
C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Numerical analysis

Sparse approximate solutions to stochastic Galerkin equations

Approximations creuses pour la méthode de Galerkin stochastique

Christophe Audouze, Prasanth B. Nair

University of Toronto, Institute for Aerospace Studies, 4925 Dufferin Street, Ontario, M3H 5T6, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 June 2018
Accepted after revision 6 June 2019
Available online 2 July 2019

Presented by the Editorial Board

In this Note, we formulate a sparse Krylov-based algorithm for solving large-scale linear
systems of algebraic equations arising from the discretization of randomly parametrized
(or stochastic) elliptic partial differential equations (SPDEs). We analyze the proposed
sparse conjugate gradient (CG) algorithm within the framework of inexact Krylov subspace
methods, prove its convergence and study its abstract computational cost. Numerical
studies conducted on stochastic diffusion models show that the proposed sparse CG
algorithm outperforms the classical CG method when the sought solutions admit a sparse
representation in a polynomial chaos basis. In such cases, the sparse CG algorithm recovers
almost exactly the sparsity pattern of the exact solutions, which enables accelerated
convergence. In the case when the SPDE solution does not admit a sparse representation,
the convergence of the proposed algorithm is very similar to the classical CG method.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous formulons une méthode de Krylov creuse pour la résolution de
grands systèmes linéaires issus de la discrétisation d’équations aux dérivées partielles
elliptiques paramétrées aléatoirement. Nous analysons l’algorithme du gradient conjugué
(GC) creux dans le cadre des méthodes de sous-espaces de Krylov inexactes, montrons
sa convergence et étudions sa complexité algorithmique. Les études numériques réalisées
sur des modèles de diffusion stochastiques montrent que la méthode du GC creux
converge plus rapidement que le GC classique lorsque la solution recherchée admet une
représentation creuse dans une base de chaos polynomial. Dans ce cas, l’algorithme du GC
creux retrouve presque intégralement la structure creuse de la solution exacte, permettant
d’accélérer la convergence. Lorsque la solution exacte est dense, l’algorithme du GC creux
fournit des résultats de convergence similaires à ceux obtenus avec le GC classique.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail addresses: c.audouze@utoronto.ca (C. Audouze), pbn@utias.utoronto.ca (P.B. Nair).
https://doi.org/10.1016/j.crma.2019.05.009
1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.crma.2019.05.009
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:c.audouze@utoronto.ca
mailto:pbn@utias.utoronto.ca
https://doi.org/10.1016/j.crma.2019.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2019.05.009&domain=pdf

562 C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570
1. Introduction

In computational engineering sciences, different sources of randomness (which typically appear in the physical param-
eters, boundary conditions and/or initial conditions of a partial differential equation) are routinely taken into account for
uncertainty quantification purposes, for example for applications in fluid dynamics or heat transfer. The sources of random-
ness are commonly modeled using a finite number of random variables, leading to randomly parameterized (or stochastic)
partial differential equations (SPDEs). In the present work, we focus on the numerical solution to large-scale linear algebraic
systems of equations arising from spatial and stochastic discretization of SPDEs. As a typical example, consider the following
stochastic steady-state diffusion equation with homogeneous Dirichlet boundary conditions

−∇ · (κ(x ; ξ)∇u(x ; ξ)
) = f (x ; ξ) a.s. in D × �,

u(x ; ξ) = 0 a.s. on ∂D × �,
(1)

where D is an open bounded domain of Rd (d = 2, 3) with boundary ∂D, and x ∈ D is the spatial variable. We denote
the probability space by the triplet (�, F , P), where � ⊂ Rq is the sample space, F is the σ -algebra associated with �
and P : F → [0, 1] is a probability measure. The components of the vector ξ = (ξ1(ω), . . . , ξM(ω))ᵀ ∈ RM , where ω ∈ �,
are assumed to be i.i.d. random variables. The joint probability density function (pdf) of ξ is denoted by ρ(ξ) and can be
written as the product of its marginal densities, that is ρ(ξ) = ∏M

j=1 ρ j(ξ j). We denote by � = �1 × · · · × �M the joint
image of ξ . The diffusivity field is classically discretized using a truncated Karhunen–Loève (KL) expansion scheme [17] as
κ(x ; ξ) = κ0(x) + ∑M

m=1 ξmκm(x), where κ0 is the mean diffusivity and (κm)m≥1 forms an orthogonal basis of L2(D). The
functions κm are defined as κm = σ

√
λmψm , where σ denotes the standard deviation of κ and {λm, ψm} are the eigenpairs

of the two-point correlation function used for modeling the diffusivity field. Using Doob–Dynkin’s lemma [20], it can be
shown that the SPDE solution can be described with the same set of random variables used for representing κ , that is,
u = u(x ; ξ1(ω), . . . , ξM(ω)). For more details about stochastic diffusion models, see for example [2,21].

In recent years, various numerical schemes have been developed for solving SPDEs, including polynomial chaos (PC)
stochastic Galerkin projection schemes [13,32] and stochastic collocation schemes based on sparse tensor product quadrature
rules [31]. In the present work, we specifically focus on stochastic Galerkin methods where approximate solutions are sought
in finite-dimensional tensor product subspaces Px,h ⊗Pξ ,pξ

, where

Px,h = span{φi(x)}i=1,...,Nx ⊂ H1
0(D), Pξ ,pξ

= span{ψi(ξ)}i=1,...,Nξ
⊂ L2(�). (2)

Typically φi denote piecewise linear continuous finite element (FE) basis functions defined on a triangulation of D and van-
ishing on ∂D. Using the multi-index notation α = (α1, . . . , αM) ∈NM , PC basis functions are given by ψα(ξ) = ∏M

i=1 ψαi (ξi).
The set of multivariate PC basis functions of total degree pξ is then defined as Pξ ,pξ

= span{ψα(ξ), |α| = α1 + · · · + αM ≤
pξ }, which is of dimension Nξ = (M+pξ)!

M!pξ ! . For notational convenience, PC basis functions are often reordered using a one-to-

one mapping as ψi(ξ), i = 1, . . . , Nξ . The application of stochastic Galerkin projection schemes (also referred to as spectral
FE methods) leads to deterministic Nx Nξ × NxNξ linear algebraic equations of the form

Au = b, (3)

where A has the characteristic Kronecker product structure

A = G0 ⊗ A0 +
M∑

m=1

Gm ⊗ Am, (4)

with Gm ∈ RNξ ×Nξ and Am ∈ RNx×Nx . In the case of the stochastic diffusion models described above, the matrix entries
are given by (G0)i j = 〈ψiψ j〉, (Gm)i j = 〈ξmψiψ j〉, (A0)i j = ∫

D κ0(x)∇φi(x)∇φ j(x) dx and (Am)i j = ∫
D κm(x)∇φi(x)∇φ j(x) dx,

where the notation 〈·〉 stands for the expectation operator with respect to ρ , i.e. 〈·〉 = ∫
�

· ρ(ξ) dξ .
From a theoretical point of view, there has been a growing interest in the analysis of PC-based Galerkin projection

schemes with the derivation of a priori rates of convergence; see, for example, [2,3,8,29]. Randomly parametrized linear
algebraic equations (corresponding to the spatial semi-discretization of SPDEs) have been analyzed and studied numerically
in [1,7,9,10]. In realistic engineering applications (for example, 3D stochastic diffusion models where vast numbers of ran-
dom variables are needed to accurately model the diffusivity field), the expanded matrix equations (3) become extremely
large, since both Nx and Nξ are large (Nξ increases exponentially with M and pξ). This has motivated the development of
efficient numerical techniques (e.g., [18,19,23]) and efficient preconditioning strategies (e.g., [21,22,28,30]).

In the present work, we focus on sparse approximations of large-scale stochastic Galerkin matrix equations, that is, we
seek a sparse approximate solution û such that∣∣∣∣

∣∣∣∣
(

G0 ⊗ A0 +
M∑

Gm ⊗ Am

)
û − b

∣∣∣∣
∣∣∣∣
2
≤ ε, (5)
m=1

C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570 563
where ε is a given threshold. Sparse approximation algorithms based on �1 or �2 regularizations are widely used in ma-
chine learning and compressive sensing while solving multivariate regression problems with noisy datasets, the sparsity
being used to filter the noise in the training data [6,11,12,16]. The idea of sparse approximations has also been used in
various other contexts to alleviate the curse of dimensionality, for example, sparse quadrature rules [31] based on Smolyak’s
construction, sparse approximations for transport-dominated diffusion problems [24], and stochastic Galerkin approximation
based on sparse wavelet bases for the Boltzmann equation with uncertainties [25].

In the context of stochastic Galerkin equations, our goal is to formulate a sparse version of the classical Krylov methods,
namely the conjugate gradient (CG) algorithm. Since the expanded matrix equations (3) are deterministic, the sparsity
feature is not used to filter the noise, but to improve computational efficiency and reduce memory requirements. Using
sparse Krylov-based algorithms to solve stochastic Galerkin matrix equations also allows to exploit the sparsity feature that
is inherent to some SPDE solutions and accelerate the convergence speed. It is worth noting that PC approximations of
some stochastic diffusion models can be shown to be sparse in nature [5]. We carry out a convergence analysis of the
proposed sparse CG algorithm by interpreting it as an inexact Krylov method. Numerical studies are presented for a set of
test problems to illustrate that the proposed algorithm can recover almost exactly the sparsity pattern of the exact solution,
while incurring computational expense that is lower than with the classical CG algorithm. In cases where the exact solution
does not admit a sparse representation in a PC basis, the performance of the proposed algorithm coincides with the classical
CG algorithm.

2. Sparse CG algorithm

We propose a sparse CG algorithm for solving (3)–(4) in the case when A ∈RNx Nξ ×Nx Nξ is a symmetric positive-definite
(SPD) matrix. The main idea is to start with a sparse initial guess u0 ∈RNx Nξ and generate iterates of the form uk+1 = uk +
αkpk , where pk ∈RNx Nξ are (very) sparse search directions and αk denotes the step length. Typically, a random initialization
of the Nx first components is used, which corresponds to considering a deterministic approximation to the SPDE solution.
Since A is SPD, solving (3) is equivalent to minimizing the quadratic objective function F (u) = 1

2 (Au, u)2 − (u, b)2, which
justifies the natural choice of the step length:

αk = arg min
α∈R

F (uk + αpk) = (pk, rk)2

(Apk,pk)2
, (6)

where rk = b − Auk . At the k-th iteration, the search direction is defined as pk = mk ◦ zk , where the preconditioned residual
zk ∈ RNx Nξ is known to be a descent direction, mk ∈ NNx Nξ is a sparse mask (i.e. a vector that only contains zeros and
ones), and ◦ denotes the Hadamard (or element-wise) product between vectors. The initial sparse mask is defined with
ones for its first Nx components. It is worth mentioning that the A-conjugacy property for the search directions as well as
the residual orthogonality with respect to the Krylov subspace do not hold anymore since a sparse mask is applied to the
search direction at each iteration. Consequently, it is not possible to use classical CG updates of the form pk+1 ← zk+1 +βkpk .
Hence, a modified Gram–Schmidt (MGS) procedure is used to enforce the conjugacy of pk+1 with respect to the preceding
l search directions (p j) j=k−l,...,k , where l is kept small for memory and computational savings.

A key ingredient of the sparse CG algorithm is the strategy used to define new search directions. The simplest way to
determine a new index (or a set of indices) in the sparse mask is to find the largest component(s) in the current residual,
among the indices that have not yet been selected. However, numerical studies suggest that this criterion is problem-
dependent – the number of new entries to add in the sparse mask that ensures fast convergence can vary significantly,
depending on the test case; also, setting the “right” number of entries beforehand is not straightforward in practice. For
more flexibility, we choose new entries in the sparse mask by selecting among a set of indices the residual components that
are larger than a given threshold, where the threshold parameter is dynamically updated across iterations. More precisely, if
J k denotes a set of indices that have not yet been selected, the new entries are defined as Ik+1 = {i ∈J k, |rk+1

i | > θ}. The
threshold θ is initialized with a large value and then automatically decreased when no (or not enough) additional entries
can be selected, that is, if |Ik+1| < εlv . Since the classical CG stopping criterion ||rk||2 > ε||r0||2 is ensured if

||rk||2 =
(Nx Nξ∑

i=1

(rk
i)

2
)1/2

≥
√

NxNξ min
i

|rk
i | > ε||r0||2, (7)

it naturally provides the lower bound θcg = ε||r0||2/
√

NxNξ ≤ θ . The main steps of the sparse CG algorithm (using a pre-
conditioner M) are outlined below.

Preconditioned sparse CG(A, b, M, Nx, Nξ , ε, θinit, l)

Define u0 = (
u1, u2 . . . , uNx , 0, 0, . . . , 0

)ᵀ
and r0 = b − Au0.

m0 ← (
1, 1, . . . , 1, 0, 0, . . . , 0

)ᵀ
J 0 ← {Nx + 1, . . . , NxNξ }

564 C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570
Solve Mz0 = r0

p0 = m0 ◦ z0

θ ← θinit
θcg = ε||r0||2/

√
NxNξ

k ← 0
while

(||rk||2/||r0||2 > ε
)

do

αk = (pk,rk)2
(Apk,pk)2

uk+1 ← uk + αkpk

rk+1 ← rk − αkApk

Solve Mzk+1 = rk+1

Select Ik+1 = {i ∈J k, |rk+1
i | > θ}, |Ik+1| = mk

mk+1 ← mk + ∑
j∈Ik+1

e j

J k+1 ←J k \ Ik+1
if |Ik+1| < εlv then

θ ← θ/10
if θ < θcg then

θ ← θcg

end if
end if
pk+1 ← mk+1 ◦ zk+1

pk+1 ← MGS(pk+1, (p j) j=k−l,...,k)

k ← k + 1
end while

3. Computational aspects and analysis

3.1. Computational cost and storage

We compare the classical and sparse CG algorithms in terms of abstract computational cost and memory requirements.
For simplicity, we consider non-preconditioned versions of both algorithms, where the computational cost at each iteration
is dominated by matrix–vector products. Since A has a Kronecker product structure (see (4)), the matrix-vector product
y = Apk can be efficiently computed as

y =
(M∑

m=0

Gm ⊗ Am

)
pk = vec

(M∑
m=0

AmPkGᵀ
m

)
, (8)

where Pk = [pk
1, . . . , p

k
Nξ

] ∈ RNx×Nξ contains the Nξ -dimensional PC component vectors of pk , and vec is the columnwise

vectorization of matrices. In classical CG algorithms, the cost per iteration is essentially O
(∑M

m=0

(
nnz(Am)Nξ +nnz(Gm)Nx

))
.

Assuming that Am and Gm have the same sparsity profile, that is, nnz(Am) = γ1N2
x and nnz(Gm) = γ2N2

ξ with 0 < γ1, γ2 � 1,
the cost per iteration of the classical CG method scales as

O
(
(M + 1)

(
γ1N2

x Nξ + γ2N2
ξ Nx

))
. (9)

In sparse CG algorithms, the cost at iteration k is essentially related to three matrix-vector products, Apk plus two extra
products in the MGS step. In contrast to classical CG algorithms, the sparse direction pk is a (very) sparse vector that has
Nx + Sk non-zero entries with Sk = m1 + m2 + · · · + mk for k ≥ 1 and S0 = 0. Since pk has Nx + Sk non-zeros (with Nx first
non-zeros), the number of non-zero columns in Pk is equal to Ck ≤ min(1 + Sk, Nξ). For k large enough, the sparse mask
may be entirely filled, in which case sparse CG becomes classical CG with Ck = Nξ . When k is relatively small, it is expected
that Pk is sparse, in which case the cost of AmPk is O(nnz(Am)Ck) with Ck � Nξ . Since Am is sparse and Pk is very sparse,
the matrix AmPk will also be very sparse. Denoting the number of non-zero rows in AmPk by Rk , the cost of the matrix
product (AmPk)Gᵀ

m is O(nnz(Gm)Rk) with Rk � Nx . As a result, the cost of the sparse CG algorithm at a (relatively small)
iteration k is

O
(
3(M + 1)

(
γ1N2

x Ck + γ2N2
ξ Rk

))
. (10)

The additional inner products used in the MGS step are not taken into account as their cost is significantly lower than
matrix–vector products. Depending on the level of sparsity of the matrices Am and Gm , the ratio of costs at the k-th sparse
CG iteration scales as follows in Table 1.

C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570 565
Table 1
Ratio of costs (9) and (10) at the k-th sparse CG iteration for small values of k.

nnz(Gm) � nnz(Am) nnz(Am) � nnz(Gm) nnz(Gm) ∼ nnz(Am)

Ratio of costs 1
3

Nξ

Ck
� 1 1

3
Nx
Rk

� 1 1
3

Nx+Nξ

Rk+Ck
� 1

Table 2
Storage requirements at each iteration of classical/sparse CG algorithms.

classical CG sparse CG

of vectors 5 dense (l + 1) dense and (l + 2) sparse
of non-zero entries 5Nx Nξ (l + 1)Nx Nξ + (l + 2)Nx + 3Sk + Sk−1 + · · · + Sk−l

We next discuss the storage requirements of both algorithms. At each iteration, the classical CG algorithm requires five
dense vectors (uk , pk , Apk , rk , rk−1) to be saved, meaning that 5Nx Nξ entries need to be stored. In the sparse CG algorithm,
we have to save 2l + 3 vectors, of which l + 1 dense vectors (rk and (Ap j) j=k−l,...,k) and l + 2 sparse vectors (uk , mk and
(p j) j=k−l,...,k). The storage requirements are summarized in Table 2.

In practice, the parameter l is kept small. In our numerical studies, l = 3, meaning that 4 dense and 5 sparse vectors
are stored at each sparse CG iteration, instead of 5 dense vectors in classical CG algorithms, which roughly represents 20%
memory saving.

3.2. Convergence analysis

It is of interest to note that the sparse CG algorithm is convergent. If m denotes the average number of new entries added
in the sparse mask at each iteration, then � Nx Nξ −Nx

m � iterations are needed to fill up entirely the sparse mask (assuming
the Nx first entries of the initial sparse mask are non-zeros). Once the sparse mask is fully dense, the sparse CG algorithm
becomes a classical CG method, which is known to converge in at most Nx Nξ iterations. As a result, the sparse CG algorithm
converges in at most � Nx Nξ −Nx

m � + NxNξ = � Nx(Nξ (m+1)−1)

m � iterations.
We now provide some theoretical analysis of the proposed sparse CG algorithm using the framework of inexact Krylov

subspace methods studied in [26,27]. To this end, we first show that the sparse CG algorithm is a projection method on
inexact Krylov subspaces. The sparse CG algorithm generates subspaces of the form

span
{

m0 ◦ r0,m1 ◦ (A(m0 ◦ r0)),m2 ◦ (
A(m1 ◦ (A(m0 ◦ r0)))

)
, . . .

}
. (11)

Defining v = m0 ◦r0, it can be seen that m1 ◦(A(m0 ◦r0)) = A1(v) with A1 = (m1 ⊗1ᵀ) ◦A, where 1 = (1, 1, . . . , 1)ᵀ ∈NNx Nξ .
Similarly, m2 ◦ (

A(m1 ◦ (A(m0 ◦ r0))) = m2 ◦ A(A1v) = A2(A1(v)) with A2 = (m2 ⊗ 1ᵀ) ◦ A. Hence, the sparse CG algorithm
generates subspaces of the form span

{
v, A1(v), A2(A1(v)), . . .

}
. Since sparse masks have their entries mk

i equal to zero (resp.
one) for i ∈J k (resp. i /∈J k), each matrix Ak can be written as Ak = A + Ek as in [26,27], with perturbation matrices given
by

Ek(i, j) =
{

0 if i /∈ J k,

−aij if i ∈ J k.

As iterations k increase mk → 1, meaning that J k → {∅}, Ek → 0 and Ak → A. As such, the sparse CG algorithm generates
inexact Krylov subspaces as in [27], where sequences of perturbed matrices Aεi such that limε→0 Aε = A were considered.

Since the classical CG method is equivalent to the Full Orthogonalization Method (FOM) used within Arnoldi’s procedure
in the symmetric case, the sparse CG algorithm can be analyzed within the framework of inexact Krylov subspace methods.
Following [26], we consider the inexact Arnoldi procedure

AVm = Vm+1Hm − [E1v1,E2v2, . . . ,Emvm], (12)

where Hm ∈R(m+1)×m and Vm = [v1, . . . , vm] ∈RNx Nξ ×m is such that Vᵀ
mVm = I. When A is symmetric, the Arnoldi process

coincides with the Lanczos process, that is Ĥm = (Hm)1:m,1:m is symmetric tridiagonal. At the m-th iteration (m ≥ 1) the “true
residual” is defined as rm = b −Aum = b −A(u0 +Vmym) = r0 −AVmym with r0 = b −Au0 and v1 = r0/||r0||2. By contrast, the
“truncated residual” is given by ̃rm = r0 − Vm+1Hmym , which yields rm = r̃m + [E1v1, . . . , Emvm]ym for m ≥ 1, with ̃r0 = r0.
A natural assumption used in [26] is that the perturbation terms satisfy ||[E1v1, . . . , Emvm]ym||2 < γ ||A||2, where ||A||2 =
sup{||Ax||2, ||x||2 = 1} and γ ∈ (0, 1). When applied to vectors, || · ||2 denotes the Euclidean norm, i.e. ||x||2 = (xᵀx)1/2.

We now provide a bound for the perturbation terms when ym is computed using FOM as yfom
m = Ĥ−1

m (βe1), where
β = ||r0||2, e1 = (1, 0, . . . , 0)ᵀ ∈Rm .

566 C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570
Lemma 3.1. If the eigenvalues of A are such that λ1 ≥ λ2 ≥ · · · ≥ λNx Nξ
without being all equal, the perturbation terms

||[E1v1, . . . , Emvm]yfom
m ||2 in the sparse CG algorithm satisfy ||[E1v1, . . . , Emvm]ym||2 ≤ γ ||A||2 with

γ = m(cm−1(1 + 2ρ1))
4

(λ1 − λNx Nξ
)2 tan4(θ1)

(m∑
k=1

∣∣∣∣̃rk−1
fom

∣∣∣∣2
2

)1/2

, (13)

where cm−1 is the Chebyshev polynomial of the first kind of degree m − 1, ρ1 = λ1−λ2
λ2−λNx Nξ

and θ1 is the angle between v1 and the

eigenvector of A corresponding to λ1 .

Proof. Since vi are orthonormal vectors, it holds

||[E1v1, . . . ,Emvm]ym||2 =
∣∣∣∣
∣∣∣∣
(m∑

k=1

Ekvkvᵀk

)
Vmym

∣∣∣∣
∣∣∣∣
2
≤

m∑
k=1

||Ek||2
∣∣∣∣vkvᵀk

∣∣∣∣
2 ||Vmym||2

=
(m∑

k=1

||Ek||2
)

||ym||2.

Using [26, Lemma 5.2] for estimating the FOM components in the inexact Lanczos procedure, and using the fact that
||Ek||2 ≤ ||A||2 for any symmetric matrix A, it follows that

||[E1v1, . . . ,Emvm]ym||2 ≤ m ||A||2 ||yfom
m ||2 ≤ m||A||2

λ2
max(Ĥm)

(m∑
k=1

∣∣∣∣̃rk−1
fom

∣∣∣∣2
2

)1/2

,

where we use σmax(Ĥm) = λ2
max(Ĥm) for symmetric matrices. According to Kaniel–Paige’s convergence theory [14], the

largest eigenvalue of Ĥm in the Lanczos procedure can be estimated as

λ1 ≥ λmax(Ĥm) ≥ (λ1 − λNx Nξ
) tan2(θ1)

(cm−1(1 + 2ρ1))2
,

which leads to (13).

Remark 1. The coefficient γ is expected to be small since
∣∣∣∣̃rk

fom

∣∣∣∣
2 is globally (but not necessarily monotonically) decreasing

as long as Im(Vm+1Hm) keeps growing, see [26, Remark 3.4]. In exact arithmetic ||̃rk
fom||2 → 0 since ||̃rk

fom||2 = ||rk
fom||2 and

the true residual norm is known to tend to zero in the CG case.1

Remark 2. We discuss the finiteness of the coefficient γ . First, λ1 = λNx Nξ
would correspond to the case when A = λ1I,

for which solving (3) is not of interest. Second, expanding v1 in the set of (orthonormal) eigenvectors as v1 = ∑
i dizi with

di = vᵀ1 zi , it holds 1 = ||v1||22 = ∑
i d2

i . Since cos(θ1) = zᵀ1 v1 = d1 and tan2(θ1) = 1−d2
1

d2
1

, then tan2(θ1) = 0 ⇔ v1 = ±z1. As

such, tan2(θ1) = 0 never holds as it would mean that v1 and z1 are collinear, which is highly unlikely in practice. Lastly,
when considering stochastic Galerkin matrix equations corresponding to stochastic diffusion models (1), the coefficient
ρ1 is extremely small, since the largest eigenvalues of A are tightly clustered for those models. As a result, the terms
cm−1(1 + 2ρ1) increase very slowly with m. In summary, γ does not diverge for those stochastic Galerkin matrix equations.

Remark 3. The idea proposed here can be extended to nonsymmetric stochastic Galerkin matrix equations using a sparse
variant of the GMRES method. When using GMRES, that is ygm

m = arg miny∈Rm ||Hmy − βe1||2, the norm of the perturbation
is bounded as

||[E1v1, . . . ,Emvm]ym||2 ≤ m ||A||2 ||ygm
m ||2 ≤ m||A||2

σmax(Hm)

(m∑
k=1

∣∣∣∣̃rk−1
gm

∣∣∣∣2
2

)1/2

using [26, Lemma 5.1].

1 The CG residual norm is such that ||rk||2 ≤ C(A, b, u)||uk − u||A , where u is the exact solution, b is the right-hand side, || · ||A is the energy norm

||x||A = (xᵀAx)1/2 and C(A, b, u) is a constant that is independent of uk . Since ||uk − u||A ≤ 2

(
K 1/2

A −1
1/2

)k

||u0 − u||A , the CG residual norm tends to zero.

KA +1

C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570 567
Table 3
S-IFISS problems #2, #3 and #4 with M = 5 and Nξ = 126 and sparse manufactured solutions: timings
and numbers of iterations of preconditioned classical/sparse CG algorithms (εlv = 10). Speed-ups are 21,
4, and 6 for the three test problems.

Problem #2 (Nx = 961) Problem #3 (Nx = 1023) Problem #4 (Nx = 1023)

Classical CG Sparse CG Classical CG Sparse CG Classical CG Sparse CG

iterations 849 136 141 41 138 26
timings (s) 383 18 20 5 19 3

Since the proposed sparse CG algorithm fits within the framework of inexact Krylov-based methods, we can use some
of the results derived in [26]. For example, the distance between the true and truncated residuals after m iterations of the
sparse CG algorithm is such that

||rm − r̃m||2 ≤
m∑

k=1

∣∣eᵀk yfom
m

∣∣ ||Ek||2. (14)

In contrast to the classical Arnoldi method, the true residual in sparse CG algorithms is not orthogonal to the basis vectors
(vi)i=1,...,m . The loss of orthogonality can be estimated as

∣∣∣∣Vᵀ
mrm

∣∣∣∣
2 ≤

m∑
k=1

∣∣eᵀk yfom
m

∣∣ ||Ek||2. (15)

Equations (14) and (15) suggest that if the components
∣∣eᵀk yfom

m

∣∣ tend to decrease across iterations, then the perturbations
||Ek||2 are allowed to grow (see [26] for more details).

4. Numerical experiments

To illustrate, we consider randomly parametrized diffusion models (1) defined on two-dimensional spatial domains with
homogeneous Dirichlet boundary conditions and deterministic source terms using the S-IFISS Matlab toolbox [4]. For differ-
ent test cases, we compare the sparse CG algorithm to the classical CG method in terms of convergence and timings. For
a fair comparison, we use the same block-diagonal preconditioner M = G0 ⊗ A0 (see [21]) in both CG algorithms. Simula-
tions were performed using sequential Matlab solvers on a single core of a machine with dual quad Intel Core i5-7500U
processors and 8 Gb RAM.

First, we focus on favorable cases when the sought discretized solutions are sparse. To create a sparse solution, we
define w ∈ RNx Nξ with components chosen randomly from [−1, 1] and then nullify the wi that are smaller than a given
value (say, 0.95) for i > Nx . This provides a sparse vector u from which a right-hand side b = Au is computed, where A
is the discretized diffusion matrix provided by S-IFISS. We manufacture sparse solutions in this way for several S-IFISS test
cases, namely problem #2 (where D = [−1, 1]2, standard deviation σ = 0.525 in the KL expansion) and problems #3 and
#4 (where D = [−2, 2] ×[−1, 1] and σ = 0.515). For each problem, we consider M = 5 random variables and 4-th PC order,
meaning that Nξ = 126.

Timings and numbers of iterations are reported in Table 3, showing that the sparse CG algorithm runs faster than the
classical CG method with up to roughly twenty times reduction in computational cost. To illustrate, the convergence of the
classical/sparse CG algorithm is shown in Figs. 1 and 2. It is to be noted that the choice made for εlv generally affects the
convergence of the sparse CG algorithm (see, for example, Fig. 1).

Another important aspect of the sparse CG algorithm concerns its ability to recover the sparsity pattern (if any)
of the sought solution. Recasting discretized sparse CG solutions û ∈ RNx Nξ as Û = [α1, . . . , αNξ

] ∈ RNx×Nξ with αi =
(αi,1, . . . , αi,Nx)

ᵀ , stochastic solutions are built at each FE node x j as û(x j, ξ) = ∑Nξ

i=1 αi, jψi(ξ). For each index j =
1, 2, . . . , Nx , the γ -sparsity of ̂u at x j is defined as the number of significant PC coefficients

#{i such that |αi, j| > γ }. (16)

In Fig. 3, the γ -sparsity of the sparse CG solution as a function of the spatial coordinates is represented for S-IFISS problem
#2, showing that the sparse structure of the exact solution is almost recovered by the sparse CG algorithm. This attractive
feature (referred to as the “bet of sparsity principle” [15] in the literature) of sparse CG algorithms explains its computational
efficiency compared to that of classical CG methods, since it naturally exploits the underlying sparsity (if any) of the sought
solution. As another illustration of this feature, we compare the exact sparsity recovery (γ = 0) of sparse manufactured
solutions for various S-IFISS test cases. The preconditioned sparse CG algorithm recovers almost exactly the sparse structure
of the exact solutions, by contrast with the classical CG method, which always provides dense solutions (see Table 4).

We finally compare both CG algorithms while approximating the solution to the stochastic diffusion equation. We con-
sider the most challenging S-IFISS test-case, namely problem #2 with the source term given by f (x) = 1 (2 −x2 −x2). We use
8 1 2

568 C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570
Fig. 1. S-IFISS problem #2 with M = 5, Nx = 961, Nξ = 126, σ = 0.525 and sparse manufactured solutions: convergence of preconditioned classical/sparse
CG algorithms with ε = 10−6, θinit = 10 and different values of εlv .

Fig. 2. S-IFISS problems #3 (left) and #4 (right) with sparse manufactured solutions, M = 5, Nx = 1023, and σ = 0.515: Convergence of preconditioned
classical/sparse CG algorithms with ε = 10−6, θinit = 10 and εlv = 10 in sparse CG.

Table 4
S-IFISS test cases with sparse manufactured solutions, M = 5, Nξ = 126, refined values for Nx and default values
for other parameters: exact sparsity recovery (γ = 0) of the preconditioned sparse CG algorithm with εlv = 10.
For each problem, the classical CG returns a dense solution with 100% of non-zeros.

S-IFISS problem Nx nnz(u) nnz(̂u) S-IFISS problem Nx nnz(u) nnz(̂u)

1 705 3.26% 3.29% # 4 1023 3.29% 7.73%
2 961 3.28% 3.47% # 5 961 3.26% 3.53%
3 1023 3.29% 7.76% # 6 961 3.29% 6.32%

M = 5 random variables and 4-th PC order (i.e. Nξ = 126), a stretched mesh grid made of Nx = 961 points and σ = 0.525.
As can be seen in Fig. 4, both CG algorithms converge similarly, indicating the fact that there is no underlying sparsity in
the sought solution. This suggests that the sparse CG algorithm reduces to the classical CG method when considering SPDE
models with non-sparse solutions, which is in agreement with the convergence property of sparse CG (see section 3.2). It
is worth mentioning that even if the convergence of both algorithms looks comparable, the sparse CG algorithm still runs
three times faster than the classical CG method.

C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570 569
Fig. 3. S-IFISS problem #2 with sparse manufactured solution: γ -sparsity of sparse CG (left) and exact (right) solutions with γ = 10−4.

Fig. 4. S-IFISS problem #2 with stochastic diffusion solution, M = 5, Nx = 961, Nξ = 126, σ = 0.525. Left: convergence of preconditioned classical/sparse CG
algorithms with ε = 10−6, θinit = 10, and εlv = Nx Nξ /100 = 1210 in sparse CG algorithm. Classical and sparse CG algorithms run in 434 s (919 iterations)
and 134 s (933 iterations), respectively. Right: γ -sparsity of the sparse CG solution with γ = 10−2.

5. Conclusions

In this work, we proposed a sparse CG algorithm for efficiently solving matrix equations arising from stochastic Galerkin
projection schemes. The sparse CG algorithm is proved to be convergent and has a lower abstract computational cost
compared to that of the classical CG method. Numerical studies conducted on stochastic diffusion models show that the
sparse CG algorithm can provide substantial speedups when the exact solution has a sparse representation in a PC basis
set. In such cases, the sparse structure of the SPDE solutions is almost recovered, which allows for significant reductions
in computational cost compared to the classical CG method. This suggests that the proposed sparse CG algorithm has
the potential to efficiently approximate solutions to SPDE models with localized uncertainties. For non-sparse solutions,
the sparse CG algorithm displays similar convergence trends as the classical CG method, which is in agreement with the
convergence property of the sparse CG algorithm.

Further numerical studies would be required to compare more precisely sparse and classical CG algorithms for a wider
class of SPDEs. The idea proposed here can also be used to formulate a sparse variant of the GMRES algorithm with appli-
cations to nonsymmetric stochastic Galerkin matrix equations. Interestingly, the sparse CG algorithm can also be used for
solving nonlinear SPDEs. The full discretization of such SPDEs leads to systems of non-linear equations of the form f(u) = 0
that can be solved in a Newton-like fashion. At each iteration, the sparse CG algorithm can be used for solving the (poten-
tially large-scale) matrix equations for the Newton step, f′(uk)δk = −f(uk), where f′(u) is the Jacobian matrix of f. Using this

570 C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570
approach, it is expected to obtain sparse approximate solutions that would be computationally advantageous for nonlinear
SPDE models whose solution admits a sparse representation in a PC basis set.

Acknowledgements

This research is funded by an NSERC Discovery Grant and the Canada Research Chairs program.

References

[1] C. Audouze, P. Håkansson, P.B. Nair, A stopping criterion for iterative solution of stochastic Galerkin matrix equations, Int. J. Uncertain. Quantificat. 6 (3)
(2016) 245–269.

[2] I. Babus̆ka, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal.
42 (2004) 800–825.

[3] J. Bäck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients,
Comput. Math. Appl. 67 (4) (2014) 732–751.

[4] A. Bespalov, C.E. Powell, D. Silvester, Energy norm a posteriori estimation for parametric operator equations, SIAM J. Sci. Comput. 36 (2014) 339–363.
[5] M. Bieri, C. Schwab, Sparse High Order FEM for Elliptic SPDEs, Research Report No. 2008-22, ETH, Zürich, Switzerland, 2008.
[6] T. Blumensath, Accelerated iterative hard thresholding, Signal Process. 92 (2012) 752–756.
[7] T. Butler, P. Constantine, T. Wildey, A posteriori error analysis of parameterized linear systems using spectral methods, SIAM J. Matrix Anal. Appl. 33 (1)

(2012) 195–209.
[8] A. Cohen, R. DeVore, C. Schwab, Convergence Rates of Best N-Term Galerkin Approximations for a Class of Elliptic SPDEs, Research Report No. 2009-02,

University of Zürich, Switzerland, 2009.
[9] P.G. Constantine, D.F. Gleich, G. Iaccarino, Spectral methods for parameterized matrix equations, SIAM J. Matrix Anal. Appl. 31 (5) (2010) 2681–2699.

[10] O.G. Ernst, E. Ullmann, Stochastic Galerkin matrices, SIAM J. Matrix Anal. Appl. 31 (4) (2010) 1848–1872.
[11] M.A.T. Figueiredo, R.D. Nowak, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems, IEEE J.

Sel. Top. Signal Process. 1 (4) (2008) 586–597.
[12] S. Gazzola, J.G. Nagy, Generalized Arnoldi–Tikhonov method for sparse reconstruction, SIAM J. Sci. Comput. 36 (2) (2014) B225–B247.
[13] R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer Verlag, New York, 1991.
[14] G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins University Press, Baltimore, MD, USA, 2013.
[15] T. Hastie, R. Tibshirani, M. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations, Monographs on Statistics and Applied Proba-

bility, vol. 143, Chapman and Hall/CRC, 2015.
[16] A. Lanza, S. Morigi, L. Reichel, F. Sgallari, A generalized Krylov subspace method for lp–lq minimization, SIAM J. Sci. Comput. 37 (5) (2015) S30–S50.
[17] M. Loève, Probability Theory, 4th edition, Springer, 1977.
[18] A. Nouy, A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl.

Mech. Eng. 196 (2007) 4521–4537.
[19] A. Nouy, O.P. Le Maıître, Generalized spectral decomposition for stochastic nonlinear problems, J. Comput. Phys. 228 (2009) 202–235.
[20] B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, Springer-Verlag, Berlin, 1998.
[21] C.E. Powell, H.C. Elman, Block-diagonal preconditioning for spectral stochastic finite-element systems, IMA J. Numer. Anal. 29 (2009) 350–375.
[22] C.E. Powell, D. Silvester, Preconditioning steady-state Navier–Stokes equations with random data, SIAM J. Sci. Comput. 34 (5) (2012) A2482–A2506.
[23] C.E. Powell, D. Silvester, V. Simoncini, An Efficient Reduced Basis Solver for Stochastic Galerkin Matrix Equations, MIMS Report 2015.64, University of

Manchester, UK, 2015.
[24] C. Schwab, E. Süli, R.A. Todor, Sparse finite element approximation of high-dimensional transport-dominated diffusion problems, ESAIM: Math. Model.

Numer. Anal. 42 (2008) 777–819.
[25] R. Shu, J. Hu, S. Jin, A stochastic Galerkin method for the Boltzmann equation with multi-dimensional random inputs using sparse wavelet bases,

Numer. Math., Theory Methods Appl. 10 (2) (2017) 1–23.
[26] V. Simoncini, D.B. Szyld, Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput. 25 (2) (2003)

454–477.
[27] V. Simoncini, D.B. Szyld, Relaxed Krylov subspace approximation, Proc. Appl. Math. Mech. 5 (2005) 797–800.
[28] B. Sousedik, R.G. Ghanem, E.T. Phipps, Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods, Numer. Linear

Algebra Appl. 21 (1) (2014) 136–151.
[29] R.A. Todor, C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal. 27

(2007) 232–261.
[30] E. Ullmann, A Kronecker product preconditioner for stochastic Galerkin finite element discretizations, SIAM J. Sci. Comput. 32 (2) (2010) 923–946.
[31] D. Xiu, J.S. Hesthaven, High order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput. 27 (2005) 1118–1139.
[32] D. Xiu, G.E. Karniadakis, Modeling uncertainty in steady-state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Eng.

191 (2003) 4927–4948.

http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4341504850424E32303136s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4341504850424E32303136s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib42616275736B613034s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib42616275736B613034s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4E6F62696C6532303134s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4E6F62696C6532303134s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib736966697373s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib42696572695363687761623038s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib426C756D656E736174683132s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib436F6E7374616E74696E6532303132s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib436F6E7374616E74696E6532303132s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib436F68656E3039s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib436F68656E3039s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib436F6E7374616E74696E6532303130s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib45726E7374556C6C6D616E3130s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4669677565697265646F3037s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4669677565697265646F3037s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4E6167793134s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4768616E656D3931s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib476F6C7562s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib48617374696532303135s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib48617374696532303135s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4C616E7A613135s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4C6F657665s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4E6F75793037s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4E6F75793037s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4E6F75794F4C4D3039s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4F6B73656E64616Cs1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib506F77656C6C456C6D616E3039s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib506F77656C6C53796C7665737465723132s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib506F77656C6C53696D6F6E63696E693135s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib506F77656C6C53696D6F6E63696E693135s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib53636877616253756C693038s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib53636877616253756C693038s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4A696E3137s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4A696E3137s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib53696D6F6E63696E693033s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib53696D6F6E63696E693033s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib53696D6F6E63696E693035s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4768616E656D5068697070733134s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib4768616E656D5068697070733134s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib536368776162546F646F723037s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib536368776162546F646F723037s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib556C6C6D616E6E3130s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib58697548657374686176656E3035s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib5869754B61726E696164616B69733033s1
http://refhub.elsevier.com/S1631-073X(19)30124-4/bib5869754B61726E696164616B69733033s1

	Sparse approximate solutions to stochastic Galerkin equations
	1 Introduction
	2 Sparse CG algorithm
	3 Computational aspects and analysis
	3.1 Computational cost and storage
	3.2 Convergence analysis

	4 Numerical experiments
	5 Conclusions
	Acknowledgements
	References

