Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebraic geometry

Compactifications of conic spaces in del Pezzo 3-fold

Compactifications d'espaces coniques dans la variété de del Pezzo de dimension 3

Kiryong Chung^a, Sang-Bum Yoo^b

^a Department of Mathematics Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
 ^b School of Natural Science, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea

ARTICLE INFO

Article history: Received 23 May 2019 Accepted after revision 16 September 2019 Available online 20 September 2019

Presented by Claire Voisin

ABSTRACT

Let V_5 be the del Pezzo 3-fold defined by the 6-dimensional linear section of the Grassmannian variety Gr(2, 5) under the Plücker embedding. In this paper, we present an explicit birational relation of compactifications of degree-two rational curves (i.e. conics) in V_5 . By a product, we obtain the virtual Poincaré polynomial of compactified moduli spaces. © 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit V_5 le del Pezzo 3 défini par la section linéaire de dimension 6 de la variété grassmannienne Gr(2, 5) située sous l'enrobage de Plücker. Dans cet article, nous présentons une relation birationnelle explicite de compactifications de courbes rationnelles de degré deux en V_5 . Au moyen d'un produit, nous obtenons le polynôme de Poincaré virtuel des espaces de modules compactifiés.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We work over the complex number field $\mathbb C.$

1.1. Results

Let *X* be a smooth projective variety with a fixed embedding $i: X \hookrightarrow \mathbb{P}^r$. Let $\mathbf{R}_d(X)$ be the moduli space of all smooth rational curves of degree *d* in *X*. For d = 1, then $\mathbf{R}_1(X)$ (the so-called Fano scheme of lines) is compact. For $d \ge 2$, $\mathbf{R}_d(X)$ may not be compact because the degeneration of curves can be singular. There are two well-known compactifications of $\mathbf{R}_d(X)$:

https://doi.org/10.1016/j.crma.2019.09.003

E-mail addresses: krchung@knu.ac.kr (K. Chung), sangbum.yoo@gmail.com (S.-B. Yoo).

¹⁶³¹⁻⁰⁷³X/ \odot 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

- (1) **Kontsevich space**: let X be a smooth projective variety. A map $f : C \to X$ is called *stable* if C has at worst nodal singularities and $|\operatorname{Aut}(f)| < \infty$. Let $\mathcal{M}_d(X)$ be the moduli space of isomorphism classes of stable maps $f : C \to X$ with genus g(C) = 0 and $f_*[C] = d \in H_2(X, \mathbb{Z})$.
- (2) **Hilbert scheme**: let $\mathcal{H}_d(X)$ be the Hilbert scheme of ideal sheaves I_C of X with Hilbert polynomial $\chi(\mathcal{O}_C(m)) = dm + 1$.

Let us denote by $\mathbf{M}_d(X)$ and $\mathbf{H}_d(X)$ the closure of the space $\mathbf{R}_d(X)$ in the moduli space $\mathcal{M}_d(X)$ and $\mathcal{H}_d(X)$. If X is a projective homogeneous variety, then the space $\mathbf{R}_d(X)$ is irreducible [16]. The birational relations of these compactified spaces have been studied in [15,6,4,7]. The main ingredient of the comparison consists in using the elementary modification of sheaves and variation of geometric invariant theoretical quotient ([13,22]). To apply these techniques, the fact that X is homogeneous is essential. See [4, Lemma 2.1] for the detailed conditions. In this paper, we will extend the comparison result even if X does not satisfy the conditions in [4, Lemma 2.1] (cf. Remark 2.6). Our projective variety of interest is the so-called del Pezzo 3 fold V_5 , which is defined by the linear section of the Grassmannian Gr(2, 5) under the Plücker embedding. The del Pezzo 3-fold V_5 has been known as the unique minimal compactification of \mathbb{C}^3 having the same topological invariant as the projective space \mathbb{P}^3 . In this paper, we present an explicit birational relation of the compactifications: $\mathbf{M}_2(V_5)$ and $\mathbf{H}_2(V_5)$. Note that the locus of the *double lines* (Definition 2.4) in $\mathbf{H}_2(V_5)$ consists of a smooth rational quartic curve [14, Proposition 1.2.2].

Theorem 1.1 (Proposition 3.3). There exists a smooth blow-up morphism

$$\mathbf{M}_2(V_5) \longrightarrow \mathbf{H}_2(V_5)$$

along the double-line locus in $H_2(V_5)$. Specially, the compactification $M_2(V_5)$ is smooth.

The key idea of the proof of Theorem 1.1 is to use the *branchvarieties* compactification that was studied in [1]. We firstly find a flat family of conics in V_5 by using local chart computation. Secondly, we perform the normalization of the flat family followed by the base change over the blown-up space $\widetilde{H}_2(V_5)$. By a local computation, one can check that the modified family provides a bijective morphism to $M_2(V_5)$. Lastly, we confirm that $M_2(V_5)$ is a normal variety by using a deformation theoretical argument. This implies that the blown-up space $\widetilde{H}_2(V_5)$ is isomorphic to $M_2(V_5)$ by Zariski's main theorem (Proposition 3.3). Using Theorem 1.1, we compute the virtual Poincaré polynomial of the Kontsevich space $\mathcal{M}_2(V_5)$ (Corollary 3.5).

2. Preliminary

2.1. Non-free lines in V₅

We need some algebro-geometric properties of the lines to describe the blow-up center of $H_2(V_5)$.

Proposition 2.1 ([10, Section 1]). The normal bundle of a line L in V_5 is isomorphic to

 $N_{L/V_5} \cong \mathcal{O}_L(1) \oplus \mathcal{O}_L(-1)$ or $\mathcal{O}_L \oplus \mathcal{O}_L$.

Definition 2.2. The line of the first (resp. second) type in Proposition 2.1 is called a non-free (resp. free) line.

Lemma 2.3 ([10, Section 2]). The locus C_0 of the non-free lines in the Hilbert scheme $\mathbf{H}_1(V_5) \cong \mathbb{P}^2$) is a smooth conic.

2.2. Results in [4]

In [4], as a generalization of the case $X = \mathbb{P}^r$ ([15, Section 4] and [6]), the authors compared the compactifications of rational curves such that a projective variety X is convex ([4, Lemma 2.1]). That is,

$$\mathrm{H}^{1}(\mathbb{P}^{1}, f^{*}T_{X}) = 0$$

for any morphism $f : \mathbb{P}^1 \to X$. For example, the Grassmannian variety Gr(k, n) is convex because the tangent bundle $T_{Gr(k,n)}$ is globally generated.

Definition 2.4. On the other hand, for a line L in X, let us define the *double line* by a non-split extension sheaf F fitting into the short exact sequence

$$0 \rightarrow \mathcal{O}_L(-1) \rightarrow F \rightarrow \mathcal{O}_L \rightarrow 0$$

where $F \cong \mathcal{O}_{L^2}$, so that L^2 is a non-reduced conic.

The authors in [4] proved that compactifications of degree-two rational curves are related by explicit blow-ups/downs.

Theorem 2.5 ([4, Theorem 3.7 and Remark 3.8]). For a projective convex variety X, $\mathbf{M}_2(X)$ and $\mathbf{H}_2(X)$ are related by blow-ups as follows:

Here $\Gamma(X)$ is the blowing up center such that

- (1) $\Gamma^{1}(X)$ is the locus of stable maps parameterizing the double covering of lines and
- (2) $\Gamma_2^1(X)$ is the locus of the double lines in X.

The comparison result of the case $X = \mathbb{P}^r$ ([15, Section 4]) was generalized in Theorem 2.5. The key point of the proof is to show that the blow-up center $\Gamma^1(\mathbb{P}^r)$ cleanly intersects with $\mathbf{M}_2(X)$ for any convex variety $X \subset \mathbb{P}^r$.

Remark 2.6. The del Pezzo variety V_5 is not convex by Proposition 2.1. In fact, let $f : \mathbb{P}^1 \to L \subset V_5$ be the degree-2 covering map where L is a non-free line. From the tangent bundle sequence, $0 \to T_L \to T_{V_5}|_L \to N_{L/V_5} \to 0$ and $f_*\mathcal{O}_{\mathbb{P}^1} \cong \mathcal{O}_L \oplus \mathcal{O}_L(-1)$, we see that

$$\mathrm{H}^{1}(\mathbb{P}^{1}, f^{*}T_{V_{5}}) \twoheadrightarrow \mathrm{H}^{1}(\mathbb{P}^{1}, f^{*}N_{L/V_{5}}) \cong \mathrm{H}^{1}(L, N_{L/V_{5}} \otimes f_{*}\mathcal{O}_{C}) = \mathbb{C}$$

and thus $\mathrm{H}^1(\mathbb{P}^1, f^*T_{V_5}) \neq 0$.

Remark 2.7. Let *L* be a line in *V*₅. From the isomorphism $\text{Ext}^1(\mathcal{O}_L, \mathcal{O}_L(-1)) \cong \text{H}^0(N_{L/V_5}(-1))$, the supporting line *L* of the double line \mathcal{O}_{L^2} must be non-free by Proposition 2.1.

2.3. Deformation theory of stable maps

The local structure of the space $\mathcal{M}_d(Y)$ was well studied in [17, Proposition 1.4, 1.5]. The deformation theory of the maps will be used for studying the normality of irreducible components of $\mathcal{M}_2(V_5)$ (Proposition 3.4).

Proposition 2.8. Let $[f: C \to Y] \in \mathcal{M}_d(Y)$. Then, the tangent space (resp. the obstruction space) of $\mathcal{M}_d(Y)$ at [f] is given by

$$\operatorname{Ext}^{1}([f^{*}\Omega_{Y} \to \Omega_{C}], \mathcal{O}_{C})$$
 (resp. $\operatorname{Ext}^{2}([f^{*}\Omega_{Y} \to \Omega_{C}], \mathcal{O}_{C})),$

where $[f^*\Omega_Y \to \Omega_C]$ is thought of as a complex of sheaves concentrated on the interval [-1, 0].

Lemma 2.9. Let *Y* be a locally complete intersection of a smooth projective variety *X*. Let $f : C \to Y \subset X$ be a stable map that factors through *Y*. Then there exists an exact sequence:

$$0 \to \operatorname{Ext}^{1}([f^{*}\Omega_{Y} \to \Omega_{C}], \mathcal{O}_{C}) \to \operatorname{Ext}^{1}([f^{*}\Omega_{X} \to \Omega_{C}], \mathcal{O}_{C}) \to \operatorname{H}^{0}(f^{*}N_{Y/X})$$
$$\to \operatorname{Ext}^{2}([f^{*}\Omega_{Y} \to \Omega_{C}], \mathcal{O}_{C}) \to \operatorname{Ext}^{2}([f^{*}\Omega_{X} \to \Omega_{C}], \mathcal{O}_{C}) \to \operatorname{H}^{1}(f^{*}N_{Y/X}) \to 0$$

where $N_{Y/X}$ is the normal bundle of Y in X.

Proof. For the proof, see [3, Lemma 2.10]. \Box

3. Comparison of compactifications

In this section, our main goal is to prove Theorem 1.1. To do this, we find a flat family of conics over $\mathbf{H}_2(V_5)$ and modify the family by using the normalization along the fiber. Furthermore, we prove that the irreducible components of $\mathcal{M}_2(V_5)$ are normal by using the *graph space* and deformation theory. In the last subsection, we obtain the virtual Poincaré polynomial of $\mathcal{M}_2(V_5)$ by using the comparison result.

3.1. Conics in V₅

It was proved that $\mathbf{H}_2(V_5)$ is isomorphic to \mathbb{P}^4 in [8] (cf. [21, Proposition 2.32]). Let us recall the correspondence between \mathbb{P}^4 and $\mathbf{H}_2(V_5)$. Let $\mathcal{U} := \mathcal{U}|_{V_5}$ be the restriction on V_5 of the universal rank-two subbundle on $\operatorname{Gr}(2, 5)$. Note that $c_1(\mathcal{U}) = -1$ and $c_2(\mathcal{U}) = 2$. Then, by [8, Lemma 3.3], we know that

Hom
$$(\mathcal{U}, \mathcal{O}_{V_5}) \cong \mathrm{H}^0(\mathcal{U}^*) = \mathbb{C}^5.$$

Let

$$\phi: \mathcal{U} \to \mathcal{O}_{V_5} \tag{1}$$

be a non-zero homomorphism. Let $im(\phi) \cong I_{C_{\phi}}$ for some subscheme C_{ϕ} in V_5 . By the stability of \mathcal{U} , we have $codim(C_{\phi}) \ge 2$. Hence, $c_1(I_{C_{\phi}}) = 0$. Also the kernel of ϕ in (1) is a reflexive sheaf of rank one and thus it is a line bundle on V_5 ([12, Proposition 1.1, 1.9]). Therefore, we obtain ker(ϕ) = $\mathcal{O}_{V_5}(-1)$. That is, we have

$$0 \to \mathcal{O}_{V_5}(-1) \to \mathcal{U} \to I_{C_{\phi}} \to 0. \tag{2}$$

By considering the Chern classes, one can check that the curve C_{ϕ} is a conic. Hence, we obtain a morphism

$$\Psi: \mathbb{P}(\operatorname{Hom}(\mathcal{U}, \mathcal{O}_{V_5})) = \mathbb{P}^4 \longrightarrow \mathbf{H}_2(V_5), \ \Psi([\phi]) = [I_{C_{\phi}}].$$
(3)

From its construction, one can check that the morphism Ψ is injective. Since **H**₂(*V*₅) is irreducible and smooth ([5, Theorem 1.2, Proposition 7.2]), the map Ψ is an isomorphism by Zariski's main theorem.

Remark 3.1. The isomorphism Ψ in (3) can be described in the following geometric way. Let V_4 be a 4-dimensional subvector space in \mathbb{C}^5 . Then the class [Gr(2, V_4)] is the Schubert cycle of type $\sigma_{1,1}$ in Gr(2, 5). Since Gr(2, V_4) is a degree-two hypersurface in $\mathbb{P}(\wedge^2 V_4)$, and thus the intersection with \mathbb{P}^6 must be a conic:

$$C = \operatorname{Gr}(2, V_4) \cap \mathbb{P}^6 \subset \operatorname{Gr}(2, 5) \cap \mathbb{P}^6 \subset \mathbb{P}^9.$$

3.2. Universal family of $H_2(V_5)$

Recall that the non-free lines in V_5 consist of a conic in $\mathbf{H}_1(V_5)$ (Lemma 2.3). Also, the double structure on the non-free line *L* is unique because $\mathrm{H}^0(N_{L/V_5}(-1)) = \mathbb{C}$. It was proved that the locus of the double lines in $\mathbf{H}_2(V_5)$ is a smooth rational quartic curve [14, Proposition 1.2.2]. Following this argument, one can describe the universal family of conics in V_5 . For details, let us consider the flag variety Gr(2, 4, 5) of type (2, 4, 5):

$$Gr(2, 4, 5) \xrightarrow{\frown} Gr(2, 5) \times Gr(4, 5)$$

 \downarrow
 $Gr(4, 5)$

where the vertical map is the projection onto the second component. Let

 $C := Gr(2, 4, 5)|_{V_5}$

be the restriction of the flag variety Gr(2, 4, 5) on $V_5 = Gr(2, 5) \cap \mathbb{P}^6$. From the geometric construction of conics in V_5 (Remark 3.1), we have a flat family of conics in V_5 over Gr(4, 5):

$$\mathcal{C} \xrightarrow{\longleftarrow} V_5 \times \operatorname{Gr}(4,5) \xrightarrow{\longrightarrow} V_5$$

$$\downarrow$$

$$\operatorname{Gr}(4,5).$$

Let us find the defining equation of C around a double line. Let $\{x_{ij}\}$, $0 \le i < j \le 4$ be the Plücker coordinate of $Gr(2, 5) \subset \mathbb{P}^9$ and the linear section \mathbb{P}^6 be $I_{\mathbb{P}^6} = \langle x_{12} - x_{03}, x_{13} - x_{24}, x_{14} - x_{02} \rangle$. For the standard basis $\{e_j \mid j = 0, 1, 2, 3, 4\}$ of \mathbb{C}^5 , let us define

$$\mathbb{C}^4 = \operatorname{span}\langle t_1 e_0 + e_1, t_2 e_0 + e_2, t_3 e_0 + e_3, t_4 e_0 + e_4 \rangle$$

for $[1:t_1:t_2:t_3:t_4] \in Gr(4,5)$. In this ordered basis of \mathbb{C}^4 , the affine chart $\begin{bmatrix} 1 & 0 & s_1 & s_2 \\ 0 & 1 & s_3 & s_4 \end{bmatrix} \in Gr(2,4)$ parameterizes the 2-dimensional subvector spaces in \mathbb{C}^5 , which is in the following form:

$$\begin{bmatrix} t_1 + t_2 + s_1 t_3 + s_2 t_4 & 1 & 1 & s_1 & s_2 \\ t_1 + t_2 + s_3 t_3 + s_4 t_4 & 1 & 1 & s_3 & s_4 \end{bmatrix}$$

Under the Plücker embedding $Gr(2,5) \subset \mathbb{P}^9$, eliminating the variables $\{s_1, s_2, s_3, s_4\}$ by using the Macaulay2 computer program ([11]), one can see that the defining equation of C is given by (cf. [14, Section 2.5.4])

$$\begin{aligned} x_{12} - x_{03} &= x_{13} - x_{24} = x_{14} - x_{02} = 0, \\ x_{01} &= -t_2 x_{12} - t_3 x_{13} - t_4 x_{14}, \\ x_{02} &= t_1 x_{12} - t_3 x_{23} - t_4 x_{24}, \\ x_{03} &= t_1 x_{13} + t_2 x_{23} - t_4 x_{34}, \\ x_{04} &= t_1 x_{14} + t_2 x_{24} + t_3 x_{34}, \\ -t_3 x_{23}^2 - t_4 x_{23} x_{24} - x_{24}^2 + t_2 x_{23} x_{34} + t_1 x_{24} x_{34} - t_4 x_{34}^2 + t_1^2 x_{23} x_{24} + t_1 t_2 x_{23}^2 - t_1 t_4 x_{23} x_{34} = 0. \end{aligned}$$

$$(4)$$

Note that the fiber $\mathcal{C}|_{(0,0,0,0)}$ at the origin $(t_1, t_2, t_3, t_4) = (0, 0, 0, 0)$ defines the double line

$$I_{L^2} = \langle x_{01}, x_{02}, x_{03}, x_{04}, x_{12}, x_{14}, x_{13} - x_{24}, x_{24}^2 \rangle$$

Corollary 3.2 ([14, Proposition 1.2.2]). Under the above notation, the locus of the double lines in $\mathbf{H}_2(V_5) = \mathbb{P}^4$ is defined by

$$\{(t_1, -\frac{t_1^3}{8}, \frac{t_1^4}{64}, \frac{t_1^2}{4}) \in \mathbb{C}_{(t_1, t_2, t_3, t_4)}^4\}$$

Proof. The double-line locus around the origin $(0, 0, 0, 0) \in \mathbb{C}^4_{(t_1, t_2, t_3, t_4)} \subset \mathbf{H}_2(V_5)$ can be directly computed. The condition that the last equation in (4) should be a square is exactly the rank-one condition of the symmetric matrix

$$\operatorname{rk}\begin{bmatrix} t_1 t_2 - t_3 & \frac{t_1^2 - t_4}{2} & \frac{t_2 - t_1 t_4}{2} \\ \frac{t_1^2 - t_4}{2} & -1 & \frac{t_1}{2} \\ \frac{t_2 - t_1 t_4}{2} & \frac{t_1}{2} & -t_4 \end{bmatrix} \le 1$$

Using the Macaulay2 computer program ([11]) again, one can check that this is equivalent to

$$\langle t_4^2 - 4t_3, t_1t_4 + 2t_2, 2t_1t_3 + t_2t_4, t_2^2 - 4t_3t_4, t_1t_2 + 2t_4^2, t_1^2 - 4t_4 \rangle,$$

which is the defining ideal of the rational normal quartic curve in $\mathbf{H}_2(V_5)$. \Box

3.3. Birational relation between $M_2(V_5)$ and $H_2(V_5)$

By modifying the presentation (4) of the universal family C in V_5 , we have the following Proposition.

Proposition 3.3. There exists a smooth blow-up

$$\mathbf{M}_2(V_5) \longrightarrow \mathbf{H}_2(V_5)$$

along the double-line locus $C_0 \cong \mathbb{P}^1$ in $\mathbb{H}_2(V_5)$. Especially, the compactification $\mathbb{M}_2(V_5)$ is smooth.

Proof. Let

$$p: bl_{C_0}\mathbf{H}_2(V_5) \longrightarrow \mathbf{H}_2(V_5)$$

be the blow-up space of $\mathbf{H}_2(V_5)$ along the double line locus C_0 . Let $\mathcal{C}' := (p \times id)^* \mathcal{C}$ be the pull-back of the flat family \mathcal{C} by the map $p \times id$. Let

$$p_2: bl_{C_0}\mathbf{H}_2(V_5) \longrightarrow bl_{C_0}\mathbf{H}_2(V_5)$$

be the two-fold covering map ramified along the exceptional divisor $p^{-1}(C_0)$ and $C'' := (p_2 \times id)^*C'$. Let

$$q:\widetilde{\mathcal{C}''}\longrightarrow \mathcal{C}''$$

be the normalization of C'' in the (general) fiber over $bl_{C_0}H_2(V_5) \setminus p^{-1}(C_0)$. Then, we have a flat family of stable maps over $bl_{C_0}H_2(V_5)$ ([1, Theorem 2.5])

$$\begin{array}{c} \widetilde{\mathcal{C}}'' \xrightarrow{ev} V_5 \\ \pi \\ \downarrow \\ bl_{C_0} \mathbf{H}_2(V_5). \end{array}$$

This can be checked by a local computation. Let $(0, a\epsilon, b\epsilon, c\epsilon)$ be the arbitrary normal curve in $\mathbb{C}^4_{(t_1, t_2, t_3, t_4)}$ at the double line (the origin). Then the universal curve C in (4) becomes

$$x_{13} - x_{24} = x_{12} = x_{14} = x_{01} = x_{02} = x_{03} = x_{04} = 0 \pmod{\epsilon}$$

and

$$pf(\epsilon) := pf(0, a\epsilon, b\epsilon, c\epsilon) = -b\epsilon x^2 - c\epsilon xy - y^2 + a\epsilon xz - c\epsilon z^2 = 0,$$

where $x = x_{23}$, $y = x_{24}$, $z = x_{34}$. Let us perform the double covering $\epsilon = t^2$ along the divisor. Then

$$pf(t^{2}) = -bt^{2}x^{2} - ct^{2}xy - y^{2} + at^{2}xz - ct^{2}z^{2} = 0.$$

After normalization along the general fiber (i.e. $\bar{y} = \frac{y}{t}$ and dividing by t^2), we have a flat family of degree-two curves

$$-bx^2 - ctx\bar{y} - \bar{y}^2 + axz - cz^2 = 0.$$

Now, the central fiber at t = 0 becomes

$$\widetilde{\mathcal{C}}''|_0 = -bx^2 - \bar{y}^2 + axz - cz^2 = 0.$$

This is obviously a reduced curve of degree two (i.e. smooth conic or pair of lines) in the plane $\mathbb{P}^2_{[x;\bar{y}:z]}$ whenever $(a, b, c) \neq 0$. Also, this defines a double covering map $\pi : \widetilde{C''}|_0 \subset \mathbb{P}^2_{[x;\bar{y}:z]} \to V(\bar{y}=0) = \mathbb{P}^1$ given by the projection from a point [0:1:0]. Note that the covering map π is bijectively determined by the homogeneous coordinates $\mathbb{P}^2 = \mathbb{P}(\mathbb{C}^3_{(a,b,c)})$, because on the line $\bar{y} = 0$, two ramification points are uniquely defined by the equation $-bx^2 + axz - cz^2 = 0$.

After all, we have a bijective morphism $bl_{C_0}H_2(V_5) \rightarrow M_2(V_5)$ by the functoriality of the moduli space of stable maps ([9, Theorem 1]). From the normality of $M_2(V_5)$ (Proposition 3.4 below), we conclude that the morphism is an isomorphism by Zariski's main theorem. \Box

3.4. Normality of irreducible components of $\mathcal{M}_2(V_5)$

As it has been done in [3, Proposition 4.1], one can see that the Kontsevich space $M_2(V_5)$ has two irreducible components. That is,

$$\mathcal{M}_2(V_5) = \mathbf{M}_2(V_5) \cup \mathbf{L}_2(V_5),$$

where $\mathbf{M}_2(V_5)$ is the irreducible component containing the smooth conic space $\mathbf{R}_2(V_5)$ and $\mathbf{L}_2(V_5)$ is the locus of the double covering of a line in V_5 . Also, the intersection part parameterizes double-covering maps of a non-free line in V_5 . Note that $\dim \mathbf{M}_2(V_5) = \dim \mathbf{L}_2(V_5) = 4$ and $\dim \mathbf{M}_2(V_5) \cap \mathbf{L}_2(V_5) = 3$. In this subsection, we finish the proof of Proposition 3.3 by proving the following thing.

Proposition 3.4. The two irreducible components $M_2(V_5)$ and $L_2(V_5)$ are normal.

Proof. It is straightforward to check that the obstruction space of the map in the complement $\mathcal{M}_2(V_5) \setminus (\mathbf{M}_2(V_5) \cap \mathbf{L}_2(V_5))$ vanishes. Therefore, the moduli space has at most finite group quotient singularity, which implies the normality on the complement.

For the intersection part, we use the result of [20, Theorem 0.1] (cf. [18, Theorem 6.1.3]). By the Plücker embedding $V_5 \subset \mathbb{P}^9$, one can see that $\mathcal{M}_2(V_5)$ is a SL(2)-quotient of the moduli space $\mathcal{M}_{(1,2)}(\mathbb{P}^1 \times V_5)$ of stable maps $f : C \to \mathbb{P}^1 \times V_5$ with bi-degree $f_*[C] = (1, 2)$:

$$\pi: \mathcal{M}_{(1,2)}(\mathbb{P}^1 \times V_5) \to \mathcal{M}_{(1,2)}(\mathbb{P}^1 \times V_5) // \mathrm{SL}(2) \cong \mathcal{M}_2(V_5).$$

Let us denote the inverse image $\pi^{-1}(\mathbf{M}_2(V_5))$ and $\pi^{-1}(\mathbf{L}_2(V_5))$ by the same notation. Let $\mathbf{Q} = \mathbf{M}_2(V_5) \cap \mathbf{L}_2(V_5)$. We prove that the two spaces $\mathbf{M}_2(V_5)$ and $\mathbf{L}_2(V_5)$ are smooth at $[f: C \to \mathbb{P}^1 \times L \subset \mathbb{P}^1 \times V_5] \in \mathbb{Q}$, $L \in C_0$ (Lemma 2.3) and thus that their SL(2)-quotient spaces are normal (cf. [15, Proposition 6.2]). By the projection formula and $(p_2 \circ f)_* \mathcal{O}_C \cong \mathcal{O}_L \oplus \mathcal{O}_L(-1)$, one can see that the tangent space of [f] in $\mathcal{M}_{(1,2)}(\mathbb{P}^1 \times V_5)$ is canonically isomorphic to

$$\mathrm{H}^{0}((p_{2}\circ f)^{*}T_{V_{5}})\cong\mathrm{H}^{0}(T_{V_{5}}\otimes(p_{2}\circ f)_{*}\mathcal{O}_{C})\cong\mathrm{H}^{0}(T_{V_{5}}|_{L})\oplus\mathrm{H}^{0}(T_{V_{5}}|_{L}(-1)),$$
(5)

where $p_2 : \mathbb{P}^1 \times V_5 \to V_5$ is the projection into the second component.

Let us consider the deformation of the map [f] in $\mathbf{M}_2(V_5)$. Recall that the locus of double lines in $\mathbf{H}_1(V_5)$ is a smooth conic C_0 (Lemma 2.3). Thus, the normal space $N_{C_0/\mathbf{H}_1(V_5)}$ at [L] is canonically isomorphic to the quotient space $\mathbf{H}^0(N_{L/V_5})/T_{[L]}C_0$, which is the normal deformation of \mathbf{Q} in $\mathbf{L}_2(V_5)$. Hence, the deformation of [f] in $\mathbf{M}_2(V_5)$ is cut out by the composition map

$$\mathrm{H}^{0}((p_{2} \circ f)^{*}T_{V_{5}}) \twoheadrightarrow \mathrm{H}^{0}(T_{V_{5}}|_{L}) \twoheadrightarrow \mathrm{H}^{0}(N_{L/V_{5}}) \twoheadrightarrow \mathrm{H}^{0}(N_{L/V_{5}})/T_{[L]}C_{0} \cong \mathbb{C}),$$

where the second map comes from the tangent bundle sequence $0 \rightarrow T_L \rightarrow T_{V_5}|_L \rightarrow N_{L/V_5} \rightarrow 0$. Therefore $\mathbf{M}_2(V_5)$ is smooth at [f].

Let us describe the space $\mathrm{H}^{0}(N_{L/V_{5}}|_{L}(-1))$ to find the deformation space of [f] in $\mathrm{L}_{2}(V_{5})$. From the normal bundle sequence $0 \to N_{L/V_{5}} \to N_{L/\mathbb{P}^{9}} \to N_{V_{5}/\mathbb{P}^{9}}|_{L} \to 0$ of $L \subset V_{5} \subset \mathbb{P}^{9}$, we obtain an inclusion map

$$\mathsf{H}^{0}(N_{L/V_{5}}|_{L}(-1)) \subset \mathsf{H}^{0}(N_{L/\mathbb{P}^{9}}|_{L}(-1)).$$
(6)

By Lemma 2.9, the projection formula and $g_*\mathcal{O}_C \cong \mathcal{O}_L \oplus \mathcal{O}_L(-1)$ for $g := p_2 \circ f$, we have

where from the surjective map in the diagram (7) of the first row comes $\text{Ext}^2([g^*\Omega_L \to \Omega_C], \mathcal{O}_C) = 0$ because *L* is convex. From this, the latter space in (6) is the normal deformation space of [*g*] along the double-covering locus in $\mathbf{M}_2(\mathbb{P}^9)$. Hence, the deformation space of [*f*] in $\mathbf{L}_2(V_5)$ is cut out by the surjective map

$$\mathrm{H}^{0}((p_{2} \circ f)^{*}T_{V_{5}}) \twoheadrightarrow \mathrm{H}^{0}(T_{V_{5}}|_{L}(-1)) \twoheadrightarrow \mathrm{H}^{0}(N_{L/V_{5}}|_{L}(-1)) = \mathbb{C}$$

where the first map comes from the isomorphism in (5). After all, we finish the proof of the normality of two irreducible components. \Box

3.5. Virtual Poincaré polynomial of $\mathcal{M}_2(V_5)$

In this section, we compute the virtual Poincaré polynomial of $\mathcal{M}_2(V_5)$ by Proposition 3.5. Let X be a quasi-projective variety. For the Hodge–Deligne polynomial $E_c(X)(u, v)$ for compactly supported cohomology of X, let

$$P(X) := E_c(X)(-t, -t)$$

be the *virtual* Poincaré polynomial of *X*. The motivic properties of the virtual Poincaré polynomial is well studied in [19, Theorem 2.2] and [2, Lemma 3.1].

Proposition 3.5.

(1) $P(\mathbb{P}^n) = \frac{t^{2n+2}-1}{t^2-1}$. (2) $P(X) = P(Z) + P(X \setminus Z)$ for any closed subset $Z \subset X$. (3) $P(X) = P(F) \cdot P(B)$ for the Zariski (resp. étal) locally trivial fibration $X \to B$ with constant fiber F (resp. Gr(k, n)).

Corollary 3.6. The virtual Poincaré polynomial of $M_2(V_5)$ and $L_2(V_5)$ is given by

$$P(\mathbf{M}_2(V_5)) = P(\mathbf{L}_2(V_5)) = 1 + 2t^2 + 3t^4 + 2t^6 + t^8$$

Hence, the virtual Poincaré polynomial of the Kontsevich space $\mathcal{M}_2(V_5)$ is

 $P(\mathcal{M}_2(V_5)) = 1 + 2t^2 + 4t^4 + 3t^6 + 2t^8.$

Proof. From Proposition 3.3 and the fact that $\mathbf{L}_2(V_5)$ is a $\mathcal{M}_2(\mathbb{P}^1) \cong \mathbb{P}^2$)-fibration over $\mathbf{H}_1(V_5)$,

$$P(\mathbf{M}_{2}(V_{5})) = P(\mathbb{P}^{4}) + P(\mathbb{P}^{1})(P(\mathbb{P}^{2}) - 1), P(\mathbf{L}_{2}(V_{5})) = P(\mathbb{P}^{2}) \cdot P(\mathbf{H}_{1}(V_{5})).$$

By the property (2) of Proposition 3.5, we have

$$P(\mathcal{M}_2(V_5)) = P(\mathbf{M}_2(V_5)) + P(\mathbf{L}_2(V_5)) - P(\mathbb{P}^2) \cdot P(C_0).$$

Cooking up the above, we obtain the results. \Box

Acknowledgement

We thank the anonymous referee for invaluable comments and suggestions. Kiryong Chung is partially supported by Korea NRF grant 2019R1F1A1042516.

References

- [1] V. Alexeev, A. Knutson, Complete moduli spaces of branchvarieties, J. Reine Angew. Math. 639 (2010) 39-71.
- [2] B. Bakker, A. Jorza, Higher rank stable pairs on k3 surfaces, Commun. Number Theory Phys. 6 (4) (2012) 805-847.
- [3] K. Chung, A desingularization of Kontsevich's compactification of twisted cubics in V_5 , arXiv:1902.01658, 2019.
- [4] K. Chung, J. Hong, Y.-H. Kiem, Compactified moduli spaces of rational curves in projective homogeneous varieties, J. Math. Soc. Jpn. 64 (4) (2012) 1211–1248.
- [5] K. Chung, J. Hong, S. Lee, Geometry of moduli spaces of rational curves in linear sections of Grassmannian Gr(2, 5), J. Pure Appl. Algebra 222 (4) (2018) 868–888.
- [6] K. Chung, Y.-H. Kiem, Hilbert scheme of rational cubic curves via stable maps, Amer. J. Math. 133 (3) (2011) 797-834.
- [7] K. Chung, H.-B. Moon, Mori's program for the moduli space of conics in Grassmannian, Taiwan. J. Math. 21 (3) (June 2017) 621-652.
- [8] D. Faenzi, Bundles over the Fano threefold V₅, Commun. Algebra 33 (9) (2005) 3061–3080.
- [9] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, in: Algebraic Geometry-Santa Cruz 1995, in: Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, USA, 1997, pp. 45–96.
- [10] M. Furushima, N. Nakayama, The family of lines on the Fano threefold V₅, Nagoya Math. J. 116 (1989) 111-122.
- [11] D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
- [12] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980) 121-176.
- [13] D. Huybrechts, M. Lehn, The Geometry of Moduli Spaces of Sheaves, second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 2010.
- [14] A. Iliev, The Fano surface of the Gushel threefold, Compos. Math. 94 (1) (1994) 81-107.
- [15] Y.-H. Kiem, Hecke correspondence, stable maps, and the Kirwan desingularization, Duke Math. J. 136 (3) (2007) 585-618.
- [16] B. Kim, R. Pandharipande, The connectedness of the moduli space of maps to homogeneous spaces, in: Symplectic Geometry and Mirror Symmetry, Seoul, 2000, World Sci. Publ., River Edge, NJ, USA, 2001, pp. 187–201.
- [17] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1) (1998) 119-174.
- [18] H.-B. Moon, Birational Geometry of Moduli Spaces of Curves of Genus Zero, PhD thesis, Seoul National University, 2011.
- [19] V. Muñoz, Hodge polynomials of the moduli spaces of rank 3 pairs, Geom. Dedic. 136 (2008) 17-46.
- [20] A.E. Parker, An elementary GIT construction of the moduli space of stable maps, Ill. J. Math. 51 (3) (2007) 1003–1025.
- [21] G. Sanna, Rational Curves and Instantons on the Fano Threefold Y₅, PhD thesis, 2014.
- [22] M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (3) (1996) 691-723.