C. R. Acad. Sci. Paris, Ser. I

Number theory

Parity of Schur's partition function

Parité de la fonction de partition de Schur

Shi-Chao Chen
Institute of Contemporary Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, PR China

A R T I C L E IN F O

Article history:

Received 21 March 2019
Accepted after revision 16 May 2019
Available online 29 May 2019
Presented by the Editorial Board

A B S TRACT

Let $A(n)$ be the number of Schur's partitions of n, i.e. the number of partitions of n into distinct parts congruent to $1,2(\bmod 3)$. We prove

$$
\frac{x}{(\log x)^{\frac{47}{48}}} \ll \sharp\{0 \leq n \leq x: A(2 n+1) \text { is odd }\} \ll \frac{x}{(\log x)^{\frac{1}{2}}} .
$$

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Soit $A(n)$ le nombre de partitions de Schur de n, c'est-à-dire le nombre de partitions de n en parts distinctes congrues à $1,2(\bmod 3)$. Nous montrons que :

$$
\frac{x}{(\log x)^{\frac{47}{48}}} \ll \sharp\{0 \leq n \leq x: A(2 n+1) \text { impair }\} \ll \frac{x}{(\log x)^{\frac{1}{2}}} .
$$

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The partition function $p(n)$ is the number of representations of n as nonincreasing sequence of positive integers whose sum is n. Although there has been much work on the congruence properties of $p(n)$ since Ramanujan, little is known about the parity of $p(n)$. Parkin and Shanks [22] conjectured that the partition function is even and odd equally often, i.e.

$$
\begin{equation*}
\sharp\{1 \leq n \leq x: p(n) \text { is even (resp. odd) }\} \sim \frac{1}{2} x, x \rightarrow \infty . \tag{1}
\end{equation*}
$$

[^0]The best lower bound for the even case is $0.069 \sqrt{x} \log \log x$ [8], and that for the odd case is $\gg \frac{\sqrt{x}}{\log \log x}$ [7], where $f(x) \gg g(x)$ means $|f(x)| \geq c g(x)$ for some constant c. We refer to [7], [20] and the references therein for more results on the parity of $p(n)$.

It seems difficult to prove Parkin and Shanks' conjecture or even improve the lower bound of (1) as $\gg x^{\frac{1}{2}+\epsilon}$. But for the Rogers-Ramanujan function $g(n)$, i.e.

$$
\sum_{n=0}^{\infty} g(n) q^{n}:=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

we have a better lower bound for the number of odd $g(n)$. Indeed, it was shown in [12] that

$$
\begin{equation*}
\sharp\{0 \leq n \leq x: g(2 n+1) \text { is odd }\} \sim \frac{\pi^{2}}{5} \frac{x}{\log x}, x \rightarrow \infty . \tag{2}
\end{equation*}
$$

We expect to find a special partition function that satisfies the odd-even distribution like (1). In this note, we will study the parity of Schur's partition function and show that the odd values of this partition function up to x is $\gg \frac{x}{(\log x)^{\frac{47}{48}}}$. We see that this lower bound is slightly better than (2), but still far from the bound (1).

Before stating our result precisely, we recall the famous Schur's partition theorem [23]. Let $A(n)$ be the number of partitions of n into distinct parts $\equiv 1,2(\bmod 3), B(n)$ be the number of partitions of n into parts $\equiv \pm 1(\bmod 6)$, and $D(n)$ be the number of partitions of n of the form $n_{1}+n_{2}+\cdots+n_{k}$ such that $n_{i}-n_{i+1} \geq 3$ with strict inequality if $3 \mid n_{i}$. Schur's partition theorem states that

$$
A(n)=B(n)=D(n)
$$

Schur's theorem can be proved by a variety of approaches. For example, Andrews [2] gave a proof by generating functions and Bressoud [10] provided a purely combinatorial proof. For more generalizations and extensions of Schur's partition theorem, see Gleissberg [15], Andrews [4-6], Alladi and Gordon [1], to name a few.

Our main result is the following theorem.

Theorem 1.1. We have

$$
\frac{x}{(\log x)^{\frac{47}{48}}} \ll \sharp\{0 \leq n \leq x: A(2 n+1) \text { is odd }\} \ll \frac{x}{(\log x)^{\frac{1}{2}}} .
$$

Since $\sharp\{1 \leq n \leq x: A(n)$ is odd $\} \geq \sharp\left\{0 \leq n \leq \frac{x-1}{2}: A(2 n+1)\right.$ is odd $\}$, we have the following corollary.

Corollary 1.2.

$$
\sharp\{1 \leq n \leq x: A(n) \text { is odd }\} \gg \frac{x}{(\log x)^{\frac{47}{48}}} .
$$

2. Proof of Theorem 1.1

First note that the generating function for $A(n)$ is

$$
\sum_{n=0}^{\infty} A(n) q^{n}=\left(-q ; q^{3}\right)_{\infty}\left(-q^{2} ; q^{3}\right)_{\infty}
$$

where $(a ; q)_{\infty}:=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)$. The odd-even dissection of this series [11, Theorem 2] is given by

$$
\sum_{n=0}^{\infty} A(n) q^{n}=\frac{\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{16} ; q^{16}\right)_{\infty}\left(q^{24} ; q^{24}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty}\left(q^{12} ; q^{12}\right)_{\infty}\left(q^{48} ; q^{48}\right)_{\infty}}+q \frac{\left(q^{8} ; q^{8}\right)_{\infty}^{2}\left(q^{48} ; q^{48}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{16} ; q^{16}\right)_{\infty}\left(q^{24} ; q^{24}\right)_{\infty}}
$$

Extracting odd exponents of q, we get

$$
\begin{align*}
\sum_{n=0}^{\infty} A(2 n+1) q^{n} & =\frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}\left(q^{24} ; q^{24}\right)_{\infty}}{(q ; q)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty}\left(q^{12} ; q^{12}\right)_{\infty}} \\
& \equiv \frac{\left(q^{3} ; q^{3}\right)_{\infty}^{4}}{(q ; q)_{\infty}}(\bmod 2) \\
& =\frac{\left(q^{3} ; q^{3}\right)_{\infty}^{3}}{(q ; q)_{\infty}} \cdot\left(q^{3} ; q^{3}\right)_{\infty} \tag{3}
\end{align*}
$$

Expand $\frac{\left(q^{3} ; q^{3}\right)_{\infty}^{3}}{(q ; q)_{\infty}}$ as

$$
\frac{\left(q^{3} ; q^{3}\right)_{\infty}^{3}}{(q ; q)_{\infty}}=\sum_{n=0}^{\infty} a_{3}(n) q^{n}
$$

Then $a_{3}(n)$ is known as the number of the 3-core partitions of n. The explicit formula for $a_{3}(n)$ [17] is

$$
a_{3}(n)=\sum_{\substack{d \mid 3 n+1 \\ d \equiv 1(\bmod 3)}} 1-\sum_{\substack{d \mid 3 n+1 \\ d \equiv 2(\bmod 3)}} 1 .
$$

It follows immediately that

$$
a_{3}(n) \equiv \sum_{d \mid 3 n+1} 1 \quad(\bmod 2)
$$

Hence $a_{3}(n)$ is odd if and only if $3 n+1$ is a square. Applying Euler's pentagonal theorem [3, Corollary 1.7]

$$
(q ; q)_{\infty}=\sum_{m=-\infty}^{\infty}(-1)^{m} q^{\frac{m(3 m+1)}{2}}
$$

we deduce from (3) that

$$
\begin{align*}
\sum_{n=0}^{\infty} A(2 n+1) q^{24 n+11} & \equiv q^{8} \frac{\left(q^{72} ; q^{72}\right)_{\infty}^{3}}{\left(q^{24} ; q^{24}\right)_{\infty}} \cdot q^{3}\left(q^{72} ; q^{72}\right)_{\infty} \quad(\bmod 2) \\
& \equiv \sum_{m=1,3 \nmid m}^{\infty} q^{8 m^{2}} \sum_{n=-\infty}^{\infty} q^{3(6 n+1)^{2}} \quad(\bmod 2) \\
& =\sum_{\substack{m \geq 1 \\
3 \nmid m}} \sum_{\substack{y \geq 1 \\
y \equiv 1,5 \\
(\bmod 6)}} q^{8 m^{2}+3 y^{2}} \\
& =\sum_{x \geq 1} \sum_{\substack{y \geq 1 \\
3 \nmid y}} q^{2 x^{2}+3 y^{2}} \tag{4}
\end{align*}
$$

where $24 n+11=2 x^{2}+3 y^{2}$ implies that y is odd, $3 \nmid x$, and that x is even by considering modulo 8 , and $y \equiv 1,5(\bmod 6)$ since y is odd and $3 \nmid y$. For an integral binary quadratic form $a x^{2}+b x y+c y^{2}$, we denote by $R\left(n, a x^{2}+b x y+c y^{2}\right)$ the number of the representations of n by $a x^{2}+b x y+c y^{2}$ with $x, y \in \mathbb{Z}$. Then (4) is equivalent to

$$
\begin{equation*}
A(2 n+1) \equiv \frac{1}{4} R\left(24 n+11,2 x^{2}+3 y^{2}\right)-\frac{1}{4} R\left(24 n+11,2 x^{2}+27 y^{2}\right) \quad(\bmod 2) \tag{5}
\end{equation*}
$$

Using BinaryQF_reduced_representatives (-24, primitive_only=True) in software SageMath 8.1 [24], we find that the reduced primitive positive definite binary quadratic forms of discriminant -24 are $2 x^{2}+3 y^{2}$ and $x^{2}+6 y^{2}$. Hence Dirichlet's theorem on binary quadratic forms [16, Theorem 1] shows that

$$
R\left(24 n+11,2 x^{2}+3 y^{2}\right)+R\left(24 n+11, x^{2}+6 y^{2}\right)=2 \sum_{d \mid 24 n+11}\left(\frac{-6}{d}\right)
$$

where ((\div) is the Jacobi-Kronecker symbol. Note that $24 n+11$ can not be represented by $x^{2}+6 y^{2}$ since $24 n+11=x^{2}+6 y^{2}$ means $2 \equiv x^{2}(\bmod 3)$, which is absurd. Therefore,

$$
\begin{equation*}
R\left(24 n+11,2 x^{2}+3 y^{2}\right)=2 \sum_{d \mid 24 n+11}\left(\frac{-6}{d}\right) \tag{6}
\end{equation*}
$$

By SageMath 8.1, the reduced forms of discriminant -216 are given by

$$
\begin{aligned}
& x^{2}+54 y^{2} \\
& 2 x^{2}+27 y^{2} \\
& 5 x^{2}+2 x y+11 y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 5 x^{2}-2 x y+11 y^{2} \\
& 7 x^{2}-6 x y+9 y^{2} \\
& 7 x^{2}+6 x y+9 y^{2}
\end{aligned}
$$

It is easy to see that $24 n+11$ can not be represented by $x^{2}+54 y^{2}$ and $7 x^{2} \pm 6 x y+9 y^{2}$ by considering modulo 3 . Since

$$
R\left(24 n+11,5 x^{2}+2 x y+11 y^{2}\right)=R\left(24 n+11,5 x^{2}-2 x y+11 y^{2}\right)
$$

Dirichlet's theorem gives again

$$
\begin{align*}
& R\left(24 n+11,2 x^{2}+27 y^{2}\right)+2 R\left(24 n+11,5 x^{2}+2 x y+11 y^{2}\right) \\
& =2 \sum_{d \mid 24 n+11}\left(\frac{-216}{d}\right)=2 \sum_{d \mid 24 n+11}\left(\frac{-6}{d}\right) \tag{7}
\end{align*}
$$

Note that $\sum_{d \mid 24 n+11}\left(\frac{-6}{d}\right)$ is even because $24 n+11 \equiv 2(\bmod 3)$ implies that there exists a prime $p \equiv 2$ (mod 3$)$ such that the exponent of p in the prime factorization of $24 n+11$ is odd, hence

$$
\sum_{d \mid 24 n+11}\left(\frac{-6}{d}\right) \equiv \sum_{d \mid 24 n+11} 1 \equiv 0 \quad(\bmod 2)
$$

Putting (5), (6) and (7) together, we obtain

$$
\begin{equation*}
A(2 n+1) \equiv \frac{1}{2} R\left(24 n+11,5 x^{2}+2 x y+11 y^{2}\right) \quad(\bmod 2) \tag{8}
\end{equation*}
$$

Let \mathcal{S} be a subset of primes defined as

$$
\mathcal{S}=\left\{p: p \equiv 11 \quad(\bmod 24), p=5 x^{2}+2 x y+11 y^{2}\right\}
$$

For convenience, we write

$$
f=5 x^{2}+2 x y+11 y^{2}
$$

We claim that for any $2 t-1$ distinct primes $p_{1}, p_{2}, \cdots, p_{2 t-1} \in \mathcal{S}$,

$$
\begin{equation*}
R\left(p_{1} p_{2} \cdots p_{2 t-1}, f\right) \equiv 2 \quad(\bmod 4) \tag{9}
\end{equation*}
$$

We prove the claim by induction on t. If $t=1$, then $R(p, f)=2$ for any $p \in \mathcal{S}$ because the opposite form of f is $f^{-1}=$ $5 x^{2}-2 x y+11 y^{2}$ and is improperly equivalent to f [13, pp. 24-25], thereby the classes of forms equivalent to f and f^{-1} are not equal, and we have $R(p, f)=2$ by [21,Theorem 4]. Assume that (9) holds for $t=k-1$, i.e.

$$
\begin{equation*}
R\left(p_{1} \cdots p_{2 k-3}, f\right) \equiv 2 \quad(\bmod 4) \tag{10}
\end{equation*}
$$

Let f, g be any primitive positive binary quadratic forms of the same negative discriminant d and p a prime not dividing d and represented by g. Pall [21] showed that for every positive integer n,

$$
\begin{equation*}
R(p n, f)+R\left(\frac{n}{p}, f\right)=R(n, f \circ g)+R\left(n, f \circ g^{-1}\right) \tag{11}
\end{equation*}
$$

where $f \circ g$ is the Dirichlet composition of f and g, g^{-1} is the opposite form of g (see [13, p. 49] for definitions). Taking

$$
f=g=5 x^{2}+2 x y+11 y^{2}
$$

and applying (11) twice, we find for $2 k-1$ distinct primes $p_{1}, p_{2}, \cdots, p_{2 k-1} \in \mathcal{S}$

$$
\begin{align*}
R\left(p_{1} p_{2} \cdots p_{2 k-1}, f\right)= & R\left(p_{1} \cdots p_{2 k-2}, f \circ f\right)+R\left(p_{1} \cdots p_{2 k-2}, f \circ f^{-1}\right) \\
= & R\left(p_{1} \cdots p_{2 k-3}, f \circ f \circ f\right)+R\left(p_{1} \cdots p_{2 k-3}, f\right) \\
& +R\left(p_{1} \cdots p_{2 k-3}, f\right)+R\left(p_{1} \cdots p_{2 k-3}, f^{-1}\right) \\
= & R\left(p_{1} \cdots p_{2 k-3}, f \circ f \circ f\right)+3 R\left(p_{1} \cdots p_{2 k-3}, f\right) \tag{12}
\end{align*}
$$

where $R\left(p_{1} p_{2} \cdots p_{2 k-3}, f\right)=R\left(p_{1} p_{2} \cdots p_{2 k-3}, f^{-1}\right)$ follows the fact that a solution (x_{0}, y_{0}) to $p_{1} p_{2} \cdots p_{2 k-3}=f=5 x^{2}+$ $2 x y+11 y^{2}$ corresponds to a solution $\left(x_{0},-y_{0}\right)$ to $p_{1} p_{2} \cdots p_{2 k-3}=f^{-1}=5 x^{2}-2 x y+11 y^{2}$. We compute $f \circ f \circ f$ explicitly and find

$$
f \circ f \circ f=125 x^{2}+222 x y+99 y^{2}
$$

Moreover, its reduce form is $2 x^{2}+27 y^{2}$. Since equivalent forms represent the same numbers ([13, Ex.2.2]), it follows that

$$
R\left(p_{1} \cdots p_{2 k-3}, f \circ f \circ f\right)=R\left(p_{1} \cdots p_{2 k-3}, 2 x^{2}+27 y^{2}\right)
$$

If n is coprime to the discriminant -216 , then

$$
R\left(n, 2 x^{2}+27 y^{2}\right) \equiv 0 \quad(\bmod 4)
$$

because $n=2 x^{2}+27 y^{2}$ means $n=2(\pm x)^{2}+27(\pm y)^{2}$. Therefore,

$$
\begin{equation*}
R\left(p_{1} \cdots p_{2 k-3}, f \circ f \circ f\right) \equiv 0 \quad(\bmod 4) \tag{13}
\end{equation*}
$$

Inserting (10) and (13) into (12), we find (9) holds for $t=k$. This proves the claim.
Now we deduce from (8) and (9) that

$$
A\left(\frac{p_{1} p_{2} \cdots p_{2 t-1}+1}{12}\right) \equiv 1 \quad(\bmod 2)
$$

for any $2 t-1$ distinct primes $p_{1}, p_{2}, \cdots, p_{2 t-1} \in \mathcal{S}$. Thus,

$$
\begin{equation*}
\sum_{\substack{0 \leq n \leq x \\ A(2 n+1) \text { odd }}} 1 \geq \sum_{\substack{m \leq x \\ \mu(m)=-1 \\ p \mid m \Rightarrow p \in \mathcal{S}}} 1 \tag{14}
\end{equation*}
$$

where μ is the usual Möbius function. Since the number of classes of discriminant -216 is 6 , the Chebotarev density theorem [13, Theorem 9.12] shows that the Dirichlet density of the set of primes represented by $5 x^{2}+2 x y+11 y^{2}$ is $\frac{1}{6}$. Applying the orthogonality of Dirichlet character modulo 24, we see that the Dirichlet density of \mathcal{S} is $\frac{1}{6} \cdot \frac{1}{\phi(24)}=\frac{1}{48}$, where ϕ is Euler's totient function. By a classical result of Wirsing [25] on multiplicative functions (see also [14, Proposition 4]), we find

$$
\sum_{\substack{m \leq x \\ p \mid m \Rightarrow p \in \mathcal{S}}} 1 \sim c \frac{x}{(\log x)^{\frac{47}{48}}},
$$

where c is a constant. An elementary argument (see, for example, [19, Lemma 3.6]) shows that

$$
\begin{equation*}
\sum_{\substack{m \leq x \\ \mu(m)=-1 \\ p \mid m \Rightarrow p \in \mathcal{S}}} 1 \gg \frac{x}{(\log x)^{\frac{47}{48}}} . \tag{15}
\end{equation*}
$$

Hence, the lower bound of Theorem 1.1 follows from (14) and (15). On the other hand, Bernays' theorem [9] (see also [18, Theorem 2]) implies that the number of integers less than x represented integrally by $5 x^{2}+2 x y+11 y^{2}$ is

$$
c_{1} \frac{x}{(\log x)^{\frac{1}{2}}}\left(1+O\left(\frac{1}{(\log x)^{c_{2}}}\right)\right)
$$

for some constants c_{1} and c_{2}. Therefore, from (8) we infer

$$
\sum_{\substack{0 \leq n \leq x \\ A(2 n+1) \text { odd }}} 1 \ll \sum_{\substack{n \leq 2 x+1 \\ R\left(n, 5 x^{2}+2 x y+11 y^{2}\right) \equiv 2(\bmod 4)}} 1 \ll \sum_{\substack{n \leq 2 x+1 \\ R\left(n, 5 x^{2}+2 x y+11 y^{2}\right)>0}} 1 \ll \frac{x}{(\log x)^{\frac{1}{2}}} .
$$

This completes the proof of Theorem 1.1.
Remark 2.1. The relation (8) implies that $A(2 n+1)$ is even if $24 n+11$ has a prime divisor ℓ satisfying $\left(\frac{-6}{\ell}\right)=-1$ and the exponent of ℓ in the prime factorization of $24 n+11$ is odd. To prove this statement, we observe that if $R(24 n+11, f)>0$, then

$$
24 n+11=5 x^{2}+2 x y+11 y^{2} \equiv 0 \quad(\bmod \ell)
$$

for some x and y. It follows that

$$
(5 x+y)^{2} \equiv-54 y^{2} \quad(\bmod \ell)
$$

and so

$$
\left(\frac{(5 x+y)^{2}}{\ell}\right)=\left(\frac{-54 y^{2}}{\ell}\right)=\left(\frac{-6}{\ell}\right)\left(\frac{9 y^{2}}{\ell}\right)=-\left(\frac{9 y^{2}}{\ell}\right) .
$$

This implies that $\ell \mid y$, hence $\ell \mid x$ and $\ell^{2} \mid 24 n+11$. Replacing $24 n+11$ by $\frac{24 n+11}{\ell^{2}}$ and repeating the arguments above, we find that the exponents of ℓ in the prime factorization of $24 n+11$ must be even, which contradicts our assumption on ℓ. Therefore, $R(24 n+11, f)=0$ and $A(2 n+1)$ is even by (8).

For any prime $\ell \equiv 13,17,19$ and $23(\bmod 24)$, any positive integers s and m with $\ell \nmid m$, we see that $\left(\frac{-6}{\ell}\right)=-1$ and $24 \ell^{2 s-1} m+11 \ell^{2 s}$ has a prime divisor ℓ with exponent $2 s-1$. Therefore, we have

$$
A\left(2 \ell^{2 s-1} m+\frac{11 \ell^{2 s}+1}{12}\right) \equiv 0 \quad(\bmod 2)
$$

This gives infinitely many congruences for $A(n)(\bmod 2)$.

Acknowledgements

I would like to thank the referee for his/her incredibly careful reading of this paper and many valuable suggestions. This work was partially supported by NSF of China (11771121), Henan province (2016GGJS-022), and Henan University (yqpy20140038).

References

[1] K. Alladi, B. Gordon, Generalizations of Schur's partition theorem, Manuscr. Math. 79 (1993) 113-126.
[2] G.E. Andrews, On Schur's second partition theorem, Glasg. Math. J. 9 (1967) 127-132.
[3] G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics, vol. 2, Addison Wesley, 1976.
[4] G.E. Andrews, Schur's theorem, Capparelli's conjecture, and the q-trinomial coefficients, Contemp. Math. 166 (1994) 141-154.
[5] G.E. Andrews, Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials, in: M.E.H. Ismail, D. Stanton (Eds.), q-Series from a Contemporary Perspective, in: Contemporary Mathematics, vol. 254, 2000, pp. 45-56.
[6] G.E. Andrews, A refinement of Alladi-Schur theorem, in: G.E. Andrews, C. Krattenthaler, A. Krinik (Eds.), Lattice Path Combinatorics and Applications, in: Developments in Mathematics, vol. 58, Springer, Cham, 2019, pp. 71-77.
[7] J. Bellaïche, B. Green, K. Soundararajan, Nonzero coefficients of half-integral weight modular forms mod ℓ, Res. Math. Sci. (2018) 5-6.
[8] J. Bellaïche, J.-L. Nicolas, Parité des coefficients de formes modulaires, Ramanujan J. 40 (2016) 1-44.
[9] P. Bernays, Über die Darstellung von positiven, ganzen Zahlen durch die primitiven, binären quadratischen Formen einer nicht-quadratischen Diskriminante, Dissertation, Göttingen, Germany, 1912.
[10] D.M. Bressoud, A combinatorial proof of Schur's 1926 partition theorem, Proc. Amer. Math. Soc. 79 (1980) 338-340.
[11] Z. Cao, S.-C. Chen, On generalized Schur's partitions, Int. J. Number Theory 13 (2017) 1381-1391
[12] S.-C. Chen, Odd values of the Rogers-Ramanujan functions, C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1081-1084.
[13] D. Cox, Primes of the Form $x^{2}+n y^{2}$: Fermat, Class Field Theory and Complex Multiplication, Wiley, New York, 1989.
[14] S. Finch, G. Martin, P. Sebah, Roots of unity and nullity modulo n, Proc. Amer. Math. Soc. 138 (2010) 2729-2743.
[15] W. Gleissberg, Uber einen Satz van Herrn I. Schur, Math. Z. 28 (1928) 372-382.
[16] N.A. Hall, The number of representations function for binary quadratic forms, Amer. J. Math. 62 (1940) 589-598.
[17] M.D. Hirschhorn, J.A. Sellers, Elementary proofs of various facts about 3-cores, Bull. Aust. Math. Soc. 79 (2009) 507-512.
[18] R.W. Odoni, On norms of integers in a full module of an algebraic number field and the distribution of values of binary integral quadratic forms, Mathematika 22 (1975) 108-111.
[19] K. Ono, Nonvanishing of quadratic twists of modular L-functions with applications for elliptic curves, J. Reine Angew. Math. 533 (2001) $81-97$.
[20] K. Ono, The parity of the partition function, Adv. Math. 225 (2010) 349-366.
[21] G. Pall, The structure of the number of representations function in a positive binary quadratic form, Math. Z. 36 (1933) 321-343.
[22] T.R. Parkin, D. Shanks, On the distribution of parity in the partition function, Math. Comput. 21 (1967) 466-480.
[23] I.J. Schur, Zur additiven Zahlentheorie, S.-B. Akad. Wiss. Phys.-Math. KL, Berlin, 1926, pp. 488-495; Reprinted in I. Schur, Gesammelte Abhandlungen, Vol. 2, Springer Verlag, Berlin, 1973, pp. 43-50.
[24] W.A. Stein, et al., SageMath Software (Version 8 (1), http://www.sagemath.org/.
[25] E. Wirsing, Das asymptotische verhalten von summenüber multiplikative funktionen, Math. Ann. 143 (1961) 75-102.

[^0]: E-mail address: schen@henu.edu.cn.
 https://doi.org/10.1016/j.crma.2019.05.006
 1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

