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The coset diagram for each orbit under the action of the modular group on Q(
√

n)∗ =
Q(

√
n) ∪ {∞} contains a circuit Ci . For any α ∈ Q(

√
n), the path leading to the circuit 

Ci and the circuit itself are obtained through continued fractions in this paper. We show 
that the structure of the continued fractions of a reduced quadratic irrational element is 
weaved with the structure or type of the circuit. The three types of circuits of the action 
of V 4 on Q(

√
n)∗ are also interconnected with the structure of continued fractions. The 

action of the modular group on Q(
√

5)∗ is chosen specifically because a circuit of it is 
related to the ratio of the Fibonacci numbers being the solution to the continued fractions 
of the golden ratio.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Le diagramme des classes de chaque orbite de l’action du groupe modulaire sur Q(
√

n)∗ =
Q(

√
n) ∪ {∞} contient un circuit Ci . Dans cette Note, pour tout α ∈ Q(

√
n), le chemin 

menant au circuit Ci et le circuit lui-même sont décrits en termes de fractions continues. 
Nous montrons que la structure des fractions continues des nombres quadratiques 
irrationnels réduits est liée à la structure ou au type du circuit. Les trois types de circuits 
de l’action de V 4 sur Q(

√
n)∗ sont également reliés à la structure des fractions continues. 

L’action du groupe modulaire sur Q(
√

5)∗ est choisie précisément, car un de ses circuits 
est lié au fait que les rapports des nombres de Fibonacci sont les convergents de la fraction 
continue du nombre d’or.
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Fig. 1. A circuit of the action of the modular group on Q(
√

n)∗ .

1. Introduction

If the upper half-plane model H of hyperbolic plane geometry is considered, which is a model of Lobachevsky plane {
z = x + iy : x, y ∈R and y > 0

}
and the motions in it preserve the orientation, then the group of all orientation-preserving 

isometries of H consists of all Möbius transformations of the form z �→ az + b

cz + d
, where a, b, c, and d are real numbers, and 

ad − bc = ±1.
From another point of view, the group P S L(2, R) acts on the upper half-plane H according to the faithful (left-) action(

a b
c d

)
z = az + b

cz + d
, (1.1)

forming a group of isometries of the hyperbolic plane H . The group, which comprises linear fractional transformations of 
H with integer coefficients, is a discrete group of motions and forms an important subgroup of P S L(2, R). This group of 
transformations is isomorphic to the projective special linear group P S L 

(
2,Z

)
, which is the quotient of the 2-dimensional 

special linear group over the integers by its centre {I, −I}. In other words, P S L 
(
2,Z

)
consists of all 2 × 2 matrices 

(
a b
c d

)

where a, b, c, and d are integers, and ad − bc = 1, and the pairs of matrices A and −A are considered to be identical and 
the group operation is the usual multiplication of matrices.

The modular group P S L(2, Z) has the finite presentation 〈x, y : x2 = y3 = 1〉, where x and y correspond to the linear 
fractional transformations z �→ −1

z and z �→ z−1
z . A proof of this, using coset diagrams, is given in [6].

The concept of graphs was first introduced in 1878 by A. Cayley. A number of group theorists used Cayley’s diagrams to 
prove many important results on finitely generated groups. O. Schreier generalised the Cayley’s diagrams by introducing a 
graph whose vertices represent the cosets of any given subgroup.

In 1978, G. Higman proposed coset diagrams for the modular and extended modular group. These are called coset 
diagrams because here the vertices are identifiable with the right cosets in a permutation group G of the stabiliser N of any 
point of the G-space �, so that an edge xi joins the coset Ng to the coset Ngxi for each element g of G . Since P S L(2, Z)

has two generators, the edges associated with the involution x are represented by small edges without any orientation 
attached to them. In the case of y, which has order 3, there is a need to distinguish y from y−1. The 3-cycles of y are 
therefore represented by small triangles, with the convention that y permutes their vertices counter-clockwise. The fixed 
points of x and y, if they exist, are denoted by heavy dots. More details can be found in [11].

A quadratic irrational field is a field extension of degree 2 over Q denoted by Q 
(√

n
)
. If an element α ∈Q 

(√
n
)
, then 

α = a + b
√

n, where a, b ∈ Q. The algebraic conjugate of α is ᾱ = a − b
√

n. The trace and norm of α are T r (α) = α + ᾱ
and N (α) = αᾱ, respectively. Every α ∈ Q 

(√
n
)

is the root of a monic polynomial of degree 2 with rational coefficients 
(x − α)(x − ᾱ) = x2 − T r(α)x + N(α), so an element is an integer of Q 

(√
n
)

if T r (α) and N (α) belong to Z. When n > 0, 
Q 

(√
n
)

is called a real, and when n < 0 an imaginary, quadratic field [5], [14].
Every real quadratic irrational number α can be uniquely written as (a +√

n)/c, where n is a non-square positive integer, 
and a, (a2 − n)/c, and c are relatively prime integers. If α and its algebraic conjugate ᾱ have positive signs, then α is called 
a totally positive number; if they have negative signs, then α is called a totally negative number, and if they have different 
signs, then α is called an ambiguous number. A formula for obtaining the ambiguous numbers is provided in [7], but this 
approach does not seem to have any connection with the continued fraction of the element.

Let the modular group G = P S L(2, Z) = 〈x, y : x2 = y3 = 1〉 act on the extended real quadratic irrational field Q(
√

n)∗ =
Q(

√
n) ∪ {∞} [10]. The ambiguous numbers in the coset diagram of the orbit αG form a single closed path called a circuit. 

A circuit of type (q1, q2, ..., qm) means a sequence of positive integers qi representing alternatively q j triangles with one 
vertex inside the circuit and q j+1 triangles with one vertex outside the circuit for all j = 1, 2, ..., m. Algebraically the circuit 
corresponds to the word w = (xy)q1 (xy2)q2 ...(xy)qm−1 (xy2)qm , which fixes the element α. This is represented in Fig. 1.

The coset diagram of an orbit of the action of G on Q(
√

n)∗ has only one circuit; let Ci be the circuit and �Ci be its 
coset diagram. If the set



A. Rafiq, Q. Mushtaq / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 655–663 657
C (n) = {
Ci| Ci is a circuit in an orbit of the action of G on Q(

√
n)∗

}
is the collection of all circuits, then �C(n) denotes the complete coset diagram of the action of G on Q(

√
n)∗ .

By L. Euler, every real number has a continued fraction α = [q1;q2, ...] that is finite for rational numbers and in-
finite for irrational numbers. The irrationals whose continued fractions repeat after a certain stage such that α =
[q1; q2, ..., qm, qm+1,qm+2, ...,qm+d] are the quadratic irrational numbers. Associated with these quadratic irrationals are 

the matrices 
[

Al Al−1
Bl Bl−1

]
, where Al = [q1, q2, ..., ql] and Bl = [q2, q3, ..., ql] are continuants of the lth convergent Al

Bl
(see 

[2]).
The conjunction of modular surfaces and continued fractions is not new (see [15]); their connection has been exploited 

in several directions by [1], [3] and [9], to name a few. In this study, the connection of coset diagrams of the action of G on 
Q(

√
n)∗ , as defined by the second author in [10], to continued fractions is explored. Some authors [8] have obtained two 

proper G-subsets of Q(
√

n)∗ corresponding to each odd prime divisor of n. R. Qureshi and T. Nakahara also presented the 
process to reach an ambiguous number from a totally negative or totally positive number through continued fractions in 
[13].

We show that the structure of circuits in the orbits of the action G on Q(
√

n)∗ and the structure of the continued 
fractions of the Q(

√
n) are intertwined. Thus, several results of continued fractions give information about the circuits and 

ambiguous numbers, and vice versa.

2. Continued fractions and coset diagrams of P S L
(

2,Z
)

We start by giving a few simple equalities.

Lemma 1. Let x, y ∈ G , with x : z → −1
z , y : z → z−1

z and α ∈Q(
√

n), then the following equalities hold:

(1)
[
(α)

(
xy2

)qi
]−1 = (

α−1
)
(xy)qi .

(2)
[
(α) (xy)qi

]−1 = (
α−1

) (
xy2

)qi .

(3)
[
(α)

(
xy2

)qi
(xy)q j

]−1 = (
α−1

)
(xy)qi

(
xy2

)q j .

Proof. 1. As (α)
(
xy2

)qi = α
qiα+1 , so 

[
(α)

(
xy2

)qi
]−1 =

[
α

qiα+1

]−1 = qiα+1
α = qi + α−1 = (

α−1
)
(xy)qi .

2. As (α) (xy)qi = α + qi , so 
[
(α) (xy)qi

]−1 = [α + qi]
−1 = 1

α+qi
= α−1

qiα−1+1
= (

α−1
) (

xy2
)qi .

3. By the previous two equalities, 
[
(α)

(
xy2

)qi
(xy)q j

]−1 =
(
(α)

(
xy2

)qi
)−1 (

xy2
)q j = ((

α−1
)
(xy)qi

) (
xy2

)q j =(
α−1

)
(xy)qi

(
xy2

)q j . �

A Möbius transformation of the form (z) w = az + b

cz + d
may be represented in a matrix notation

[
a b
c d

][
z
1

]
=

[
az + b
cz + d

]
= az + b

cz + d
.

So, x and y have matrix representations of the form:

X =
[

0 −1
1 0

]
, Y =

[
1 −1
1 0

]
.

The following theorem connects the structure of continued fraction of an element α ∈Q 
(√

n
)

to the structure of words 
with xy and xy2 of G , which will later be used for the coset diagrams.

Theorem 1. The continued fraction [q1; q2, ..., qm] of α ∈Q 
(√

n
)

gives a path (xy)q1
(
xy2

)q2
... 

(
xy2

)qm from α to another α′ in the 
coset diagram of the action of G on Q 

(√
n
)∗

.

Proof. Let x, y ∈ P S L 
(
2,Z

)
with matrix representations:

X =
[

0 −1
1 0

]
, Y =

[
1 −1
1 0

]
.

Then,



658 A. Rafiq, Q. Mushtaq / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 655–663
(Y X)qi =
[

1 qi
0 1

]
=

[
1 1
0 1

]qi

,
(

Y 2 X
)q j =

[
1 0
q j 1

]
=

[
1 0
1 1

]q j

are the respective matrices of the transformations (z) (xy)qi = z + qi and (z)
(
xy2

)q j = z
q j z+1 .

By [16], which goes back at least to [4], a result of [17] states that if[
q1 1
1 0

][
q2 1
1 0

]
...

[
qm 1
1 0

]
=

[
Am Am−1
Bm Bm−1

]
, m = 1,2,3, . . . (2.1)

then Am
Bm

= [q1; q2, ..., qm], where Am
Bm

is the mth convergent of α and 
∣∣∣∣ Am Am−1

Bm Bm−1

∣∣∣∣ = (−1)m .

It is observed that[
qi 1
1 0

][
q j 1
1 0

]
=

[
qiq j + 1 qi

q j 1

]
=

[
1 qi
0 1

][
1 0
q j 1

]
. (2.2)

By equations (2.2) and (2.1), we get:[
1 q1
0 1

][
1 0
q2 1

]
...

[
1 0

qm 1

]
=

[
Am Am−1
Bm Bm−1

]
. (2.3)

Since these matrices are powers of linear fractional transformations of xy and xy2, we have[
1 qi
0 1

][
1 0
q j 1

]
= (Y X)qi

(
Y 2 X

)q j

which implies that Eq. (2.3) can be written as:

(xy)q1
(

xy2
)q2

...
(

xy2
)qm =

[
Am Am−1
Bm Bm−1

]
. (2.4)

This sets up a correspondence between the words of powers of xy and xy2 of G and continued fractions. �
We state the following important theorem.

Theorem 2. If α ∈ Q 
(√

n
)
, where n is a square-free positive integer, then for the continued fraction

[q1; q2, ..., qm, qm+1,qm+2, ...,qm+d] of α, the period of the continued fraction forms a circuit in the coset diagram of the action 
of G on Q(

√
n)∗ . The word wα = (

y2x
)q1

(yx)q2 · · · (
y2x

)qm−1
(yx)qm , where m is even, leads α to the reduced quadratic irrational 

number α′ , and the word wCi = (
xy2

)qm+d (xy)qm+d−1 . . .
(
xy2

)qm+2
(xy)qm+1 fixes α′ .

Proof. By Eq. (2.3), for the continued fraction [q1; q2, ..., qm, qm+1,qm+2, ...,qm+d] of α,[
1 q1
0 1

][
1 0
q2 1

]
...

[
1 qm−1
0 1

][
1 0

qm 1

][
α′
1

]
=

[
α
1

]

which leads from α′ to α, that is, it is a path from α′ to α in the coset diagram of the action of P S L(2, Z) on Q(
√

n)∗ . 
Denote this path by a word w = (

xy2
)qm

(xy)qm−1 · · · (xy2
)q2

(xy)q1 such that

(α′)w = α. (2.5)

Then α′ = (α) w−1 = (α) wα , which gives the path from α to α′ such that

α′ = (α)
(

y2x
)q1

(yx)q2 · · ·
(

y2x
)qm−1

(yx)qm .

The periodic part of the continued fraction gives[
1 qm+1
0 1

][
1 0

qm+2 1

]
...

[
1 qm+d−1
0 1

][
1 0

qm+d 1

][
α′
1

]
=

[
α′
1

]
.

Denote this path by a word wCi = (
xy2

)qm+d (xy)qm+d−1 . . .
(
xy2

)qm+2
(xy)qm+1 such that

(α′)wCi = α′. (2.6)

As wCi ∈ G and fixes α′ , by [10] such a word is a circuit (qm+1, qm+2, ..., qm+d) in the respective coset diagram, where 
x is represented by — and the three cycles of y by � permuted anticlockwise for the action of G on Q(

√
n)∗ with qm+1
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triangles inside the circuit and qm+2 triangles outside the circuit, alternatively. So, the period of an element of Q 
(√

n
)

provides the only circuit residing in the coset diagram of the orbit to which α belongs.

For the circuit, if d is even, then word wCi is associated with the matrix 
[

Am+d Am+d−1
Bm+d Bm+d−1

]
, which has determinant 1. 

Hence, wCi belongs to G . But if d is odd, the determinant of the associated matrix is −1, which does not belong to G . 
Taking wCi twice makes it even, that is,

(
α′)(

xy2
)qm+d

(xy)qm+d−1 · · ·
(

xy2
)qm

(xy)qm+d · · ·
(

xy2
)qm+1

(xy)qm = α′

which yields a matrix with determinant 1, which thus belongs to G . �
Corollary 1. The uniquely represented reduced quadratic irrational numbers, whose continued fractions are cyclically not equivalent, 
reveal the circuits in the orbits of the action of G on Q 

(√
n
)∗

.

Proof. The uniquely represented reduced quadratic irrational numbers α are elements that satisfy gcd
(

a, a2−n
c , c

)
= 1, 

α > 1 and −1 < ᾱ < 0. If two elements have cyclically equivalent continued fractions, either both belong in the same circuit 
or one of them belongs in the circuit of its algebraic conjugate. Hence, all the circuits of the action are obtained by the 
continued fractions of uniquely represented reduced quadratic irrational numbers, whose continued fractions are cyclically 
not equivalent. �

We illustrate this by considering the following example.

Example 1. Let α = 24−√
15

17 ∈ Q 
(√

15
)

. The continued fraction of α is 
[
1;5, 2,3

]
which implies (α)

(
y2x

)
(yx)5 = α′ , and (

α′) (
xy2

)3
(xy)2 = α′ , where α′ is either 3+√

15
3 or its algebraic conjugate 3−√

15
3 .

By the theorem (2), the continued fraction of an element of Q 
(√

n
)

is related to the path that leads from that element 
to an ambiguous number, and also to the type of circuit of the orbit to which the element belongs in the action of G on 
Q 

(√
n
)∗ . So, the structure of the continued fraction is interwoven with the structure or type of the circuit. Thus, obtaining 

all the reduced quadratic irrational numbers is equivalent to obtaining all the ambiguous numbers.

Lemma 2. If 
(
α′) (

xy2
)qm

(xy)qm−1 · · · (xy2
)q2

(xy)q1 = α, then, for m even,

(α)
(

y2x
)q1

(yx)q2 · · ·
(

y2x
)qm−1

(yx)qm = α′,

and, for m odd,

(α)
(

y2x
)q1

(yx)q2 · · · (yx)qm−1
(

y2x
)qm = (

α′)−1
.

Theorem 3. For every distinct periodic part of the reduced quadratic irrational number in Q(
√

n), there are two orbits of the action 
with the same type of circuit, and only one orbit if the circuit is of type (qm+1, qm+2, ...qm+d, qm+d, ..., qm+2, qm+1).

Proof. Let α and ᾱ be roots of the quadratic equation of the word w2 in Eq. (2.6). This means that they belong to a circuit 
of type (qm+1, qm+2, ..., qm+d). If α and ᾱ belong in the same circuit, that is, the circuit is of type

(qm+1,qm+2, ...qm+d,qm+d, ...,qm+2,qm+1)

then there is only one orbit with circuit (qm+1, qm+2, ..., qm+d); otherwise there are two orbits with circuit

(qm+1,qm+2, ...,qm+d)

one orbit containing the circuit of α and the other containing the conjugates of the aforementioned orbit. �

Corollary 2. There are 4
m∑

i=1

qi ambiguous numbers for the circuit of type (q1, q2, ..., qm, qm, ..., q2, q1) and, for any other circuit of 

type (q1, q2, ..., q2n), there are two orbits, so that there are 4
2n∑

qi of them.

i=1
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So, obtaining all the circuits of the action of P S L 
(
2,Z

)
on Q 

(√
n
)∗

gives all the ambiguous numbers of the action.
In the following table, we list a few relations between the periodic continued fractions of a real quadratic irrational 

number and the path and the circuit in the coset diagram of the action:

Continued fraction Path Circuit

1. [a] = a+
√

a2+4
2

(
α′) (

xy2
)a

(xy)a = α′

2. [1;a] = 2−a+
√

a2+4
2 (α)

(
y2x

) = α′ (
α′) (

xy2
)a

(xy)a = α′

3.
[
a;2a

] = √
a2 + 1 (α)

(
y2x

)a = α′ (
α′) (

xy2
)2a

(xy)2a = α′

4.
[
a;b

]
= −ab+√

ab(ab+4)
2a

(
α′) (

xy2
)a

(xy)b = α′

5.
[
a;b1, ...,bm

]
(α)

(
y2x

)a = α′ (
α′) (

xy2
)bm

(xy)bm−1

= a + 1[
b1;...,bm

] ...
(
xy2

)b2
(xy)b1 = α′

Finally, we state that the uniquely represented reduced quadratic irrational numbers reveal the circuits of the orbits of 
the action of P S L 

(
2,Z

)
on Q 

(√
n
)∗

.

3. Continued fractions of three types

By [12], in the coset diagram for the action of P S L 
(
2,Z

)
on Q 

(√
n
)∗

, a point α is on a circuit if and only if it is fixed by 
some element g = (xy)q1(xy2)q2 ...(xy2)q2m , which means that the circuits are permuted by any permutation g of Q 

(√
n
)∗

that normalises the set {xy, xy−1}. Two such permutations are s : z −→ z̄ and t : z −→ 1/z. Since s2 = t2 = (st)2 = 1, a 
4-permutation group permutes the circuits.

It is given that for the action of V 4 = 〈s, t : s2 = t2 = (st)2 = 1〉, under s the circuits that contain α and its im-
age ᾱ are of type (q1, q2, ..., qm, qm, ..., q2, q1), under t the circuits that contain α and its image 1/α are of type 
(q1, q2, ..., qm, q1, q2, ..., qk), and under st the circuits that contain α and its image 1/ᾱ are of type

(q1,q2, ...,qm,qm+1,qm, ...,q2).

Thus, there are three types of circuits in the orbits due to the action of V 4 on Q(
√

n)∗ . We explain these circuits with 
respect to continued fractions.

(1) For the continued fractions [q1;q2, ...,qm] of the reduced quadratic α, it is known that

α = Amα + Am−1

Bmα + Bm−1
, (3.1)

and that the Eq. (2.3) and reverse of the cycle [qm; ...,q1] yields

β = Amβ + Bm

Am−1β + Bm−1
. (3.2)

If β = −1/α, then Eq. (3.2) converts into equation (3.1), which means that −1/β is a root of this equation. Since α and 
β are positive, so the other root of Eq. (3.1) is ᾱ = −1/α.
We observe that, for the circuit of type (q1, q2, ..., qm, qm, ..., q1) in the coset diagram, the reverse circuit does not 
change, which means that, under the transformation s, α and ᾱ = −1/α lie in the same circuit.

(2) For a cycle of odd length [q1;q2, ...,q2m+1], the matrix 
[

Am Am−1
Bm Bm−1

]
has determinant −1. To obtain a matrix with 

determinant 1, continue the series of convergents until an even length is reached. Take an odd cycle

(α)
(

xy2
)q2m+1

(xy)q2m ... (xy)q2
(

xy2
)q1 = α−1, (3.3)

by lemma (1) we get 
(
α−1

)
(xy)q2m+1

(
xy2

)q2m
... 

(
xy2

)q2
(xy)q1 = α. Conjoining both of the equations, we get

(α)
(

xy2
)q2m+1

(xy)q2m ...
(

xy2
)q1

(xy)q2m+1
(

xy2
)q2m

...
(

xy2
)q2

(xy)q1 = α.

Hence if the continued fraction is of type [q1;q2, ...,q2m+1,q1,q2, ...,q2m+1] then α and α−1 belong to the same circuit 
where the position of α−1 is determined by equation (3.3).

(3) Combining the above two facts, if the cycle is of type [q1;q2, ...qm,qm+1,qm, ...,q2], then α and 1/ᾱ belong to the same 
orbit.
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Fig. 2. An orbit with circuit of type (1,0).

4. Circuits of the action of P S L
(

2,Z
)

on Q 
(√

5
)∗

In this section, we determine all the circuits of the action of G on Q 
(√

5
)∗

and investigate their structure because a 
circuit of this action is related to the ratio of the Fibonacci numbers that are the solutions to the continued fractions of the 
golden ratio.

We denote the fact (∞) (xy2)0 (xy)1 = ∞ + 1 = ∞ as a circuit of the type (1,0). This is represented in Fig. 2.

Theorem 4. The action of G on Q 
(√

5
)∗

has only three orbits with circuits (1,0), (1,1) and (4,4) up to the unique representation 
of the quadratic irrational numbers.

Proof. Let αi j = ai+
√

5
c j

be a uniquely represented reduced quadratic irrational number of Q(
√

5), with gcd

(
ai,

a2
i −5
c j

, c j

)
=

1 and ai , c j ∈Z+ . By the properties of the reduced quadratic irrational numbers αi j > 1 and −1 < ᾱi j < 0, we have

c j < ai + √
5 and

√
5 − ai < c j.

The inequality ai <
√

5 implies two possible values, 1 and 2, of ai . For ai = 1, c j has two possible values 2 and 3, and for 
ai = 2, c j has four possible values 1, 2, 3, and 4 implying 6 reduced quadratic irrational numbers, so that:

ai c j αi j continued fractions circuits

1 2 1+√
5

2

[
1
]

(1,1)

1 3 1+√
5

3

[
1;12,1,2,2,2

]
(2,2,1,12,1,2)

2 1 2 + √
5

[
4
]

(4,4)

2 2 2+√
5

2

[
2;8

]
(2,8)

2 3 2+√
5

3

[
1;2,2,2,1,12

]
(2,2,1,12,1,2)

2 4 2+√
5

4

[
1;16

]
(1,16)

.

As the two reduced real quadratic irrational numbers 1+√
5

3 and 2+√
5

3 have continued fractions that are cyclically equivalent, 
they belong to the same orbit. Since the circuits (1, 1) and (4, 4) are of type (qm+1, ...qm+d, qm+d, ..., qm+1), by theorem (3)
only one orbit of the form exists.

Recall that every real quadratic irrational number can be written uniquely as (ai + √
n)/c j , n is a non-square positive 

integer, and ai , bij and c j are relatively prime integers, where bij = (a2
i − n)/c j :

(1) for a = 1, c = 2, and b = 12−5
2 = −2, gcd(a, b, c) = 1 implies that 1+√

5
2 belongs to the circuit (1, 1) of Q 

(√
5
)

;

(2) 1+√
5

3 (or 2+√
5

3 ) ∈ (2, 2, 1, 12, 1, 2). For a = 1 or 2, c = 3 and b = 12−5
3 = −4

3 and 22−5
3 = −1

3 , gcd(a, b, c) = 1
3 . Converting 

1+√
5

3 in 3+√
45

9 , which belongs to Q 
(√

45
)

, one has that gcd(3, 4
2−20

4 , 4) = 1;

(3) 2 + √
5 belongs to the circuit (4, 4) of Q 

(√
5
)

, one has that gcd(2, 2
2−5
1 , 1) = 1;

(4) 2+√
5

2 belongs to the circuit (2, 8), so that gcd(2, 2
2−5
2 , 2) = 1

2 �= 1. Converting 2+√
5

2 into 4+√
20

4 , which belongs to 
Q 

(√
20

)
, one has that gcd(4, 4

2−20 , 4) = 1;
4
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Fig. 3. Orbit with circuit (1,0).

Fig. 4. Orbit with circuit (1,1).

Fig. 5. Orbit with circuit (4,4).

(5) 2+√
5

4 ∈ (1, 16), so that gcd(2, 2
2−5
4 , 4) = 1

4 �= 1. Converting 2+√
5

4 into 8+√
80

16 , which belongs to Q 
(√

80
)

, one has that 

gcd(8, 8
2−80
16 , 16) = 1.

Out of six circuits, only two satisfy the condition of unique representation. Hence, the action has only three orbits 
containing the circuit (1, 0) (Fig. 3), the circuit (1,1) (Fig. 4) and the circuit (4,4) (Fig. 5) unique up to the representation 
of the quadratic irrational numbers, and gives 20 ambiguous numbers of the action, whereas the rest of the circuits belong 
to the orbits of the action of G on Q 

(
s
√

5
)

for the positive integers s = 2, 3, 4. �
Conclusion. By theorem (2), the structure of the continued fraction of an element of Q 

(√
n
)

is interwoven with the structure or the 
type of the circuit. Thus, obtaining all the reduced quadratic irrational numbers is equivalent to obtaining all the circuits and thus all the 
ambiguous numbers. The continued fraction of an element αi j of Q 

(√
n
)

gives the path that leads to the ambiguous number and the 
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period of αi j gives the circuit of the orbit to which αi j belongs. Hence, the uniquely represented reduced quadratic irrational numbers 
reveal the circuits of the orbits of the action of P S L 

(
2,Z

)
on Q 

(√
n
)∗

.
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