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Let V 5 be the del Pezzo 3-fold defined by the 6-dimensional linear section of the 
Grassmannian variety Gr(2, 5) under the Plücker embedding. In this paper, we present an 
explicit birational relation of compactifications of degree-two rational curves (i.e. conics) in 
V 5. By a product, we obtain the virtual Poincaré polynomial of compactified moduli spaces.
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r é s u m é

Soit V 5 le del Pezzo 3 défini par la section linéaire de dimension 6 de la variété 
grassmannienne Gr(2, 5) située sous l’enrobage de Plücker. Dans cet article, nous présentons 
une relation birationnelle explicite de compactifications de courbes rationnelles de degré 
deux en V 5. Au moyen d’un produit, nous obtenons le polynôme de Poincaré virtuel des 
espaces de modules compactifiés.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We work over the complex number field C.

1.1. Results

Let X be a smooth projective variety with a fixed embedding i : X ↪→ P r . Let Rd(X) be the moduli space of all smooth 
rational curves of degree d in X . For d = 1, then R1(X) (the so-called Fano scheme of lines) is compact. For d ≥ 2, Rd(X)

may not be compact because the degeneration of curves can be singular. There are two well-known compactifications of 
Rd(X):
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(1) Kontsevich space: let X be a smooth projective variety. A map f : C → X is called stable if C has at worst nodal 
singularities and |Aut( f )| < ∞. Let Md(X) be the moduli space of isomorphism classes of stable maps f : C → X with 
genus g(C) = 0 and f∗[C] = d ∈ H2(X, Z).

(2) Hilbert scheme: let Hd(X) be the Hilbert scheme of ideal sheaves IC of X with Hilbert polynomial χ(OC (m)) = dm +1.

Let us denote by Md(X) and Hd(X) the closure of the space Rd(X) in the moduli space Md(X) and Hd(X). If X is a 
projective homogeneous variety, then the space Rd(X) is irreducible [16]. The birational relations of these compactified 
spaces have been studied in [15,6,4,7]. The main ingredient of the comparison consists in using the elementary modification 
of sheaves and variation of geometric invariant theoretical quotient ([13,22]). To apply these techniques, the fact that X is 
homogeneous is essential. See [4, Lemma 2.1] for the detailed conditions. In this paper, we will extend the comparison result 
even if X does not satisfy the conditions in [4, Lemma 2.1] (cf. Remark 2.6). Our projective variety of interest is the so-called 
del Pezzo 3 fold V 5, which is defined by the linear section of the Grassmannian Gr(2, 5) under the Plücker embedding. The 
del Pezzo 3-fold V 5 has been known as the unique minimal compactification of C3 having the same topological invariant 
as the projective space P 3. In this paper, we present an explicit birational relation of the compactifications: M2(V 5) and 
H2(V 5). Note that the locus of the double lines (Definition 2.4) in H2(V 5) consists of a smooth rational quartic curve [14, 
Proposition 1.2.2].

Theorem 1.1 (Proposition 3.3). There exists a smooth blow-up morphism

M2(V 5) −→ H2(V 5)

along the double-line locus in H2(V 5). Specially, the compactification M2(V 5) is smooth.

The key idea of the proof of Theorem 1.1 is to use the branchvarieties compactification that was studied in [1]. We 
firstly find a flat family of conics in V 5 by using local chart computation. Secondly, we perform the normalization of the 
flat family followed by the base change over the blown-up space H̃2(V 5). By a local computation, one can check that the 
modified family provides a bijective morphism to M2(V 5). Lastly, we confirm that M2(V 5) is a normal variety by using a 
deformation theoretical argument. This implies that the blown-up space H̃2(V 5) is isomorphic to M2(V 5) by Zariski’s main 
theorem (Proposition 3.3). Using Theorem 1.1, we compute the virtual Poincaré polynomial of the Kontsevich space M2(V 5)

(Corollary 3.5).

2. Preliminary

2.1. Non-free lines in V 5

We need some algebro-geometric properties of the lines to describe the blow-up center of H2(V 5).

Proposition 2.1 ([10, Section 1]). The normal bundle of a line L in V 5 is isomorphic to

NL/V 5
∼= OL(1) ⊕OL(−1) or OL ⊕OL .

Definition 2.2. The line of the first (resp. second) type in Proposition 2.1 is called a non-free (resp. free) line.

Lemma 2.3 ([10, Section 2]). The locus C0 of the non-free lines in the Hilbert scheme H1(V 5)(∼=P2) is a smooth conic.

2.2. Results in [4]

In [4], as a generalization of the case X = P r ([15, Section 4] and [6]), the authors compared the compactifications of 
rational curves such that a projective variety X is convex ([4, Lemma 2.1]). That is,

H1(P 1, f ∗T X ) = 0

for any morphism f :P 1 → X . For example, the Grassmannian variety Gr(k, n) is convex because the tangent bundle TGr(k,n)

is globally generated.

Definition 2.4. On the other hand, for a line L in X , let us define the double line by a non-split extension sheaf F fitting into 
the short exact sequence

0 → OL(−1) → F → OL → 0

where F ∼=OL2 , so that L2 is a non-reduced conic.
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The authors in [4] proved that compactifications of degree-two rational curves are related by explicit blow-ups/downs.

Theorem 2.5 ([4, Theorem 3.7 and Remark 3.8]). For a projective convex variety X, M2(X) and H2(X) are related by blow-ups as 
follows:

M̃2(X)

�1(X) �1
2(X)

M2(X) H2(X).

Here �(X) is the blowing up center such that

(1) �1(X) is the locus of stable maps parameterizing the double covering of lines and
(2) �1

2(X) is the locus of the double lines in X.

The comparison result of the case X = P r ([15, Section 4]) was generalized in Theorem 2.5. The key point of the proof 
is to show that the blow-up center �1(P r) cleanly intersects with M2(X) for any convex variety X ⊂P r .

Remark 2.6. The del Pezzo variety V 5 is not convex by Proposition 2.1. In fact, let f : P 1 → L ⊂ V 5 be the degree-2
covering map where L is a non-free line. From the tangent bundle sequence, 0 → T L → T V 5 |L → NL/V 5 → 0 and f∗OP1 ∼=
OL ⊕OL(−1), we see that

H1(P 1, f ∗T V 5) � H1(P 1, f ∗NL/V 5)
∼= H1(L, NL/V 5 ⊗ f∗OC ) =C

and thus H1(P 1, f ∗T V 5 ) �= 0.

Remark 2.7. Let L be a line in V 5. From the isomorphism Ext1(OL, OL(−1)) ∼= H0(NL/V 5(−1)), the supporting line L of the 
double line OL2 must be non-free by Proposition 2.1.

2.3. Deformation theory of stable maps

The local structure of the space Md(Y ) was well studied in [17, Proposition 1.4, 1.5]. The deformation theory of the 
maps will be used for studying the normality of irreducible components of M2(V 5) (Proposition 3.4).

Proposition 2.8. Let [ f : C → Y ] ∈Md(Y ). Then, the tangent space (resp. the obstruction space) of Md(Y ) at [ f ] is given by

Ext1([ f ∗�Y → �C ],OC ) (resp. Ext2([ f ∗�Y → �C ],OC )),

where [ f ∗�Y → �C ] is thought of as a complex of sheaves concentrated on the interval [−1, 0].

Lemma 2.9. Let Y be a locally complete intersection of a smooth projective variety X. Let f : C → Y ⊂ X be a stable map that factors 
through Y . Then there exists an exact sequence:

0 →Ext1([ f ∗�Y → �C ],OC ) → Ext1([ f ∗�X → �C ],OC ) → H0( f ∗NY /X )

→Ext2([ f ∗�Y → �C ],OC ) → Ext2([ f ∗�X → �C ],OC ) → H1( f ∗NY /X ) → 0

where NY /X is the normal bundle of Y in X.

Proof. For the proof, see [3, Lemma 2.10]. �
3. Comparison of compactifications

In this section, our main goal is to prove Theorem 1.1. To do this, we find a flat family of conics over H2(V 5) and 
modify the family by using the normalization along the fiber. Furthermore, we prove that the irreducible components of 
M2(V 5) are normal by using the graph space and deformation theory. In the last subsection, we obtain the virtual Poincaré 
polynomial of M2(V 5) by using the comparison result.
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3.1. Conics in V 5

It was proved that H2(V 5) is isomorphic to P 4 in [8] (cf. [21, Proposition 2.32]). Let us recall the correspondence 
between P 4 and H2(V 5). Let U := U |V 5 be the restriction on V 5 of the universal rank-two subbundle on Gr(2, 5). Note that 
c1(U) = −1 and c2(U) = 2. Then, by [8, Lemma 3.3], we know that

Hom(U,OV 5)
∼= H0(U∗) = C5.

Let

φ : U → OV 5 (1)

be a non-zero homomorphism. Let im(φ) ∼= ICφ for some subscheme Cφ in V 5. By the stability of U , we have codim(Cφ) ≥ 2. 
Hence, c1(ICφ ) = 0. Also the kernel of φ in (1) is a reflexive sheaf of rank one and thus it is a line bundle on V 5 ([12, 
Proposition 1.1, 1.9]). Therefore, we obtain ker(φ) =OV 5(−1). That is, we have

0 → OV 5(−1) → U → ICφ → 0. (2)

By considering the Chern classes, one can check that the curve Cφ is a conic. Hence, we obtain a morphism

� : P (Hom(U,OV 5)) = P 4 −→ H2(V 5), �([φ]) = [ICφ ]. (3)

From its construction, one can check that the morphism � is injective. Since H2(V 5) is irreducible and smooth ([5, Theorem 
1.2, Proposition 7.2]), the map � is an isomorphism by Zariski’s main theorem.

Remark 3.1. The isomorphism � in (3) can be described in the following geometric way. Let V 4 be a 4-dimensional sub-
vector space in C5. Then the class [Gr(2, V 4)] is the Schubert cycle of type σ1,1 in Gr(2, 5). Since Gr(2, V 4) is a degree-two 
hypersurface in P (∧2 V 4), and thus the intersection with P 6 must be a conic:

C = Gr(2, V 4) ∩ P 6 ⊂ Gr(2,5) ∩ P 6 ⊂ P 9.

3.2. Universal family of H2(V 5)

Recall that the non-free lines in V 5 consist of a conic in H1(V 5) (Lemma 2.3). Also, the double structure on the non-free 
line L is unique because H0(NL/V 5(−1)) = C. It was proved that the locus of the double lines in H2(V 5) is a smooth 
rational quartic curve [14, Proposition 1.2.2]. Following this argument, one can describe the universal family of conics in V 5 . 
For details, let us consider the flag variety Gr(2, 4, 5) of type (2, 4, 5):

Gr(2,4,5) Gr(2,5) × Gr(4,5)

Gr(4,5)

where the vertical map is the projection onto the second component. Let

C := Gr(2,4,5)|V 5

be the restriction of the flag variety Gr(2, 4, 5) on V 5 = Gr(2, 5) ∩ P 6. From the geometric construction of conics in V 5

(Remark 3.1), we have a flat family of conics in V 5 over Gr(4, 5):

C V 5 × Gr(4,5) V 5

Gr(4,5).

Let us find the defining equation of C around a double line. Let {xij}, 0 ≤ i < j ≤ 4 be the Plücker coordinate of Gr(2, 5) ⊂P 9

and the linear section P 6 be IP6 = 〈x12 − x03, x13 − x24, x14 − x02〉. For the standard basis {e j | j = 0, 1, 2, 3, 4} of C5, let us 
define

C4 = span〈t1e0 + e1, t2e0 + e2, t3e0 + e3, t4e0 + e4〉
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for [1 : t1 : t2 : t3 : t4] ∈ Gr(4, 5). In this ordered basis of C4, the affine chart 
[

1 0 s1 s2
0 1 s3 s4

]
∈ Gr(2, 4) parameterizes the 

2-dimensional subvector spaces in C5, which is in the following form:[
t1 + t2 + s1t3 + s2t4 1 1 s1 s2
t1 + t2 + s3t3 + s4t4 1 1 s3 s4

]
.

Under the Plücker embedding Gr(2, 5) ⊂ P 9, eliminating the variables {s1, s2, s3, s4} by using the Macaulay2 computer 
program ([11]), one can see that the defining equation of C is given by (cf. [14, Section 2.5.4])⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x12 − x03 = x13 − x24 = x14 − x02 = 0,

x01 = −t2x12 − t3x13 − t4x14,

x02 = t1x12 − t3x23 − t4x24,

x03 = t1x13 + t2x23 − t4x34,

x04 = t1x14 + t2x24 + t3x34,

−t3x2
23 − t4x23x24 − x2

24 + t2x23x34 + t1x24x34 − t4x2
34 + t2

1x23x24 + t1t2x2
23 − t1t4x23x34 = 0.

(4)

Note that the fiber C|(0,0,0,0) at the origin (t1, t2, t3, t4) = (0, 0, 0, 0) defines the double line

I L2 = 〈x01, x02, x03, x04, x12, x14, x13 − x24, x2
24〉

in V 5.

Corollary 3.2 ([14, Proposition 1.2.2]). Under the above notation, the locus of the double lines in H2(V 5) =P 4 is defined by

{(t1,− t3
1

8
,

t4
1

64
,

t2
1

4
) ∈ C4

(t1,t2,t3,t4)}.

Proof. The double-line locus around the origin (0, 0, 0, 0) ∈ C4
(t1,t2,t3,t4) ⊂ H2(V 5) can be directly computed. The condition 

that the last equation in (4) should be a square is exactly the rank-one condition of the symmetric matrix

rk

⎡
⎢⎢⎣

t1t2 − t3
t2
1−t4

2
t2−t1t4

2
t2
1−t4

2 −1 t1
2

t2−t1t4
2

t1
2 −t4

⎤
⎥⎥⎦ ≤ 1.

Using the Macaulay2 computer program ([11]) again, one can check that this is equivalent to

〈t2
4 − 4t3, t1t4 + 2t2,2t1t3 + t2t4, t2

2 − 4t3t4, t1t2 + 2t2
4, t2

1 − 4t4〉,
which is the defining ideal of the rational normal quartic curve in H2(V 5). �
3.3. Birational relation between M2(V 5) and H2(V 5)

By modifying the presentation (4) of the universal family C in V 5, we have the following Proposition.

Proposition 3.3. There exists a smooth blow-up

M2(V 5) −→ H2(V 5)

along the double-line locus C0(∼=P 1) in H2(V 5). Especially, the compactification M2(V 5) is smooth.

Proof. Let

p : blC0 H2(V 5) −→ H2(V 5)

be the blow-up space of H2(V 5) along the double line locus C0. Let C′ := (p × id)∗C be the pull-back of the flat family C by 
the map p × id. Let

p2 : ˜blC0 H2(V 5) −→ blC0 H2(V 5)

be the two-fold covering map ramified along the exceptional divisor p−1(C0) and C′′ := (p2 × id)∗C′ . Let
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q : C̃′′ −→ C′′

be the normalization of C′′ in the (general) fiber over ˜blC0 H2(V 5) \ p−1(C0). Then, we have a flat family of stable maps over 
blC0 H2(V 5) ([1, Theorem 2.5])

C̃′′

π

ev V 5

blC0 H2(V 5).

This can be checked by a local computation. Let (0, aε, bε, cε) be the arbitrary normal curve in C4
(t1,t2,t3,t4) at the double 

line (the origin). Then the universal curve C in (4) becomes

x13 − x24 = x12 = x14 = x01 = x02 = x03 = x04 = 0 (mod ε)

and

pf (ε) := pf (0,aε,bε, cε) = −bεx2 − cεxy − y2 + aεxz − cεz2 = 0,

where x = x23, y = x24, z = x34. Let us perform the double covering ε = t2 along the divisor. Then

pf (t2) = −bt2x2 − ct2xy − y2 + at2xz − ct2z2 = 0.

After normalization along the general fiber (i.e. ȳ = y
t and dividing by t2), we have a flat family of degree-two curves

−bx2 − ctxȳ − ȳ2 + axz − cz2 = 0.

Now, the central fiber at t = 0 becomes

C̃′′|0 = −bx2 − ȳ2 + axz − cz2 = 0.

This is obviously a reduced curve of degree two (i.e. smooth conic or pair of lines) in the plane P 2
[x: ȳ:z] whenever (a, b, c) �= 0. 

Also, this defines a double covering map π : C̃′′|0 ⊂P 2
[x: ȳ:z] → V ( ȳ = 0) =P 1 given by the projection from a point [0 : 1 : 0]. 

Note that the covering map π is bijectively determined by the homogeneous coordinates P 2 = P (C3
(a,b,c)), because on the 

line ȳ = 0, two ramification points are uniquely defined by the equation −bx2 + axz − cz2 = 0.
After all, we have a bijective morphism blC0 H2(V 5) → M2(V 5) by the functoriality of the moduli space of stable maps 

([9, Theorem 1]). From the normality of M2(V 5) (Proposition 3.4 below), we conclude that the morphism is an isomorphism 
by Zariski’s main theorem. �
3.4. Normality of irreducible components of M2(V 5)

As it has been done in [3, Proposition 4.1], one can see that the Kontsevich space M2(V 5) has two irreducible compo-
nents. That is,

M2(V 5) = M2(V 5) ∪ L2(V 5),

where M2(V 5) is the irreducible component containing the smooth conic space R2(V 5) and L2(V 5) is the locus of the double 
covering of a line in V 5. Also, the intersection part parameterizes double-covering maps of a non-free line in V 5. Note that 
dim M2(V 5) = dim L2(V 5) = 4 and dim M2(V 5) ∩ L2(V 5) = 3. In this subsection, we finish the proof of Proposition 3.3 by 
proving the following thing.

Proposition 3.4. The two irreducible components M2(V 5) and L2(V 5) are normal.

Proof. It is straightforward to check that the obstruction space of the map in the complement M2(V 5) \ (M2(V 5) ∩ L2(V 5))

vanishes. Therefore, the moduli space has at most finite group quotient singularity, which implies the normality on the 
complement.

For the intersection part, we use the result of [20, Theorem 0.1] (cf. [18, Theorem 6.1.3]). By the Plücker embedding 
V 5 ⊂P 9, one can see that M2(V 5) is a SL(2)-quotient of the moduli space M(1,2)(P 1 × V 5) of stable maps f : C →P 1 × V 5

with bi-degree f∗[C] = (1, 2):

π : M(1,2)(P
1 × V 5) → M(1,2)(P

1 × V 5)//SL(2) ∼= M2(V 5).
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Let us denote the inverse image π−1(M2(V 5)) and π−1(L2(V 5)) by the same notation. Let Q = M2(V 5) ∩ L2(V 5). We prove 
that the two spaces M2(V 5) and L2(V 5) are smooth at [ f : C → P 1 × L ⊂ P 1 × V 5] ∈ Q , L ∈ C0 (Lemma 2.3) and thus that 
their SL(2)-quotient spaces are normal (cf. [15, Proposition 6.2]). By the projection formula and (p2 ◦ f )∗OC ∼=OL ⊕OL(−1), 
one can see that the tangent space of [ f ] in M(1,2)(P 1 × V 5) is canonically isomorphic to

H0((p2 ◦ f )∗T V 5)
∼= H0(T V 5 ⊗ (p2 ◦ f )∗OC ) ∼= H0(T V 5 |L) ⊕ H0(T V 5 |L(−1)), (5)

where p2 :P 1 × V 5 → V 5 is the projection into the second component.
Let us consider the deformation of the map [ f ] in M2(V 5). Recall that the locus of double lines in H1(V 5) is a 

smooth conic C0 (Lemma 2.3). Thus, the normal space NC0/H1(V 5) at [L] is canonically isomorphic to the quotient space 
H0(NL/V 5)/T [L]C0, which is the normal deformation of Q in L2(V 5). Hence, the deformation of [ f ] in M2(V 5) is cut out by 
the composition map

H0((p2 ◦ f )∗T V 5) � H0(T V 5 |L) � H0(NL/V 5) � H0(NL/V 5)/T [L]C0(∼= C),

where the second map comes from the tangent bundle sequence 0 → T L → T V 5 |L → NL/V 5 → 0. Therefore M2(V 5) is 
smooth at [ f ].

Let us describe the space H0(NL/V 5 |L(−1)) to find the deformation space of [ f ] in L2(V 5). From the normal bundle 
sequence 0 → NL/V 5 → NL/P9 → NV 5/P9 |L → 0 of L ⊂ V 5 ⊂P 9, we obtain an inclusion map

H0(NL/V 5 |L(−1)) ⊂ H0(NL/P9 |L(−1)). (6)

By Lemma 2.9, the projection formula and g∗OC ∼=OL ⊕OL(−1) for g := p2 ◦ f , we have

Ext1([g∗�L → �C ],OC )

∼=

Ext1([g∗�P9 → �C ],OC )

∼=

H0(g∗NL/P9)

∼=

T [g]M2(L) T [g]M2(P 9) H0(NL/P9) ⊕ H0(NL/P9 |L(−1)),

(7)

where from the surjective map in the diagram (7) of the first row comes Ext2([g∗�L → �C ], OC ) = 0 because L is convex. 
From this, the latter space in (6) is the normal deformation space of [g] along the double-covering locus in M2(P 9). Hence, 
the deformation space of [ f ] in L2(V 5) is cut out by the surjective map

H0((p2 ◦ f )∗T V 5) � H0(T V 5 |L(−1)) � H0(NL/V 5 |L(−1)) = C,

where the first map comes from the isomorphism in (5). After all, we finish the proof of the normality of two irreducible 
components. �
3.5. Virtual Poincaré polynomial of M2(V 5)

In this section, we compute the virtual Poincaré polynomial of M2(V 5) by Proposition 3.5. Let X be a quasi-projective 
variety. For the Hodge–Deligne polynomial Ec(X)(u, v) for compactly supported cohomology of X , let

P(X) := Ec(X)(−t,−t)

be the virtual Poincaré polynomial of X . The motivic properties of the virtual Poincaré polynomial is well studied in [19, 
Theorem 2.2] and [2, Lemma 3.1].

Proposition 3.5.

(1) P(Pn) = t2n+2−1
t2−1

.
(2) P(X) = P(Z) + P(X \ Z) for any closed subset Z ⊂ X.
(3) P(X) = P(F ) · P(B) for the Zariski (resp. étal) locally trivial fibration X → B with constant fiber F (resp. Gr(k, n)).

Corollary 3.6. The virtual Poincaré polynomial of M2(V 5) and L2(V 5) is given by

P(M2(V 5)) = P(L2(V 5)) = 1 + 2t2 + 3t4 + 2t6 + t8.

Hence, the virtual Poincaré polynomial of the Kontsevich space M2(V 5) is

P(M2(V 5)) = 1 + 2t2 + 4t4 + 3t6 + 2t8.
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Proof. From Proposition 3.3 and the fact that L2(V 5) is a M2(P 1)(∼=P2)-fibration over H1(V 5),

P(M2(V 5)) = P(P 4) + P(P 1)(P(P 2) − 1), P(L2(V 5)) = P(P 2) · P(H1(V 5)).

By the property (2) of Proposition 3.5, we have

P(M2(V 5)) = P(M2(V 5)) + P(L2(V 5)) − P(P 2) · P(C0).

Cooking up the above, we obtain the results. �
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