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r é s u m é

Dans cette Note, nous donnons des inégalités exponentielles pour les suprema de 
processus empiriques avec queues lourdes sur la gauche. Notre approche est basée sur 
une décomposition en martingale, associée à des inégalités de comparaison sur un cône 
de fonctions convexes, initialement introduit par Pinelis. Les constantes données sont 
explicites.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let X, X1, . . . , Xn be a sequence of independent random variables valued in some measurable space (X , F), and identi-
cally distributed according to a law P . Let F be a countable class of measurable functions from X into ]−∞ , 1] such that 
P ( f ) = 0 for all f ∈ F . Let 1 < p < 2. We suppose that, for all f ∈ F , f (X) satisfies the following behavior on the left:

P ( f (X) ≤ −t) ≤
( c

t

)p
for any t > 0, (1.1)

for some c > 0. Let Zn be the real-valued random variable defined by
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Zn := sup
{ n∑

k=1

f (Xk) : f ∈ F
}
. (1.2)

The aim of this Note is to give an exponential bound for the probability of deviation of Zn above its mean. Throughout the 
paper, we denote by η a Pareto (on the left) random variable with parameters (c, p), that is, its distribution function Fη is 
defined by

Fη(−t) =
( c

t

)p ∧ 1 and Fη(t) = Fη(0) = 1, for any t > 0. (1.3)

The control of the random fluctuations of an empirical process has a central role in mathematical statistics and machine 
learning. For general presentations of these connections between empirical process theory and statistics, see, for instance, 
the books of Van der Vaart and Wellner [24], Massart [15], or Koltchinskii [9]. For example, in the context of nonparametric 
estimation, the calibration of adaptive methods is strongly related to the control of an empirical process: see, for instance, 
[10] for the Empirical Risk Minimization method, [2] for the Cross-Validation method and [7] for the Goldenshluger–Lepski 
method.

Since Talagrand’s [23] and Ledoux’s [12] pioneering work, concentration inequalities for suprema of empirical processes 
have been the subject of intense research. Mainly, the aim is to reach optimal counterparts for Zn of classical Hoeffd-
ing’s, Bernstein’s, and Bennett’s exponential inequalities for sums of i.i.d. random variables, which correspond to classes 
F reduced to one element. The reader is referred to Chapter 12 of the book by Boucheron, Lugosi, and Massart [5]
for an overview of this subject. Recently, some efforts have been made to consider heavier tails by only assuming that 
sup f ∈F | f (X)| is Lr -integrable for some r > 2: see, Boucheron, Bousquet, Lugosi, and Massart [4], Adamczak [1], van de 
Geer and Lederer [11], and Marchina [13]. However, the common point of all these results is that sup f ∈F Var( f (X)) is 
finite, which we do not want to assume in this work. Instead, we assume (1.1) which states the first-order stochastic domi-
nance of −η over − f (X), for all f ∈ F . In other words, Fη is the extremal (in the sense of first-order stochastic dominance) 
distribution that f (X) could have. The Pareto distribution is the prototype of “power-tailed” distributions, which are im-
portant particular cases of heavy-tailed distributions. More precisely, a distribution is said power-tailed if its tail function is 
of the form x−α , α > 0, for large x. It has the singular property that every moment greater than the α-th is infinite (see, 
for instance, the book of Foss et al. [6]). Here, since we assume 1 < p < 2, the first moment of η is finite, and the second 
one is infinite. In particular, combined with (1.1), it implies that Var( f (X)) could be infinite for every f ∈ F . Moreover, 
we emphasize that heavy-tailed data are commonly encountered, for example, in the areas of computer science, finance, 
biology, and astronomy, among others. Then the assumption (1.1) is also of interest for applications.

To the best of our knowledge, the only result without the assumption of square integrability of f (X), f ∈ F , is provided 
in Rio [20, Theorem 2]. The author gives an upper bound of the log-Laplace transform of Zn −E[Zn] involving squares of 
positive parts and truncated negative parts of f (X) for all f ∈ F . His proof relies on a martingale decomposition of Zn −
E[Zn] associated with an exponential inequality for positive self-bounding functions (based on Ledoux’s entropy method) 
proved in Rio [21]. Our approach uses the same martingale decomposition used by Rio. However, the difference lies in 
the control of the martingale increments. To give an upper bound on their log-Laplace transform, we resort to convex 
comparison inequalities, similar to those of Hoeffding [8] for bounded random variables. To our knowledge, this result has 
no counterpart in the existing literature. Then it is not that easy to study the optimality of the constants appearing in our 
inequalities. Nevertheless, we think that the method used may be encouraging for further works. Actually, it seems beyond 
the scope of traditional functional analysis tools to handle the case of nonfiniteness of sup f ∈F Var( f (X)). Furthermore, 
we have recently shown that martingale methods can be used to relax classical hypotheses (as the uniform boundedness 
conditions) in concentration inequalities for separately convex functions of independent random variables, especially for 
suprema of empirical processes (see [14,13]).

2. Result

Let us first give some notation. For any real-valued random variable X , F X and F −1
X denote respectively the distribution 

function of X and the càdlàg inverse of F X . For all reals x and α, x+ := max(0, x) and xα+ := (x+)α . We denote by �(.) the 
usual gamma function.

For the sake of clarity, let us recall the setting we work with. Let X, X1, . . . , Xn be a sequence of i.i.d. random variables 
valued in (X , F) with common distribution P . Let 1 < p < 2. Let η be a random variable with distribution function Fη

defined by (1.3). We recall that Fη depends on c > 0 and p. Let F be a countable class of measurable functions from X
into R. We make the following assumptions.

Assumption 2.1. For all f ∈ F and all x ∈ X ,

f (x) ≤ 1 and P ( f ) := E[ f (X)] = 0. (2.1)
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Assumption 2.2. The parameter c is such that

c ≥
( p − 1

2p − 1

)1/p
. (2.2)

This condition on c is purely technical. Note that the function h : p �→ ( p−1
2p−1

)1/p
is increasing on [1 , 2]. Since h(2) =√

1/3, if c ≥ √
1/3, then the condition (2.2) is satisfied.

Assumption 2.3. For any t > 0,

E[(−t − f (X))+] ≤E[(−t − η)+]. (2.3)

This assumption corresponds to the second-order stochastic dominance of −η over − f (X), for all f ∈ F . It is weaker 
than the condition (1.1), which corresponds to the first-order stochastic dominance, and is sufficient for our result.

The following result then holds.

Theorem 2.1. Let Zn be defined by (1.2). Let q0 be the real in ]0 , 1[ such that

q0 − c
p

p − 1
(1 − q0)

1−1/p = 0. (2.4)

Under Assumptions 2.1, 2.2 and 2.3, for any x ≤ q0 �(2 − p),

P (Zn −E[Zn] ≥ nx) ≤ exp
(
−nγp xp/(p−1)(1 − εp(x))

)
, (a)

where

γp = (pαp)−1/(p−1) p − 1

p
, αp = cp

p − 1
�(2 − p), (2.5)

and εp(x) = p

p − 1

∞∑
k=2

q0

k! x(k−p)/(p−1)(pαp)−(k−1)/(p−1). (2.6)

Moreover, for any x > q0 �(2 − p),

P (Zn −E[Zn] ≥ nx) ≤ exp
( − n(x(1 − q0)

1/pc−1 − βp)
)
, (b)

where

βp = −�(2 − p)

p − 1
− q0

(
−�(2 − p)

p − 1
− 1 + exp((1 − q0)

1/pc−1) − (1 − q0)
1/pc−1

)
. (2.7)

Roughly speaking, Inequality (a) states that, for small enough x > 0,

P (Zn −E[Zn] ≥ n1/p x) ≤ exp
(

− K p xq(1 + O
(
x(2−p)/(p−1)n−2/p)))

, (2.8)

where q = p/(p −1) is the Hölder exponent conjugate of p and K p is a constant depending only on p. Under Assumption 2.1
and sup f ∈F Var( f (X)) < ∞, it is known that Zn satisfies a Bennett-type inequality (see, for instance, Rio [22, Theorem!1.1]). 
It leads to the following inequality for small enough x > 0:

P (Zn −E[Zn] ≥ √
nx) ≤ exp

(
− x2

2v

(
1 + O

(
xn−1/2))), (2.9)

where v := σ 2 + 2n−1E[Zn] and σ 2 := sup f ∈F P ( f 2). Thus, Inequality (a) may be regarded as an extension of (2.9).

Remark 2.2 (Explanation of (2.4)). For any bounded random variable a ≤ Y ≤ b, a, b ∈R, Hoeffding [8] shows that Y is more 
concentrate for the convex functions than the two-valued random variable θ taking the values a and b and such that 
E[θ] = E[Y ] (see his inequalities (4.1) and (4.2)). It means that E[ϕ(Y )] ≤ E[ϕ(θ)] for all convex functions ϕ . This result 
has been extended to unbounded random variables: the reals a, b are replaced by some random variables α, β and a ≤ Y ≤ b
is replaced by α � Y � β for some stochastic order � (see Bentkus [3] and Marchina [14]). Here, one has η �2 f (X) ≤ 1, 
where �2 denotes the usual second-order stochastic dominance. Then, with respect to a class of convex functions, the 
distribution of f (X) is more concentrate than the distribution μ[q0] defined by

μ[q0](A) = μ(A ∩ ]F −1
η (1 − q0) ,+∞[ ) + q0 δ1(A), (2.10)
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Fig. 1. Impact of the value of c on the function p �→ q0�(2 − p).

where μ denotes the distribution of η, A ⊂ R (measurable), δ1 stands for the Dirac measure centered on 1 and q0 ∈ [0 , 1]
is such that 

∫
tμ[q0](dt) =E[ f (X)] = 0. In fact, this last equation is equivalent to (2.4).

By (2.4), q0 depends on c. The impact of c on the window [0 , q0 �(2 − p)], in which (a) is valid, is shown in Fig. 1. The 
function p �→ q0 �(2 − p) for the values c = 3, c = 1, c = √

1/3 and c = 0.3 is represented.

3. Proof

We start in the same way as in the proof of the main results in [13], that is, by a martingale decomposition of Zn −E[Zn]. 
Let us recall the main points. The reader is referred to [13] for more details. First, by virtue of the monotone convergence 
theorem, we can suppose that F is a finite class of functions. Set F0 := {∅, �} and for all k = 1, . . . , n, Fk := σ(X1, . . . , Xk), 
and Fk

n := σ(X1, . . . , Xk−1, Xk+1, . . . , Xn). Let Ek (respectively Ek
n) denote the conditional expectation operator associated 

with Fk (resp. Fk
n ). Set also Z (k)

n := sup f ∈F

∑
j �=k f (X j) and Zk :=Ek[Zn]. Let us number the functions of the class F and 

consider the random indices

τ := inf

{
i > 0 :

n∑
k=1

f i(Xk) = Zn

}

τk := inf

⎧⎨
⎩i > 0 :

n∑
j=1

f i(X j) − f i(Xk) = Z (k)
n

⎫⎬
⎭ .

Define ξk :=Ek[ fτk (Xk)] and rk := (Zk −Ek[Z (k)
n ]) − ξk ≥ 0. Note that we have

ξk ≤ ξk + rk ≤ Ek[ fτ (Xk)]. (3.1)

By the centering assumption on the elements of F , Ek−1[ξk] = 0, leading to

Zn −E[Zn] =
n∑

k=1

�k where �k := ξk + rk −Ek−1[rk]. (3.2)

The proof is made in three steps:

1. Using the results of Section 3 in Marchina [14], we compare generalized (conditional) moments of �k with those of a 
random variable ζq0 with distribution μ[q0] given in (2.10). In particular, the class of generalized moments on which we 
obtain a comparison inequality contains increasing exponential functions x �→ etx for every t ≥ 0.

2. We give an upper bound on the exponential moments of ζq0 .
3. We conclude the proof by the usual Cramér–Chernoff calculation.
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Step 1: Comparison inequality
Let us denote by ζq , for any q ∈ [0 , 1], a random variable with distribution function given by

Fq(x) :=
⎧⎨
⎩

Fη(x) if x < aq,

1 − q if aq ≤ x < 1,

1 if x ≥ 1,

(3.3)

where aq := F −1
η (1 − q). Notice that

E[ζq] = q − c
p

p − 1
(1 − q)1−1/p, (3.4)

which ensures that (2.4) is equivalent to E[ζq0 ] = 0. Let us also define

H2+ := {
ϕ ∈ C1(R) : ϕ′ is convex, and lim

x→−∞ϕ(x) = lim
x→−∞ϕ′(x) = 0

}
This part is devoted to prove the following lemma.

Lemma 3.1. For any ϕ ∈H2+ and any k = 1, . . . , n,

Ek−1[ϕ(�k)] ≤E[ϕ(ζq0)]. (a)

Consequently, for any t ≥ 0,

logE[exp(t(Zn −E[Zn]))] ≤ n logE[exp(t ζq0)]. (b)

Remark 3.2. Comparison inequalities with respect to the class of functions H2+ (or more generally Hα+ , α > 0) have been 
widely studied by Pinelis (these include, among others, [16–19], and we refer the reader to these papers for more details). 
We only recall that we have the following equivalence:

(i) E[ϕ(X)] ≤E[ϕ(Y )] for any ϕ ∈H2+
(ii) E[(X − t)2+] ≤E[(Y − t)2+] for any t ∈R.

The proof of Lemma 3.1 lies on the following results, which were established in Marchina [14].

Lemma 3.3 (Lemmas 4.3 and 4.6 (i) in [14]). Let η be defined by (1.3).

(i) Let X be an integrable random variable such that X ≤ 1 and for any real t , E[(t − X)+] ≤ E[(t − η)+]. Then for any 
convex function ϕ ,

E[ϕ(X −E[X])] ≤ E[ϕ(ζq −E[ζq])],
where q ∈ [0 , 1] is such that E[ζq] =E[X].

(ii) Let q̃ := inf{q ≥ 1/2 : 1 + F −1
η (1 − q) ≤ 2 E[ζq]}. For all t ∈R, the function

q �→E[(ζq −E[ζq] − t)2+]
is nonincreasing on [q̃ , 1].

Proof of Lemma 3.1. Since H2+ contains all increasing exponential functions, taking ϕ(x) = etx with t ≥ 0 in (a) leads to (b) 
by an induction on n. Moreover, in view of Remark 3.2, we only have to prove (a) for the functions ϕ(x) = (x − t)2+ , with 
t ∈R. Let t > 0. Since rk ≥ 0, Jensen’s inequality implies that

Ek−1[(−t − (ξk + rk))+] ≤Ek−1[(−t − ξk)+]
≤Ek−1[(−t − fτk (Xk))+]
≤E[(−t − η)+], (3.5)

where the last inequality follows from Assumption 2.3. Furthermore, we can directly verify that (3.5) holds for t ≤ 0. Since 
f ≤ 1 for any f ∈ F , (3.1) implies that ξk + rk ≤ 1. Hence, applying Lemma 3.3 (i) conditionally to Fk−1, with X = ξk + rk , 
yields that

Ek−1[ϕ(�k)] ≤Ek−1[ϕ(ζq̂ −E[ζq̂])], (3.6)
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for any convex function ϕ , where q̂ ∈ [0 , 1] is such that Ek−1[ξk + rk] =Ek−1[rk] =Ek−1[ζq̂].
Now, we show that an upper bound of the right-hand side of (3.6) can be obtained by the use of Lemma 3.3 (ii). Let us 

recall the notation q̃ := inf{q ≥ 1/2 : 1 + F −1
η (1 − q) ≤ 2 E[ζq]}. We shall prove the following lemma.

Lemma 3.4. We have

(i) 1 + F −1
η (1 − q0) ≤ 0 = 2 E[ζq0 ]. Consequently, q̃ ≤ q0.

(ii) q0 ≤ q̂.

Remark 3.5. Note that q �→ 1 + F −1
η (1 −q) is nonincreasing and tends to −∞ as q tends to 1 and q �→E[ζq] is nondecreasing 

and tends to 1 as q tends to 1. Moreover, a calculation shows that 1 + F −1
η (1/2) > 2 E[ζ1/2]. Thus q̃ exists and if q is such 

that 1 + F −1
η (1 − q) ≤ 2 E[ζq], then q̃ ≤ q.

Proof of Lemma 3.4. Let us first prove (i). Define q1 := 1 − min(cp, 1). Starting from (3.4), one can verify that condition 
(2.2) on c implies E[ζq1 ] ≤ 0. Then, since E[ζq0 ] = 0, one has q1 ≤ q0 by the monotonicity of q �→ E[ζq]. Next, since 
Fη(−1) = 1 − q1, it implies F −1

η (1 − q1) ≤ −1. Therefrom, since F −1
η is nondecreasing,

1 + F −1
η (1 − q0) ≤ 1 + F −1

η (1 − q1) ≤ 0.

Thus, since 2 E[ζq0 ] = E[ζq0 ] = 0, one has q̃ ≤ q0, which ends the proof of (i). The point (ii) follows directly from the 
monotonicity of q �→E[ζq] since

Ek−1[ζq̂] = Ek−1[rk] ≥ 0 = E[ζq0 ].
This concludes the proof of Lemma 3.4. �

Now, Lemma 3.3 (ii), associated with Lemmas 3.4 and (3.6), applied to ϕ(x) = (x − t)2+ , yields that, for any t ∈R,

Ek−1[(�k − t)2+] ≤Ek−1[(ζq̂ −E[ζq̂] − t)2+] ≤ E[(ζq0 −E[ζq0 ] − t)2+],
which then implies Inequality (a) of Lemma 3.1 and finishes the proof. �
Step 2: Upper bound of exponential moments of ζq0

In this part, we give an upper bound of E[exp(tζq0)] for any t ≥ 0. First, recall the notation aq = F −1
η (1 − q) ≤ 0. The aim 

of this part is to prove the following lemma:

Lemma 3.6. Let t ≥ 0 such that −taq0 ≤ 1. Then

logE[etζq0 ] ≤ q0(et − t − 1) + αpt p .

Proof of Lemma 3.6. Let t > 0. Starting from the definition of the random variable ζq , one has

E[etζq0 ] = q0 et + p(tc)p

∞∫
−taq0

e−uu−(p+1) du

= q0 et + p(tc)p
( ∞∫

0

u−(p+1)(e−u − 1 + u)du

+
∞∫

−taq0

u−(p+1)(1 − u)du −
−taq0∫
0

u−(p+1)(e−u − 1 + u)du
)
.

(3.7)

Now, for any 1 < p < 2,

∞∫
0

u−(p+1)(e−u − 1 + u)du = �(−p), (3.8)

where �(−p) = 1 �(2 − p). Moreover, the expansion e−u = ∑∞
k=0(−u)k/k! yields that
p(p−1)



A. Marchina / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 537–544 543
∞∫
−taq0

u−(p+1)(1 − u)du −
−taq0∫
0

u−(p+1)(e−u − 1 + u)du = −
∞∑

k=0

(−1)k

k!
(−taq0)

k−p

k − p
. (3.9)

Thus, since q0 = 1 − (c/ − aq0)
p , (3.7) becomes

E[etζq0 ] = q0 et + p(tc)p�(−p) + (1 − q0)
(

1 − taq0

p

1 − p
+

∞∑
k=2

(−1)k+1 (−taq0)
k

k!
p

k − p

)
. (3.10)

Next, we observe that under the assumption −taq0 ≤ 1, the sum in (3.10) is an alternating series whose absolute value of 
the general term decreases to 0. Thus, the sum is of the sign of the term corresponding to k = 2, which is negative. Hence,

E[etζq0 ] ≤ q0 et + p(tc)p�(−p) + (1 − q0)
(

1 − taq0

p

1 − p

)
≤ 1 + q0(et − t − 1) + p(tc)p�(−p) + t

(
q0 − (1 − q0)aq0

p

1 − p

)
. (3.11)

Observe now that the last term in the right-hand side is equal to zero. Indeed, since aq0 = −c (1 − q0)
−1/p ,

q0 − (1 − q0)aq0

p

1 − p
= q0 − c

p

p − 1
(1 − q0)

1−1/p = E[ζq0 ] = 0.

Hence, taking the logarithm and using the inequality log(1 + x) ≤ x for any x > 0, conclude the proof of Lemma 3.6. �
Step 3: Conclusion by the Cramér–Chernoff calculation

We now complete the proof of Theorem 2.1. From Lemma 3.1 (b) and Lemma 3.6, by the usual Cramér–Chernoff calcula-
tion, we get

P (Zn −E[Zn] ≥ nx) ≤ exp
(
−n φ∗

ζq0
(x)

)
, (3.12)

where

φ∗
ζq0

(x) = sup
t∈]0,−1/aq0 ]

{
tx − αpt p − q0(et − t − 1)

}
. (3.13)

In order to prove (a), we give a lower bound of φ∗
ζq0

(x) by taking the real tx ∈ ]0 , −1/aq0 ] that maximizes t �→ tx − αpt p . A 
straightforward calculation yields

tx = x1/(p−1)(pαp)−1/(p−1), (3.14)

and −txaq0 ≤ 1 is equivalent to x ≤ q0 �(2 − p). We then have

txx − αpt p
x = γp xp/(p−1) and q0(etx − tx − 1) = γp εp(x)xp/(p−1), (3.15)

which concludes the proof of (a). Inequality (b) follows directly by putting t = −a−1
q0

in the right-hand side of (3.13). This 
concludes the proof of Theorem 2.1.
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