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In this Note, we formulate a sparse Krylov-based algorithm for solving large-scale linear 
systems of algebraic equations arising from the discretization of randomly parametrized 
(or stochastic) elliptic partial differential equations (SPDEs). We analyze the proposed 
sparse conjugate gradient (CG) algorithm within the framework of inexact Krylov subspace 
methods, prove its convergence and study its abstract computational cost. Numerical 
studies conducted on stochastic diffusion models show that the proposed sparse CG 
algorithm outperforms the classical CG method when the sought solutions admit a sparse 
representation in a polynomial chaos basis. In such cases, the sparse CG algorithm recovers 
almost exactly the sparsity pattern of the exact solutions, which enables accelerated 
convergence. In the case when the SPDE solution does not admit a sparse representation, 
the convergence of the proposed algorithm is very similar to the classical CG method.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous formulons une méthode de Krylov creuse pour la résolution de 
grands systèmes linéaires issus de la discrétisation d’équations aux dérivées partielles 
elliptiques paramétrées aléatoirement. Nous analysons l’algorithme du gradient conjugué 
(GC) creux dans le cadre des méthodes de sous-espaces de Krylov inexactes, montrons 
sa convergence et étudions sa complexité algorithmique. Les études numériques réalisées 
sur des modèles de diffusion stochastiques montrent que la méthode du GC creux 
converge plus rapidement que le GC classique lorsque la solution recherchée admet une 
représentation creuse dans une base de chaos polynomial. Dans ce cas, l’algorithme du GC 
creux retrouve presque intégralement la structure creuse de la solution exacte, permettant 
d’accélérer la convergence. Lorsque la solution exacte est dense, l’algorithme du GC creux 
fournit des résultats de convergence similaires à ceux obtenus avec le GC classique.
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1. Introduction

In computational engineering sciences, different sources of randomness (which typically appear in the physical param-
eters, boundary conditions and/or initial conditions of a partial differential equation) are routinely taken into account for 
uncertainty quantification purposes, for example for applications in fluid dynamics or heat transfer. The sources of random-
ness are commonly modeled using a finite number of random variables, leading to randomly parameterized (or stochastic) 
partial differential equations (SPDEs). In the present work, we focus on the numerical solution to large-scale linear algebraic 
systems of equations arising from spatial and stochastic discretization of SPDEs. As a typical example, consider the following 
stochastic steady-state diffusion equation with homogeneous Dirichlet boundary conditions

−∇ · (κ(x ; ξ)∇u(x ; ξ )
) = f (x ; ξ) a.s. in D × �,

u(x ; ξ ) = 0 a.s. on ∂D × �,
(1)

where D is an open bounded domain of Rd (d = 2, 3) with boundary ∂D, and x ∈ D is the spatial variable. We denote 
the probability space by the triplet (�, F , P), where � ⊂ Rq is the sample space, F is the σ -algebra associated with �
and P : F → [0, 1] is a probability measure. The components of the vector ξ = (ξ1(ω), . . . , ξM(ω))ᵀ ∈ RM , where ω ∈ �, 
are assumed to be i.i.d. random variables. The joint probability density function (pdf) of ξ is denoted by ρ(ξ ) and can be 
written as the product of its marginal densities, that is ρ(ξ ) = ∏M

j=1 ρ j(ξ j). We denote by � = �1 × · · · × �M the joint 
image of ξ . The diffusivity field is classically discretized using a truncated Karhunen–Loève (KL) expansion scheme [17] as 
κ(x ; ξ ) = κ0(x) + ∑M

m=1 ξmκm(x), where κ0 is the mean diffusivity and (κm)m≥1 forms an orthogonal basis of L2(D). The 
functions κm are defined as κm = σ

√
λmψm , where σ denotes the standard deviation of κ and {λm, ψm} are the eigenpairs 

of the two-point correlation function used for modeling the diffusivity field. Using Doob–Dynkin’s lemma [20], it can be 
shown that the SPDE solution can be described with the same set of random variables used for representing κ , that is, 
u = u(x ; ξ1(ω), . . . , ξM(ω)). For more details about stochastic diffusion models, see for example [2,21].

In recent years, various numerical schemes have been developed for solving SPDEs, including polynomial chaos (PC) 
stochastic Galerkin projection schemes [13,32] and stochastic collocation schemes based on sparse tensor product quadrature 
rules [31]. In the present work, we specifically focus on stochastic Galerkin methods where approximate solutions are sought 
in finite-dimensional tensor product subspaces Px,h ⊗Pξ ,pξ

, where

Px,h = span{φi(x)}i=1,...,Nx ⊂ H1
0(D), Pξ ,pξ

= span{ψi(ξ)}i=1,...,Nξ
⊂ L2(�). (2)

Typically φi denote piecewise linear continuous finite element (FE) basis functions defined on a triangulation of D and van-
ishing on ∂D. Using the multi-index notation α = (α1, . . . , αM) ∈NM , PC basis functions are given by ψα(ξ) = ∏M

i=1 ψαi (ξi). 
The set of multivariate PC basis functions of total degree pξ is then defined as Pξ ,pξ

= span{ψα(ξ), |α| = α1 + · · · + αM ≤
pξ }, which is of dimension Nξ = (M+pξ )!

M!pξ ! . For notational convenience, PC basis functions are often reordered using a one-to-

one mapping as ψi(ξ), i = 1, . . . , Nξ . The application of stochastic Galerkin projection schemes (also referred to as spectral 
FE methods) leads to deterministic Nx Nξ × NxNξ linear algebraic equations of the form

Au = b, (3)

where A has the characteristic Kronecker product structure

A = G0 ⊗ A0 +
M∑

m=1

Gm ⊗ Am, (4)

with Gm ∈ RNξ ×Nξ and Am ∈ RNx×Nx . In the case of the stochastic diffusion models described above, the matrix entries 
are given by (G0)i j = 〈ψiψ j〉, (Gm)i j = 〈ξmψiψ j〉, (A0)i j = ∫

D κ0(x)∇φi(x)∇φ j(x) dx and (Am)i j = ∫
D κm(x)∇φi(x)∇φ j(x) dx, 

where the notation 〈·〉 stands for the expectation operator with respect to ρ , i.e. 〈·〉 = ∫
�

· ρ(ξ) dξ .
From a theoretical point of view, there has been a growing interest in the analysis of PC-based Galerkin projection 

schemes with the derivation of a priori rates of convergence; see, for example, [2,3,8,29]. Randomly parametrized linear 
algebraic equations (corresponding to the spatial semi-discretization of SPDEs) have been analyzed and studied numerically 
in [1,7,9,10]. In realistic engineering applications (for example, 3D stochastic diffusion models where vast numbers of ran-
dom variables are needed to accurately model the diffusivity field), the expanded matrix equations (3) become extremely 
large, since both Nx and Nξ are large (Nξ increases exponentially with M and pξ ). This has motivated the development of 
efficient numerical techniques (e.g., [18,19,23]) and efficient preconditioning strategies (e.g., [21,22,28,30]).

In the present work, we focus on sparse approximations of large-scale stochastic Galerkin matrix equations, that is, we 
seek a sparse approximate solution û such that∣∣∣∣

∣∣∣∣
(

G0 ⊗ A0 +
M∑

Gm ⊗ Am

)
û − b

∣∣∣∣
∣∣∣∣
2
≤ ε, (5)
m=1



C. Audouze, P.B. Nair / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 561–570 563
where ε is a given threshold. Sparse approximation algorithms based on �1 or �2 regularizations are widely used in ma-
chine learning and compressive sensing while solving multivariate regression problems with noisy datasets, the sparsity 
being used to filter the noise in the training data [6,11,12,16]. The idea of sparse approximations has also been used in 
various other contexts to alleviate the curse of dimensionality, for example, sparse quadrature rules [31] based on Smolyak’s 
construction, sparse approximations for transport-dominated diffusion problems [24], and stochastic Galerkin approximation 
based on sparse wavelet bases for the Boltzmann equation with uncertainties [25].

In the context of stochastic Galerkin equations, our goal is to formulate a sparse version of the classical Krylov methods, 
namely the conjugate gradient (CG) algorithm. Since the expanded matrix equations (3) are deterministic, the sparsity 
feature is not used to filter the noise, but to improve computational efficiency and reduce memory requirements. Using 
sparse Krylov-based algorithms to solve stochastic Galerkin matrix equations also allows to exploit the sparsity feature that 
is inherent to some SPDE solutions and accelerate the convergence speed. It is worth noting that PC approximations of 
some stochastic diffusion models can be shown to be sparse in nature [5]. We carry out a convergence analysis of the 
proposed sparse CG algorithm by interpreting it as an inexact Krylov method. Numerical studies are presented for a set of 
test problems to illustrate that the proposed algorithm can recover almost exactly the sparsity pattern of the exact solution, 
while incurring computational expense that is lower than with the classical CG algorithm. In cases where the exact solution 
does not admit a sparse representation in a PC basis, the performance of the proposed algorithm coincides with the classical 
CG algorithm.

2. Sparse CG algorithm

We propose a sparse CG algorithm for solving (3)–(4) in the case when A ∈RNx Nξ ×Nx Nξ is a symmetric positive-definite 
(SPD) matrix. The main idea is to start with a sparse initial guess u0 ∈RNx Nξ and generate iterates of the form uk+1 = uk +
αkpk , where pk ∈RNx Nξ are (very) sparse search directions and αk denotes the step length. Typically, a random initialization 
of the Nx first components is used, which corresponds to considering a deterministic approximation to the SPDE solution. 
Since A is SPD, solving (3) is equivalent to minimizing the quadratic objective function F (u) = 1

2 (Au, u)2 − (u, b)2, which 
justifies the natural choice of the step length:

αk = arg min
α∈R

F (uk + αpk) = (pk, rk)2

(Apk,pk)2
, (6)

where rk = b − Auk . At the k-th iteration, the search direction is defined as pk = mk ◦ zk , where the preconditioned residual 
zk ∈ RNx Nξ is known to be a descent direction, mk ∈ NNx Nξ is a sparse mask (i.e. a vector that only contains zeros and 
ones), and ◦ denotes the Hadamard (or element-wise) product between vectors. The initial sparse mask is defined with 
ones for its first Nx components. It is worth mentioning that the A-conjugacy property for the search directions as well as 
the residual orthogonality with respect to the Krylov subspace do not hold anymore since a sparse mask is applied to the 
search direction at each iteration. Consequently, it is not possible to use classical CG updates of the form pk+1 ← zk+1 +βkpk . 
Hence, a modified Gram–Schmidt (MGS) procedure is used to enforce the conjugacy of pk+1 with respect to the preceding 
l search directions (p j) j=k−l,...,k , where l is kept small for memory and computational savings.

A key ingredient of the sparse CG algorithm is the strategy used to define new search directions. The simplest way to 
determine a new index (or a set of indices) in the sparse mask is to find the largest component(s) in the current residual, 
among the indices that have not yet been selected. However, numerical studies suggest that this criterion is problem-
dependent – the number of new entries to add in the sparse mask that ensures fast convergence can vary significantly, 
depending on the test case; also, setting the “right” number of entries beforehand is not straightforward in practice. For 
more flexibility, we choose new entries in the sparse mask by selecting among a set of indices the residual components that 
are larger than a given threshold, where the threshold parameter is dynamically updated across iterations. More precisely, if 
J k denotes a set of indices that have not yet been selected, the new entries are defined as Ik+1 = {i ∈J k, |rk+1

i | > θ}. The 
threshold θ is initialized with a large value and then automatically decreased when no (or not enough) additional entries 
can be selected, that is, if |Ik+1| < εlv . Since the classical CG stopping criterion ||rk||2 > ε||r0||2 is ensured if

||rk||2 =
( Nx Nξ∑

i=1

(rk
i )

2
)1/2

≥
√

NxNξ min
i

|rk
i | > ε||r0||2, (7)

it naturally provides the lower bound θcg = ε||r0||2/
√

NxNξ ≤ θ . The main steps of the sparse CG algorithm (using a pre-
conditioner M) are outlined below.

Preconditioned sparse CG(A, b, M, Nx, Nξ , ε, θinit, l)

Define u0 = (
u1, u2 . . . , uNx , 0, 0, . . . , 0

)ᵀ
and r0 = b − Au0.

m0 ← (
1, 1, . . . , 1, 0, 0, . . . , 0

)ᵀ
J 0 ← {Nx + 1, . . . , NxNξ }
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Solve Mz0 = r0

p0 = m0 ◦ z0

θ ← θinit
θcg = ε||r0||2/

√
NxNξ

k ← 0
while

(||rk||2/||r0||2 > ε
)

do

αk = (pk,rk)2
(Apk,pk)2

uk+1 ← uk + αkpk

rk+1 ← rk − αkApk

Solve Mzk+1 = rk+1

Select Ik+1 = {i ∈J k, |rk+1
i | > θ}, |Ik+1| = mk

mk+1 ← mk + ∑
j∈Ik+1

e j

J k+1 ←J k \ Ik+1
if |Ik+1| < εlv then

θ ← θ/10
if θ < θcg then

θ ← θcg

end if
end if
pk+1 ← mk+1 ◦ zk+1

pk+1 ← MGS(pk+1, (p j) j=k−l,...,k)

k ← k + 1
end while

3. Computational aspects and analysis

3.1. Computational cost and storage

We compare the classical and sparse CG algorithms in terms of abstract computational cost and memory requirements. 
For simplicity, we consider non-preconditioned versions of both algorithms, where the computational cost at each iteration 
is dominated by matrix–vector products. Since A has a Kronecker product structure (see (4)), the matrix-vector product 
y = Apk can be efficiently computed as

y =
( M∑

m=0

Gm ⊗ Am

)
pk = vec

( M∑
m=0

AmPkGᵀ
m

)
, (8)

where Pk = [pk
1, . . . , p

k
Nξ

] ∈ RNx×Nξ contains the Nξ -dimensional PC component vectors of pk , and vec is the columnwise 

vectorization of matrices. In classical CG algorithms, the cost per iteration is essentially O
(∑M

m=0

(
nnz(Am)Nξ +nnz(Gm)Nx

))
. 

Assuming that Am and Gm have the same sparsity profile, that is, nnz(Am) = γ1N2
x and nnz(Gm) = γ2N2

ξ with 0 < γ1, γ2 � 1, 
the cost per iteration of the classical CG method scales as

O
(
(M + 1)

(
γ1N2

x Nξ + γ2N2
ξ Nx

))
. (9)

In sparse CG algorithms, the cost at iteration k is essentially related to three matrix-vector products, Apk plus two extra 
products in the MGS step. In contrast to classical CG algorithms, the sparse direction pk is a (very) sparse vector that has 
Nx + Sk non-zero entries with Sk = m1 + m2 + · · · + mk for k ≥ 1 and S0 = 0. Since pk has Nx + Sk non-zeros (with Nx first 
non-zeros), the number of non-zero columns in Pk is equal to Ck ≤ min(1 + Sk, Nξ ). For k large enough, the sparse mask 
may be entirely filled, in which case sparse CG becomes classical CG with Ck = Nξ . When k is relatively small, it is expected 
that Pk is sparse, in which case the cost of AmPk is O(nnz(Am)Ck) with Ck � Nξ . Since Am is sparse and Pk is very sparse, 
the matrix AmPk will also be very sparse. Denoting the number of non-zero rows in AmPk by Rk , the cost of the matrix 
product (AmPk)Gᵀ

m is O(nnz(Gm)Rk) with Rk � Nx . As a result, the cost of the sparse CG algorithm at a (relatively small) 
iteration k is

O
(
3(M + 1)

(
γ1N2

x Ck + γ2N2
ξ Rk

))
. (10)

The additional inner products used in the MGS step are not taken into account as their cost is significantly lower than 
matrix–vector products. Depending on the level of sparsity of the matrices Am and Gm , the ratio of costs at the k-th sparse 
CG iteration scales as follows in Table 1.
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Table 1
Ratio of costs (9) and (10) at the k-th sparse CG iteration for small values of k.

nnz(Gm) � nnz(Am) nnz(Am) � nnz(Gm) nnz(Gm) ∼ nnz(Am)

Ratio of costs 1
3

Nξ

Ck
� 1 1

3
Nx
Rk

� 1 1
3

Nx+Nξ

Rk+Ck
� 1

Table 2
Storage requirements at each iteration of classical/sparse CG algorithms.

classical CG sparse CG

# of vectors 5 dense (l + 1) dense and (l + 2) sparse
# of non-zero entries 5Nx Nξ (l + 1)Nx Nξ + (l + 2)Nx + 3Sk + Sk−1 + · · · + Sk−l

We next discuss the storage requirements of both algorithms. At each iteration, the classical CG algorithm requires five 
dense vectors (uk , pk , Apk , rk , rk−1) to be saved, meaning that 5Nx Nξ entries need to be stored. In the sparse CG algorithm, 
we have to save 2l + 3 vectors, of which l + 1 dense vectors (rk and (Ap j) j=k−l,...,k) and l + 2 sparse vectors (uk , mk and 
(p j) j=k−l,...,k). The storage requirements are summarized in Table 2.

In practice, the parameter l is kept small. In our numerical studies, l = 3, meaning that 4 dense and 5 sparse vectors 
are stored at each sparse CG iteration, instead of 5 dense vectors in classical CG algorithms, which roughly represents 20% 
memory saving.

3.2. Convergence analysis

It is of interest to note that the sparse CG algorithm is convergent. If m denotes the average number of new entries added 
in the sparse mask at each iteration, then � Nx Nξ −Nx

m � iterations are needed to fill up entirely the sparse mask (assuming 
the Nx first entries of the initial sparse mask are non-zeros). Once the sparse mask is fully dense, the sparse CG algorithm 
becomes a classical CG method, which is known to converge in at most Nx Nξ iterations. As a result, the sparse CG algorithm 
converges in at most � Nx Nξ −Nx

m � + NxNξ = � Nx(Nξ (m+1)−1)

m � iterations.
We now provide some theoretical analysis of the proposed sparse CG algorithm using the framework of inexact Krylov 

subspace methods studied in [26,27]. To this end, we first show that the sparse CG algorithm is a projection method on 
inexact Krylov subspaces. The sparse CG algorithm generates subspaces of the form

span
{

m0 ◦ r0,m1 ◦ (A(m0 ◦ r0)),m2 ◦ (
A(m1 ◦ (A(m0 ◦ r0)))

)
, . . .

}
. (11)

Defining v = m0 ◦r0, it can be seen that m1 ◦(A(m0 ◦r0)) = A1(v) with A1 = (m1 ⊗1ᵀ) ◦A, where 1 = (1, 1, . . . , 1)ᵀ ∈NNx Nξ . 
Similarly, m2 ◦ (

A(m1 ◦ (A(m0 ◦ r0))) = m2 ◦ A(A1v) = A2(A1(v)) with A2 = (m2 ⊗ 1ᵀ) ◦ A. Hence, the sparse CG algorithm 
generates subspaces of the form span

{
v, A1(v), A2(A1(v)), . . .

}
. Since sparse masks have their entries mk

i equal to zero (resp. 
one) for i ∈J k (resp. i /∈J k), each matrix Ak can be written as Ak = A + Ek as in [26,27], with perturbation matrices given 
by

Ek(i, j) =
{

0 if i /∈ J k,

−aij if i ∈ J k.

As iterations k increase mk → 1, meaning that J k → {∅}, Ek → 0 and Ak → A. As such, the sparse CG algorithm generates 
inexact Krylov subspaces as in [27], where sequences of perturbed matrices Aεi such that limε→0 Aε = A were considered.

Since the classical CG method is equivalent to the Full Orthogonalization Method (FOM) used within Arnoldi’s procedure 
in the symmetric case, the sparse CG algorithm can be analyzed within the framework of inexact Krylov subspace methods. 
Following [26], we consider the inexact Arnoldi procedure

AVm = Vm+1Hm − [E1v1,E2v2, . . . ,Emvm], (12)

where Hm ∈R(m+1)×m and Vm = [v1, . . . , vm] ∈RNx Nξ ×m is such that Vᵀ
mVm = I. When A is symmetric, the Arnoldi process 

coincides with the Lanczos process, that is Ĥm = (Hm)1:m,1:m is symmetric tridiagonal. At the m-th iteration (m ≥ 1) the “true 
residual” is defined as rm = b −Aum = b −A(u0 +Vmym) = r0 −AVmym with r0 = b −Au0 and v1 = r0/||r0||2. By contrast, the 
“truncated residual” is given by ̃rm = r0 − Vm+1Hmym , which yields rm = r̃m + [E1v1, . . . , Emvm]ym for m ≥ 1, with ̃r0 = r0. 
A natural assumption used in [26] is that the perturbation terms satisfy ||[E1v1, . . . , Emvm]ym||2 < γ ||A||2, where ||A||2 =
sup{||Ax||2, ||x||2 = 1} and γ ∈ (0, 1). When applied to vectors, || · ||2 denotes the Euclidean norm, i.e. ||x||2 = (xᵀx)1/2.

We now provide a bound for the perturbation terms when ym is computed using FOM as yfom
m = Ĥ−1

m (βe1), where 
β = ||r0||2, e1 = (1, 0, . . . , 0)ᵀ ∈Rm .
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Lemma 3.1. If the eigenvalues of A are such that λ1 ≥ λ2 ≥ · · · ≥ λNx Nξ
without being all equal, the perturbation terms 

||[E1v1, . . . , Emvm]yfom
m ||2 in the sparse CG algorithm satisfy ||[E1v1, . . . , Emvm]ym||2 ≤ γ ||A||2 with

γ = m(cm−1(1 + 2ρ1))
4

(λ1 − λNx Nξ
)2 tan4(θ1)

( m∑
k=1

∣∣∣∣̃rk−1
fom

∣∣∣∣2
2

)1/2

, (13)

where cm−1 is the Chebyshev polynomial of the first kind of degree m − 1, ρ1 = λ1−λ2
λ2−λNx Nξ

and θ1 is the angle between v1 and the 

eigenvector of A corresponding to λ1 .

Proof. Since vi are orthonormal vectors, it holds

||[E1v1, . . . ,Emvm]ym||2 =
∣∣∣∣
∣∣∣∣
( m∑

k=1

Ekvkvᵀk

)
Vmym

∣∣∣∣
∣∣∣∣
2
≤

m∑
k=1

||Ek||2
∣∣∣∣vkvᵀk

∣∣∣∣
2 ||Vmym||2

=
( m∑

k=1

||Ek||2
)

||ym||2.

Using [26, Lemma 5.2] for estimating the FOM components in the inexact Lanczos procedure, and using the fact that 
||Ek||2 ≤ ||A||2 for any symmetric matrix A, it follows that

||[E1v1, . . . ,Emvm]ym||2 ≤ m ||A||2 ||yfom
m ||2 ≤ m||A||2

λ2
max(Ĥm)

( m∑
k=1

∣∣∣∣̃rk−1
fom

∣∣∣∣2
2

)1/2

,

where we use σmax(Ĥm) = λ2
max(Ĥm) for symmetric matrices. According to Kaniel–Paige’s convergence theory [14], the 

largest eigenvalue of Ĥm in the Lanczos procedure can be estimated as

λ1 ≥ λmax(Ĥm) ≥ (λ1 − λNx Nξ
) tan2(θ1)

(cm−1(1 + 2ρ1))2
,

which leads to (13).

Remark 1. The coefficient γ is expected to be small since 
∣∣∣∣̃rk

fom

∣∣∣∣
2 is globally (but not necessarily monotonically) decreasing 

as long as Im(Vm+1Hm) keeps growing, see [26, Remark 3.4]. In exact arithmetic ||̃rk
fom||2 → 0 since ||̃rk

fom||2 = ||rk
fom||2 and 

the true residual norm is known to tend to zero in the CG case.1

Remark 2. We discuss the finiteness of the coefficient γ . First, λ1 = λNx Nξ
would correspond to the case when A = λ1I, 

for which solving (3) is not of interest. Second, expanding v1 in the set of (orthonormal) eigenvectors as v1 = ∑
i dizi with 

di = vᵀ1 zi , it holds 1 = ||v1||22 = ∑
i d2

i . Since cos(θ1) = zᵀ1 v1 = d1 and tan2(θ1) = 1−d2
1

d2
1

, then tan2(θ1) = 0 ⇔ v1 = ±z1. As 

such, tan2(θ1) = 0 never holds as it would mean that v1 and z1 are collinear, which is highly unlikely in practice. Lastly, 
when considering stochastic Galerkin matrix equations corresponding to stochastic diffusion models (1), the coefficient 
ρ1 is extremely small, since the largest eigenvalues of A are tightly clustered for those models. As a result, the terms 
cm−1(1 + 2ρ1) increase very slowly with m. In summary, γ does not diverge for those stochastic Galerkin matrix equations.

Remark 3. The idea proposed here can be extended to nonsymmetric stochastic Galerkin matrix equations using a sparse 
variant of the GMRES method. When using GMRES, that is ygm

m = arg miny∈Rm ||Hmy − βe1||2, the norm of the perturbation 
is bounded as

||[E1v1, . . . ,Emvm]ym||2 ≤ m ||A||2 ||ygm
m ||2 ≤ m||A||2

σmax(Hm)

( m∑
k=1

∣∣∣∣̃rk−1
gm

∣∣∣∣2
2

)1/2

using [26, Lemma 5.1].

1 The CG residual norm is such that ||rk||2 ≤ C(A, b, u)||uk − u||A , where u is the exact solution, b is the right-hand side, || · ||A is the energy norm 

||x||A = (xᵀAx)1/2 and C(A, b, u) is a constant that is independent of uk . Since ||uk − u||A ≤ 2

(
K 1/2

A −1
1/2

)k

||u0 − u||A , the CG residual norm tends to zero.

KA +1
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Table 3
S-IFISS problems #2, #3 and #4 with M = 5 and Nξ = 126 and sparse manufactured solutions: timings 
and numbers of iterations of preconditioned classical/sparse CG algorithms (εlv = 10). Speed-ups are 21, 
4, and 6 for the three test problems.

Problem #2 (Nx = 961) Problem #3 (Nx = 1023) Problem #4 (Nx = 1023)

Classical CG Sparse CG Classical CG Sparse CG Classical CG Sparse CG

# iterations 849 136 141 41 138 26
timings (s) 383 18 20 5 19 3

Since the proposed sparse CG algorithm fits within the framework of inexact Krylov-based methods, we can use some 
of the results derived in [26]. For example, the distance between the true and truncated residuals after m iterations of the 
sparse CG algorithm is such that

||rm − r̃m||2 ≤
m∑

k=1

∣∣eᵀk yfom
m

∣∣ ||Ek||2. (14)

In contrast to the classical Arnoldi method, the true residual in sparse CG algorithms is not orthogonal to the basis vectors 
(vi)i=1,...,m . The loss of orthogonality can be estimated as

∣∣∣∣Vᵀ
mrm

∣∣∣∣
2 ≤

m∑
k=1

∣∣eᵀk yfom
m

∣∣ ||Ek||2. (15)

Equations (14) and (15) suggest that if the components 
∣∣eᵀk yfom

m

∣∣ tend to decrease across iterations, then the perturbations 
||Ek||2 are allowed to grow (see [26] for more details).

4. Numerical experiments

To illustrate, we consider randomly parametrized diffusion models (1) defined on two-dimensional spatial domains with 
homogeneous Dirichlet boundary conditions and deterministic source terms using the S-IFISS Matlab toolbox [4]. For differ-
ent test cases, we compare the sparse CG algorithm to the classical CG method in terms of convergence and timings. For 
a fair comparison, we use the same block-diagonal preconditioner M = G0 ⊗ A0 (see [21]) in both CG algorithms. Simula-
tions were performed using sequential Matlab solvers on a single core of a machine with dual quad Intel Core i5-7500U 
processors and 8 Gb RAM.

First, we focus on favorable cases when the sought discretized solutions are sparse. To create a sparse solution, we 
define w ∈ RNx Nξ with components chosen randomly from [−1, 1] and then nullify the wi that are smaller than a given 
value (say, 0.95) for i > Nx . This provides a sparse vector u from which a right-hand side b = Au is computed, where A
is the discretized diffusion matrix provided by S-IFISS. We manufacture sparse solutions in this way for several S-IFISS test 
cases, namely problem #2 (where D = [−1, 1]2, standard deviation σ = 0.525 in the KL expansion) and problems #3 and 
#4 (where D = [−2, 2] ×[−1, 1] and σ = 0.515). For each problem, we consider M = 5 random variables and 4-th PC order, 
meaning that Nξ = 126.

Timings and numbers of iterations are reported in Table 3, showing that the sparse CG algorithm runs faster than the 
classical CG method with up to roughly twenty times reduction in computational cost. To illustrate, the convergence of the 
classical/sparse CG algorithm is shown in Figs. 1 and 2. It is to be noted that the choice made for εlv generally affects the 
convergence of the sparse CG algorithm (see, for example, Fig. 1).

Another important aspect of the sparse CG algorithm concerns its ability to recover the sparsity pattern (if any) 
of the sought solution. Recasting discretized sparse CG solutions û ∈ RNx Nξ as Û = [α1, . . . , αNξ

] ∈ RNx×Nξ with αi =
(αi,1, . . . , αi,Nx)

ᵀ , stochastic solutions are built at each FE node x j as û(x j, ξ) = ∑Nξ

i=1 αi, jψi(ξ). For each index j =
1, 2, . . . , Nx , the γ -sparsity of ̂u at x j is defined as the number of significant PC coefficients

#{i such that |αi, j| > γ }. (16)

In Fig. 3, the γ -sparsity of the sparse CG solution as a function of the spatial coordinates is represented for S-IFISS problem 
#2, showing that the sparse structure of the exact solution is almost recovered by the sparse CG algorithm. This attractive 
feature (referred to as the “bet of sparsity principle” [15] in the literature) of sparse CG algorithms explains its computational 
efficiency compared to that of classical CG methods, since it naturally exploits the underlying sparsity (if any) of the sought 
solution. As another illustration of this feature, we compare the exact sparsity recovery (γ = 0) of sparse manufactured 
solutions for various S-IFISS test cases. The preconditioned sparse CG algorithm recovers almost exactly the sparse structure 
of the exact solutions, by contrast with the classical CG method, which always provides dense solutions (see Table 4).

We finally compare both CG algorithms while approximating the solution to the stochastic diffusion equation. We con-
sider the most challenging S-IFISS test-case, namely problem #2 with the source term given by f (x) = 1 (2 −x2 −x2). We use 
8 1 2
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Fig. 1. S-IFISS problem #2 with M = 5, Nx = 961, Nξ = 126, σ = 0.525 and sparse manufactured solutions: convergence of preconditioned classical/sparse 
CG algorithms with ε = 10−6, θinit = 10 and different values of εlv .

Fig. 2. S-IFISS problems #3 (left) and #4 (right) with sparse manufactured solutions, M = 5, Nx = 1023, and σ = 0.515: Convergence of preconditioned 
classical/sparse CG algorithms with ε = 10−6, θinit = 10 and εlv = 10 in sparse CG.

Table 4
S-IFISS test cases with sparse manufactured solutions, M = 5, Nξ = 126, refined values for Nx and default values 
for other parameters: exact sparsity recovery (γ = 0) of the preconditioned sparse CG algorithm with εlv = 10. 
For each problem, the classical CG returns a dense solution with 100% of non-zeros.

S-IFISS problem Nx nnz(u) nnz(̂u) S-IFISS problem Nx nnz(u) nnz(̂u)

# 1 705 3.26% 3.29% # 4 1023 3.29% 7.73%
# 2 961 3.28% 3.47% # 5 961 3.26% 3.53%
# 3 1023 3.29% 7.76% # 6 961 3.29% 6.32%

M = 5 random variables and 4-th PC order (i.e. Nξ = 126), a stretched mesh grid made of Nx = 961 points and σ = 0.525. 
As can be seen in Fig. 4, both CG algorithms converge similarly, indicating the fact that there is no underlying sparsity in 
the sought solution. This suggests that the sparse CG algorithm reduces to the classical CG method when considering SPDE 
models with non-sparse solutions, which is in agreement with the convergence property of sparse CG (see section 3.2). It 
is worth mentioning that even if the convergence of both algorithms looks comparable, the sparse CG algorithm still runs 
three times faster than the classical CG method.
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Fig. 3. S-IFISS problem #2 with sparse manufactured solution: γ -sparsity of sparse CG (left) and exact (right) solutions with γ = 10−4.

Fig. 4. S-IFISS problem #2 with stochastic diffusion solution, M = 5, Nx = 961, Nξ = 126, σ = 0.525. Left: convergence of preconditioned classical/sparse CG 
algorithms with ε = 10−6, θinit = 10, and εlv = Nx Nξ /100 = 1210 in sparse CG algorithm. Classical and sparse CG algorithms run in 434 s (919 iterations) 
and 134 s (933 iterations), respectively. Right: γ -sparsity of the sparse CG solution with γ = 10−2.

5. Conclusions

In this work, we proposed a sparse CG algorithm for efficiently solving matrix equations arising from stochastic Galerkin 
projection schemes. The sparse CG algorithm is proved to be convergent and has a lower abstract computational cost 
compared to that of the classical CG method. Numerical studies conducted on stochastic diffusion models show that the 
sparse CG algorithm can provide substantial speedups when the exact solution has a sparse representation in a PC basis 
set. In such cases, the sparse structure of the SPDE solutions is almost recovered, which allows for significant reductions 
in computational cost compared to the classical CG method. This suggests that the proposed sparse CG algorithm has 
the potential to efficiently approximate solutions to SPDE models with localized uncertainties. For non-sparse solutions, 
the sparse CG algorithm displays similar convergence trends as the classical CG method, which is in agreement with the 
convergence property of the sparse CG algorithm.

Further numerical studies would be required to compare more precisely sparse and classical CG algorithms for a wider 
class of SPDEs. The idea proposed here can also be used to formulate a sparse variant of the GMRES algorithm with appli-
cations to nonsymmetric stochastic Galerkin matrix equations. Interestingly, the sparse CG algorithm can also be used for 
solving nonlinear SPDEs. The full discretization of such SPDEs leads to systems of non-linear equations of the form f(u) = 0
that can be solved in a Newton-like fashion. At each iteration, the sparse CG algorithm can be used for solving the (poten-
tially large-scale) matrix equations for the Newton step, f′(uk)δk = −f(uk), where f′(u) is the Jacobian matrix of f. Using this 
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approach, it is expected to obtain sparse approximate solutions that would be computationally advantageous for nonlinear 
SPDE models whose solution admits a sparse representation in a PC basis set.
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