , Muv , where 〈u, v〉 is a Klein-four subgroup 
in the centralizer C F i ′

24
(z) ∼= 11 × 2 × S3. We claim that the intersection of any two such conjugates contributes zero to the 

structure constant �F i ′
24

(2A, 3E, 11A) = 440. By symmetry (and conjugation by elements of 〈u, v〉), it suffices to prove the 
claim for the intersection H = M ∩ Mu .

First observe that a central element t ∈ O 3(M) ∼= 31+10 commutes with z, i.e. t ∈ C F i ′
24

(z). From the structure of C F i ′
24

(z), 
we see at once that u ∈ C F i ′

24
(z) normalizes 〈t〉 (indeed, 〈t, u〉 is isomorphic to either Z6 or S3). Hence t ∈ H . Furthermore, 

u normalizes H since, being an involution, it merely interchanges M and Mu .
Now set N = N F i ′

24
(H). As |CM(z)| = 33, we have u /∈ M whence N �≤ M . Similarly, since |C K (z)| = 44, we have t /∈ K so 

N �≤ K . Naturally, N �= F i ′
24, so N must be contained in a maximal subgroup of F i ′

24, say X . But this implies that �(X) = 0, 
since X is neither isomorphic to M nor K . It follows that �(H) = 0, in which case we are getting a contribution of 4 × 44 =
176 coming from the four conjugates M , Mu , M v , Muv .

We next claim that the intersection of K = 211·M24 with any conjugate of M cannot contain any (2A, 3E, 11A)-subgroup. 
Indeed, set U := K ∩ M (the cases of other conjugates of M are similar) and suppose that L ≤ U is a potential 
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(2A, 3E, 11A)-subgroup. Then, since L2(11) is the only (2, 3, 11)-subgroup of U5(2), we have L/O 3(L) ∼= L2(11). However, 
since L < K it now follows that O 3(L) = 1. Thus L ∼= L2(11), in which case �(L) = 0, since all L2(11)-subgroups of U5(2)

fail to meet the F i ′
24-class 3E .

This means that K contributes an additional 44 to the structure constant �(F i ′
24) = 440. The contribution thus far is 

176 + 44 = 220 and this is sufficient to complete the proof. Indeed, applying Lemma 2.2, we obtain

�∗(F i ′
24) ≤ �(F i ′

24) − 220 = 440 − 220 = 220 < 264 = |C F i24(z)|
whence F i ′

24 is not (2A, 3E, 11A)-generated. �
Theorem 3.11. Let X ∈ {A, B}, Y ∈ {A, B, C, D, E}. Then Fischer’s group F i ′

24 is (2X, 3Y , 11A)-generated if and only if (X, Y ) ∈
{(B, D), (B, E)}

Proof. Let (X, Y ) ∈ {(A, A), (B, A), (A, B), (B, B), (A, C), (A, D)}. Then because �F i ′
24

(2X, 3Y , 11A) < |C F i24(11A)| = 264 for 
all of these choices, it follows from Lemma 2.2 that F i ′

24 is not (2X, 3Y , 11A)-generated for such (X, Y ). Moreover, non-
generation of F i ′

24 for (X, Y ) = (A, E) was established in Proposition 3.10.
Next consider (X, Y ) = (B, C). Here �F i ′

24
(2B, 3C, 11A) = 726, while �(F i23) = 374 and �(2F i22 : 2) = 154. We need 

only consider two of the three conjugates of F i23 that contain z ∈ 11A. Letting t be the outer automorphism of 2F i22 in 
2F i22 : 2, we have that 2F i22 = F i23 ∩ (F i23)

t . This already accounts for a contribution of 2 × 374 − 154 = 594 coming from 
just F i23 and (F i23)

t . Non-generation of type (2B, 3C, 11A) now follows from Lemma 2.2, since

�∗(F i
′
24) ≤ 726 − 594 = 132 < 264 = |C F i24(z)|.

Finally, we consider the remaining two cases (2B, 3D, 11A) and (2B, 3E, 11A). We calculate the relevant struc-
ture constants to be �F i ′

24
(2B, 3D, 11A) = 55 044 and �F i ′

24
(2B, 3E, 11A) = 165 792. The only maximal subgroups 

of F i ′
24 that meet these classes are isomorphic to F i23, 2.F i22:2, O −

10(2), 31+10:U5(2):2 and 22·U6(2):S3. However, 
�31+10:U5(2):2(2B, 3D, 11A) = �22·U6(2):S3

(2B, 3D, 11A) = 0. Further observe that any proper (2B, 3E, 11A)-generated sub-
group of F i ′

24 must be contained in one of 31+10:U5(2):2, 211·M24, 22·U6(2):S3. However, �31+10:U5(2):2(2B, 3E, 11A) =
�22·U6(2):S3

(2B, 3E, 11A) = 0. Hence, consulting the fusion maps of F i23, 2.F i22:2, O −
10(2), 211·M24 in Table 2, we obtain

�∗
F i ′

24
(2B,3D,11A) ≥ �F i ′

24
(2B,3D,11A) − 3�F i23(2B,3D,11A)

−3�2.F i22:2(2B,3D,11A) − 8�O−
10(2)(2B,3D,11A)

= 55 044 − 3(11 616) − 3(1 980) − 8(594) > 0,

�∗
F i ′

24
(2B,3E,11A) ≥ �F i ′

24
(2B,3E,11A) − 6�211·M24

(2B,3E,11A)

= 165 792 − 6(1 012) > 0.

Thus generation by both triples is established and the proof is complete. �
3.3. The case r = 13

As in the previous case, F i ′
24 has a unique class of elements of order 13. Hence we have 10 triples of classes to consider.

Theorem 3.12. Let X ∈ {A, B}, Y ∈ {A, B, C, D, E}. Then Fischer’s group F i ′
24 is (2X, 3Y , 13A)-generated if and only if (X, Y ) ∈

{(B, D), (B, E)}.

Proof. For (X, Y ) ∈ {(A, A), (B, A), (A, B), (A, C), (A, E)}, non-generation by the corresponding triples (2X, 3Y , 13A) follows 
from �F i ′

24
(2X, 3Y , 13A) = 0. Likewise, non-generation of type (X, Y ) ∈ {(B, B), (A, E)} follows from Lemma 2.3 since

�F i ′
24

(2B,3B,13A) = 13 < 234 = |C F i ′
24

(13A)|,
�F i ′

24
(2A,3E,13A) = 156 < 234 = |C F i ′

24
(13A)|.

We next treat the case (X, Y ) = (B, C). Here we obtain �F i ′
24

(2B, 3C, 13A) = 975, �F i23(2B, 3C, 13A) = 429 and 
�2F i22:2(2B, 3C, 13A) = 195. To prove non-generation, it suffices to consider just two of the six conjugates of F i23 that 
contain z ∈ 13A. Letting t be the outer automorphism of 2F i22 in 2F i22 : 2, we have that 2F i22 = F i23 ∩ (F i23)

t . This already 
accounts for a contribution of 2 × 429 − 195 = 663 coming from just F i23 and (F i23)

t . Non-generation of type (2B, 3C, 13A)

now follows from Lemma 2.2, since

�∗ ′ (2B,3C,13A) ≤ �(F i ′
24) − 663 = 975 − 663 = 312 < 468 = |C F i24(z)|.
F i24
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We now turn our attention to triples of type (2B, 3D, 13A) and (2B, 3E, 13A).
Generation by (2B, 3D, 13A) triples was established by Linton & Wilson [21, pp. 149–151] using their “fingerprint” 

computational approach, e.g., see [21, p. 151]. In fact, 28 non-conjugate classes of such generating triples were identified 
via this method.

For the final remaining triple (2B, 3E, 13A), we compute the structure constant �F i ′
24

(2B, 3E, 13A) = 185 328. The 
maximal subgroups of F i ′

24 with order divisible by 13 are F i23, 2.F i22:2, (3×O +
8 (3):3):2, 37·O 7(3), 33.[310].GL3(3), 

(32:2×G2(3)).2 and L2(13):2. But none of F i23, 2.F i22:2, L2(13):2 meets all classes in the triple (2B, 3E, 13A). Further 
we calculate

�((3×O +
8 (3):3):2) = �(33.[310].GL3(3)) = �((32:2×G2(3)).2) = 0.

Thus the only maximal subgroup that can admit (2B, 3E, 13A)-generated subgroups is isomorphic to 37·O 7(3). We now 
compute

�∗
F i ′

24
(2B,3E,13A) ≥ �F i ′

24
(2B,3E,13A) − 12�37·O 7(3)(2B,3E,13A)

= 185 328 − 12(1 404) > 0,

which establishes that F i ′
24 is (2B, 3E, 13A)-generated, completing the proof. �

3.4. The case r = 17

Once again there are 10 cases to consider, since F i ′
24 has a unique class of elements of order 17.

Proposition 3.13. F i ′
24 is (2B, 3C, 17A)-generated.

Proof. Our mode of proof is to construct a partial subgroup lattice for F i ′
24, consisting only of those groups that could 

potentially contribute a positive value to the structure constant �F i ′
24

(2B, 3C, 17A) = 408, i.e. those that meet all three 
F i ′

24-classes.
We begin by analyzing certain subchains of the lattice, starting at the bottom and gradually working our way up.

(1) L2(16) < S4(4) < S8(2). We compute �∗(L2(16)) = 17, �(S4(4)) = 34 and �(S8(2)) = 68. As a fixed z ∈ 17A lies in two 
S4(4)-conjugates of L2(16), we obtain �∗(S4(4)) = 0. Also observe that the only contribution toward �(S8(2)) so far is 
coming from these two conjugates of L2(16).

(2) L2(16) < O −
8 (2) < S8(2). We compute �(O −

8 (2)) = 51. A fixed z ∈ 17A lies in two O −
8 (2)-conjugates of L2(16), hence 

we obtain �∗(O −
8 (2)) = 17. In addition to the two conjugates of L2(16) mentioned in (1), z lies in two S8(2)-conjugates of 

O −
8 (2). Thus we obtain

�∗(S8(2)) = �(S8(2)) − 2�∗(O −
8 (2)) − 2�∗(L2(16)) = 68 − 2 · 17 − 2 · 17 = 0.

(3) L2(16) < S4(4) < He. For each of the two classes of He in F i ′
24, we have �∗(He) = 0, since �(He) = 34 and z ∈ 17A lies 

in two He-conjugates of L2(16).

(4) S8(2) < O −
10(2). We compute �(O −

10(2)) = 136. From (1) and (2) above, the only (2B, 3C, 17A)-generated subgroups of 
O −

10(2) are L2(16) and O −
8 (2). As a fixed element z ∈ 17A lies in two O −

10(2)-conjugates of each of L2(16) and O −
8 (2), we 

obtain �∗(O −
10(2)) = �(O −

10(2)) − 2 �∗(L2(16)) − 2 �∗(O −
8 (2)) = 136 − 2 · 17 − 2 · 17 = 68.

(5) S8(2) < F i23 . The analysis is similar to (4) above, that is, we only have to account for contributions coming from the 
subgroups L2(16) and O −

8 (2) of F i23. As �(F i23) = 238, and as z ∈ 17A lies in two F i23-conjugates of L2(16) and four 
conjugates of O −

8 (2), we compute

�∗(F i23) = �(F i23) − 2�∗(L2(16)) − 4�∗(O −
8 (2)) = 238 − 2 · 17 − 4 · 17 = 136.

To summarize, the only proper (2B, 3C, 17A)-subgroups of F i ′
24 are L2(16), O −

8 (2), O −
10(2), and F i23. As the respective 

numbers of F i ′
24-conjugates of these subgroups containing a fixed element z ∈ 17A are two, two, two and one, we obtain

�∗(F i ′
24) = �(F i ′

24) − 2�∗(L2(16)) − 2�∗(O −
8 (2)) − 2�∗(O −

10(2)) − �∗(F i23)

= 408 − (2 · 17) − (2 · 17) − (2 · 34) − 170 = 68.

This establishes that F i ′
24 is (2B, 3C, 17A)-generated as claimed. �

Theorem 3.14. Let X ∈ {A, B}, Y ∈ {A, B, C, D, E}. Then Fischer’s group F i ′
24 is (2X, 3Y , 17A)-generated if and only if (X, Y ) ∈

{(A, E), (B, C), (B, D), (B, E)}.
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Proof. For (X, Y ) ∈ {(A, A), (A, B), (A, C), (B, A), (B, B)} non-generation of F i ′
24 follows at once since all corresponding 

structure constants are zero. For the case (X, Y ) = (A, D) we compute �(F i ′
24) = 34 and �(O −

10(2)) = 17. Thus non-
generation of this type follows from Lemma 2.2, since �∗(F i ′

24) ≤ 34 − 17 < 34 = |C F i24(17A)|.
Thus it remains to establish generation for each of (2B, 3C, 17A), (2A, 3E, 17A), (2B, 3E, 17A), and (2B, 3D, 17A). The 

first of these cases was proved in Proposition 3.13. For the remaining cases, we observe that the only maximal subgroups of 
F i ′

24 with order divisible by 17 are F i23, O −
10(2) and He:2. However, neither F i23 nor O −

10(2) meet all classes in the triples 
(2A, 3E, 17A) and (2B, 3E, 17A), and He:2 does not meet all classes in the triple (2B, 3D, 17A). Further, a fixed element of 
order 17 in F i ′

24 is contained in a unique conjugate of F i23, in two conjugates of O −
10(2), and in a unique conjugate of each 

of He:2. From Table 2, it now follows that

�∗
F i ′

24
(2B,3D,17A) ≥ �F i ′

24
(2B,3D,17A) − �F i23(2B,3D,17A)

−2�O−
10(2)(2B,3D,17A)

= 49 844 − 11 322 − 2(816) > 0,

�∗
F i ′

24
(2A,3E,17A) ≥ �F i ′

24
(2A,3E,17A) − 2�He:2(2A,3E,17A)

= 204 − 2(51) > 0,

�∗
F i ′

24
(2B,3E,17A) ≥ �F i ′

24
(2B,3E,17A) − 2�He:2(2B,3E,17A)

= 191 114 − 2(374) > 0,

which establishes generation for each indicated triple, as claimed. �
3.5. The case r = 23

Strictly speaking, there are 20 cases to consider, since F i ′
24 has two classes of elements of order 23. However, as the 

classes 23A and 23B are algebraically conjugate, it clearly suffices to restrict our attention to the 10 cases corresponding to 
the class 23A. (Indeed, it is immediate that F i ′

24 is (2X, 3Y , 23B)-generated if and only if it is (2X, 3Y , 23A)-generated.)

Theorem 3.15. Let X ∈ {A, B}, Y ∈ {A, B, C, D, E}. Then Fischer’s group F i ′
24 is (2X, 3Y , 23A)-generated if and only if (X, Y ) ∈

{(A, E), (B, C), (B, D), (B, E)}.

Proof. For (X, Y ) ∈ {(A, A), (A, B), (A, C), (B, A), (B, B)}, all structure constants are zero, thus establishing non-generation. 
Non-generation of type (2A, 3D, 23A) also follows easily since �F i ′

24
(2A, 3D, 23A) = �F i23(2A, 3D, 23A) = 23.

It remains to show that the four remaining cases all lead to generations. From Table 1, we see that the only maximal 
subgroups containing elements of order 23 are F i23 and 211·M24. However, the class 3E does not meet F i23, and the 
class 3D does not meet 211·M24. Furthermore, a fixed element z ∈ 23A is contained in a unique conjugate class of each of 
F i23 and 211·M24. We now calculate �211·M24

(2A, 3E, 23Z) = 46, �211·M24
(2B, 3C, 23Z) = 46, �211·M24

(2B, 3E, 23Z) = 506, 
�F i23(2B, 3C, 23Z) = 161, �F i23(2B, 3D, 23Z) = 11592 and �211·M24

(2B, 3E, 23Z) = 506. Together, this yields

�∗
F i ′

24
(2A,3E,23Z) ≥ �F i ′

24
(2A,3E,23Z) − �211·M24

(2A,3E,23Z)

= 138 − 1(46) > 0,

�∗
F i ′

24
(2B,3C,23Z) ≥ �F i ′

24
(2B,3C,23Z) − �F i23(2B,3C,23Z)

−�211·M24
(2B,3C,23Z)

= 345 − 161 − 161 − 46 > 0,

�∗
F i ′

24
(2B,3D,23Z) ≥ �F i ′

24
(2B,3D,23Z) − �F i23(2B,3D,23Z)

= 52 302 − 11 592 > 0,

�∗
F i ′

24
(2B,3E,23Z) ≥ �F i ′

24
(2B,3E,23Z) − �211·M24

(2B,3E,23Z)

= 199 962 − 506 > 0.

Hence we have established (2X, 3Y , 23A)-generation for each of the four indicated triples, and the result follows. �
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3.6. The case r = 29

Although F i ′
24 has two classes of elements of order 29, they are algebraically conjugate. Thus, just as in the previous 

case, we may restrict our attention to the class 29A. This means that we have once again 10 cases to consider.

Theorem 3.16. Let X ∈ {A, B}, Y ∈ {A, B, C, D, E}. Then Fischer’s group F i ′
24 is (2X, 3Y , 29A)-generated if and only if (X, Y ) ∈

{(A, E), (B, C), (B, D), (B, E)}.

Proof. From Table 1, we see that the only maximal subgroup of F i ′
24 with order divisible by 29 is NG(z) ∼= 29:14, 

where z ∈ 29A. As |NG(z)| is not divisible by 3, F i ′
24 cannot have any proper (2X, 3Y , 29A)-subgroups. This means 

that F i ′
24 is (2X, 3Y , 29A)-generated precisely when �F i ′

24
(2X, 3Y , 29A) > 0, and this occurs if and only if (X, Y ) ∈

{(A, E), (B, C), (B, D), (B, E)}. �
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