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We give a new integral formula for the centro-projective area of a convex body, which 
was first defined by Berck–Bernig–Vernicos. We then use the formula to prove that it is 
bounded from above by the centro-projective area of an ellipsoid and that equality occurs 
if and only if the convex set is an ellipsoid.
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article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous présentons une nouvelle formule pour l’aire centro-projective d’un corps convexe. 
Cette aire a été préalablement définie par Berck–Bernig–Vernicos. Nous utilisons cette 
formule pour montrer qu’elle est majorée par l’aire centro-projective d’une ellipse, l’égalité 
caractérisant les ellipsoïdes.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

0. Introduction and statement of results

Let V be an n-dimensional vector space with origin o. Given a convex body K containing o in the interior, we define 
the function a : ∂ K → (0, ∞) such that, for each p ∈ ∂ K , −a(p)p ∈ ∂ K . The letter a stands for antipodal. Given a Euclidean 
scalar product 〈·, ·〉 on V , let k(p) be the Gauss curvature and νK (p) the outer unit normal at each p ∈ ∂ K , whenever they 
are well and uniquely defined (which, by A.D. Alexandroff [1], holds almost everywhere).

Definition 1. The centro-projective area of K is

Co(K ) :=
∫
∂ K

√
k

〈νK (p), p〉 n−1
2

(
2a

1 + a

) n−1
2

dA(p), (1)

where dA is the (n − 1)-dimensional Hausdorff measure on ∂ K .
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As shown in [2], this does not depend on the choice of the scalar product. In fact, the centro-projective area is invariant 
under projective transformations fixing the origin. It is also upper semi-continuous with respect to the Hausdorff topology.

It is worth comparing the definitions of centro-affine surface area with those of centro-projective area. The two are 
similar, except that the latter has an additional factor (containing the function a). A reader familiar with the theory of 
valuations will recognize that centro-projective area is not a valuation, but is in a sense the closest possible projective 
analogue of a valuation. In particular, if the body is origin-symmetric, then centro-projective area equals centro-affine surface 
area and therefore is a valuation on the space of origin-symmetric convex bodies.

We will prove the following centro-projective inequality.

Theorem 2. Let K be a convex body containing the origin in its interior, then one has

Co(K ) ≤ Co(B),

where B ⊂Rn is the standard unit ball. Equality holds if and only if K is an ellipsoid that contains the origin in its interior, but is not 
necessarily centered at the origin.

Let us point out that Co(B) does not depend on the particular choice of the origin inside the ellipsoid B . Indeed, if p, q
are points inside B , then there is a projective map g such that g(B) = B and g(p) = q, and therefore Co(B − p) = Co(B − q). 
In other words, the projective group acts transitively on any fixed ellipsoid B .

1. Preliminaries

We recall here some basic definitions in convexity used in our paper. More details can be found, for example, in the 
books by Gruber [3], Schneider [12], or Thompson [13].

A subset K ⊂ V is convex if the line segment joining any two points x, y ∈ K also lies in K .
A non-empty compact convex set K ⊂ V is uniquely determined by its support function denoted here by hK : V ∗ → R

and defined by

hK (ξ) = max
x∈K

〈ξ, x〉.

Indeed, we have then

K = {x | 〈ξ, x〉 ≤ hK (ξ) for all ξ ∈ V ∗}. (2)

Note that hK is a positively homogeneous function of degree 1.
If K contains the origin o in its interior, we define its polar body K ∗ ⊂ V ∗ with respect to the origin by

K ∗ := {ξ | 〈ξ, x〉 ≤ 1 for all x ∈ K }. (3)

One can also show that K ∗ = {ξ | hK (ξ) ≤ 1}. We can also define for each point x �= o in K the positive number ρK (x) such 
that ρK (x)x ∈ ∂ K . The function ρK is called the radial function and satisfies

ρK (x) = 1

hK ∗(x)
. (4)

The antipodal function a defined in the introduction is given by

a(p) = ρK (−p) for all p ∈ ∂ K . (5)

For convex sets K and L in V , the Minkowski sum K + L is the convex set defined by

K + L := {x + y | x ∈ K and y ∈ L}, (6)

and, for α ∈R, one can define the convex set αK by

αK := {αx | x ∈ K }.

Recall that hK+L = hK + hL and hαK = αhK if α ≥ 0.
From now on, we will fix a Euclidean scalar product on V . We denote by Sn−1 the corresponding unit sphere in V and 

by dm the induced volume form on V and V ∗ . We also will use the following notation: For an integrable homogeneous 
function of degree −n, f : V \ {0} →R,∮

f dm :=
∫

Sn−1

f (θ)dθ , (7)

where dθ is the standard spherical measure on Sn−1. The value of this integral depends only on the volume measure dm
and is otherwise independent of the Euclidean scalar product chosen (see [14] for details).
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2. Proof of Theorem 2

Let K ∈ V be a bounded open convex body containing the origin and let K ∗ ⊂ V ∗ be its polar with respect to the origin.
Notice that for any point p on the boundary ∂ K at which there exists a unique outer unit normal νK (p) ∈ V ∗ to K , the 

following holds:

hK (νK (p)) = 〈νK (p), p〉. (8)

Recall that the curvature function of K , f K : V \{o} → R+ is defined as follows: for each θ ∈ Sn−1 where hK is twice 
differentiable, the curvature function f K (θ) is the sum of the determinants of the principal (n − 1)-minors of the Hessian 
of hK (viewed as a function on V ∗\{0}). It is then extended as a function homogeneous of degree −n − 1. Recall that, 
for each θ ∈ Sn−1 where the radial function ρK is twice differentiable and the Gauss curvature κ(p) is positive, where 
p = ρK (θ)θ ∈ ∂ K ,

f K (νK (p)) = 1

κK (p)
.

The volume of K is given by

V (K ) = 1

n

∮
ρn

K dm = 1

n

∮
1

hn
K ∗

dm

and the affine surface area of K is defined as

S(K ) =
∮

f
n

n+1
K dm.

See Schneider’s book [12] for a more detailed discussion of affine surface area, which was defined by Blaschke for smooth 
convex bodies. The definition above, valid for all convex bodies, is due to Leichtweiss [6]. Lutwak [8] gave a different but 
equivalent definition. Also, see Santalo [11], Hug [4,5].

The following is straightforward if the boundary ∂ K is C2 and has strictly positive Gauss curvature. The general case is 
due to Hug [5].

Lemma 3. For continuous function ψ : ∂ K →R,

∫
∂ K

ψ(p)

(
κK (p)

〈νK (p), p〉n−1

)1/2

dA(p) =
∫

Sn−1

ψ(ρK (θ)θ)

(
f K ∗(θ)

hn−1
K ∗ (θ)

)1/2

dθ (9)

Proof. By Theorem 3.2 and Eq. (1) in [5], Hug established that

∫
∂ K

(
κK (p)

〈νK (p), p〉n−1

)1/2

dA(p) =
∫

Sn−1

(
f K ∗(θ)

hn−1
K ∗ (θ)

)1/2

dθ. (10)

However, in the proof of Theorem 3.2, Hug in fact proves that the two measures are equal via the bilipschitz map θ →
ρK (θ)θ . �

Generalizations of Hug’s result can also be found in Ludwig [7]. In particular, using Theorem 4 and 5 in [7] applied with 
φ(t) = t1/2 one gets Eq. (10).

The new formula for the centro-projective area of a convex body K is given by the following lemma.

Lemma 4. The centro-projective area of K is equal to

Co(K ) =
∮ (

2

hK ∗ + h−K ∗

) n−1
2

f 1/2
K ∗ dm. (11)

Proof. If a is the antipodal function defined by (5), then by Eqs. (4) and (5), we have

a(p) = 1

hK ∗(−p)
,

and therefore, for each θ ∈ Sn−1,
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a
(
ρK (θ)θ

) = 1

hK ∗
(−ρK (θ)θ

) = hK ∗(θ)

hK ∗(−θ)

Hence,

2a
(

p(θ)
)

1 + a
(

p(θ)
) = 2

hK ∗(θ)

hK ∗(−θ)
· 1

1 + hK ∗(θ)

hK ∗(−θ)

= 2hK ∗(θ)

hK ∗(−θ) + hK ∗(θ)
. (12)

The lemma now follows from Lemma 3 by setting

ψ =
( 2a

1 + a

) n−1
2

. �
To prove the theorem, we first apply the Hölder inequality to Co(K ):

Co(K ) ≤
(∮ (

2

hK ∗(x) + hK ∗(−x)

)n

dm(x)

) n−1
2n

·
(∮

f
n

n+1
K ∗ dm

) n+1
2n

= n
n−1
2n V (π(K ))

n−1
2n × S(K ∗)

n+1
2n ,

(13)

where

π(K ) =
[

1

2
(K ∗ + (−K ∗))

]∗
.

By the affine isoperimetric inequality (see, for example, [9] or [10]),

S(K ∗)n+1 ≤ n(n+1)V (K ∗)n−1 V (Bn)
2, (14)

where equality holds if and only if K is an ellipsoid centered at the origin. Applying this to inequality (13) gives

Co(K ) ≤ n ·
(

V
(
π(K )

) · V (K ∗)
) n−1

2n
V (Bn)

1
n (15)

Next, we use the Blaschke–Santaló inequality, which states that, for any convex body C ⊂ V that is symmetric with respect 
to the origin,

V (C) × V (C∗) ≤ V (Bn)
2. (16)

Again, equality holds if and only if C is an ellipsoid.
Setting

C = 1

2
K ∗ + 1

2
(−K ∗) and C∗ = π(K )

the Blaschke–Santaló inequality and (15) imply

Co(K ) ≤ nV (Bn) ·
( V (K ∗)

V
( 1

2 K ∗ + 1
2 (−K ∗)

)) n−1
2n

(17)

The theorem now follows by

V
(1

2
K ∗ + 1

2
(−K ∗)

)1/n ≥ 1

2
V (K ∗)1/n + 1

2
V (−K ∗)1/n = V (K ∗)1/n,

which follows from the Brunn–Minkowski inequality, and the identity Co(Bn) = nV (Bn).
Let us stress out that the equality conditions of the Brunn–Minkowski inequality, the Blaschke–Santaló inequality, and 

the affine isoperimetric inequality imply that equality holds in Theorem 2 if and only if K is an ellipsoid that contains the 
origin in its interior, but is not necessarily centered at the origin.

3. Centro-projective invariance

We remark that the invariance of (11) under centro-projective transformations of K is easy to show. It suffices to show 
that it is invariant under linear transformations of K and translations of K ∗ . The invariance of (11) under linear transforma-
tions of K is established in [14]. The invariance of f K ∗ and hK ∗ + h−K ∗ under translations of K ∗ follows directly from their 
definitions.
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4. Application in Hilbert geometries

A Hilbert geometry is a metric space structure defined as follows on a proper open convex domain of a finite-dimensional 
affine space. By proper, we mean that the domain does not contain any line. The distance between two points in the domain 
is defined using cross-ratios in the same way one constructs the projective model of the hyperbolic space on a Euclidean 
ball (see, for example, [2]). Such a metric is called a Hilbert metric. The Hausdorff measure associated with that metric is 
called a Busemann measure.

Given an open bounded convex domain K ⊂ V and a point p ∈ K , let V K ,p(r) denote the Busemann measure of the 
metric ball of radius r centered at p. This defines, for each pointed convex domain (K , p) of V , a function V K ,p : R+ →R+ . 
Since the Busemann measure is defined in terms of the Hilbert metric, which in turns is defined using the cross-ratios, the 
function (K , p) → V K ,p is a projective invariant of K .

One can therefore ask two questions:

• Is it true that for any pointed convex domain (K , p) and r > 0 one has

V K ,p(r) ≤ V Bn,o(r)? (18)

• Is the map (K , p) → V K ,p injective? That is, if (K , p) and (K ′, p′) are pointed convex sets such that V K ,p = V K ′,p′ , does 
there exist a projective transformation g such that(

g(K ), g(p)
) = (K ′, p′)?

A partial answer can be given if we assume the domain K to have regularity C1,1. Geometrically, this means that there 
exists a ball of some fixed radius that can roll inside K and touch every point on the boundary. It was proved in [2] that, 
for any convex domain K ,

lim
r→+∞

V K ,p(r)

V Bn,o(r)
= C0(K − p)

C0(Bn)
.

Theorem 2 shows that this limit is strictly smaller that 1, when K is not an ellipsoid. In particular, for any p ∈ K , there 
exists rK ,p > 0 such that, for all r > rK ,p , the inequality (18) holds and is strict.
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