Algebraic geometry

Compactifications of conic spaces in del Pezzo 3-fold
 Compactifications d'espaces coniques dans la variété de del Pezzo de dimension 3

Kiryong Chung ${ }^{\text {a }}$, Sang-Bum Yoo ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
${ }^{\text {b }}$ School of Natural Science, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea

A R T I C L E I N F O

Article history:

Received 23 May 2019
Accepted after revision 16 September 2019
Available online 20 September 2019
Presented by Claire Voisin

Abstract

Let V_{5} be the del Pezzo 3-fold defined by the 6-dimensional linear section of the Grassmannian variety $\operatorname{Gr}(2,5)$ under the Plücker embedding. In this paper, we present an explicit birational relation of compactifications of degree-two rational curves (i.e. conics) in V_{5}. By a product, we obtain the virtual Poincaré polynomial of compactified moduli spaces. © 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit V_{5} le del Pezzo 3 défini par la section linéaire de dimension 6 de la variété grassmannienne $\operatorname{Gr}(2,5)$ située sous l'enrobage de Plücker. Dans cet article, nous présentons une relation birationnelle explicite de compactifications de courbes rationnelles de degré deux en V_{5}. Au moyen d'un produit, nous obtenons le polynôme de Poincaré virtuel des espaces de modules compactifiés.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We work over the complex number field \mathbb{C}.

1.1. Results

Let X be a smooth projective variety with a fixed embedding $i: X \hookrightarrow \mathbb{P}^{r}$. Let $\mathbf{R}_{d}(X)$ be the moduli space of all smooth rational curves of degree d in X. For $d=1$, then $\mathbf{R}_{1}(X)$ (the so-called Fano scheme of lines) is compact. For $d \geq 2, \mathbf{R}_{d}(X)$ may not be compact because the degeneration of curves can be singular. There are two well-known compactifications of $\mathbf{R}_{d}(X)$:

[^0](1) Kontsevich space: let X be a smooth projective variety. A map $f: C \rightarrow X$ is called stable if C has at worst nodal singularities and $|\operatorname{Aut}(f)|<\infty$. Let $\mathcal{M}_{d}(X)$ be the moduli space of isomorphism classes of stable maps $f: C \rightarrow X$ with genus $g(C)=0$ and $f_{*}[C]=d \in H_{2}(X, \mathbb{Z})$.
(2) Hilbert scheme: let $\mathcal{H}_{d}(X)$ be the Hilbert scheme of ideal sheaves I_{C} of X with Hilbert polynomial $\chi\left(\mathcal{O}_{C}(m)\right)=d m+1$.

Let us denote by $\mathbf{M}_{d}(X)$ and $\mathbf{H}_{d}(X)$ the closure of the space $\mathbf{R}_{d}(X)$ in the moduli space $\mathcal{M}_{d}(X)$ and $\mathcal{H}_{d}(X)$. If X is a projective homogeneous variety, then the space $\mathbf{R}_{d}(X)$ is irreducible [16]. The birational relations of these compactified spaces have been studied in [15,6,4,7]. The main ingredient of the comparison consists in using the elementary modification of sheaves and variation of geometric invariant theoretical quotient ([13,22]). To apply these techniques, the fact that X is homogeneous is essential. See [4, Lemma 2.1] for the detailed conditions. In this paper, we will extend the comparison result even if X does not satisfy the conditions in [4, Lemma 2.1] (cf. Remark 2.6). Our projective variety of interest is the so-called del Pezzo 3 fold V_{5}, which is defined by the linear section of the Grassmannian $\operatorname{Gr}(2,5)$ under the Plücker embedding. The del Pezzo 3-fold V_{5} has been known as the unique minimal compactification of \mathbb{C}^{3} having the same topological invariant as the projective space \mathbb{P}^{3}. In this paper, we present an explicit birational relation of the compactifications: $\mathbf{M}_{2}\left(V_{5}\right)$ and $\mathbf{H}_{2}\left(V_{5}\right)$. Note that the locus of the double lines (Definition 2.4) in $\mathbf{H}_{2}\left(V_{5}\right)$ consists of a smooth rational quartic curve [14, Proposition 1.2.2].

Theorem 1.1 (Proposition 3.3). There exists a smooth blow-up morphism

$$
\mathbf{M}_{2}\left(V_{5}\right) \longrightarrow \mathbf{H}_{2}\left(V_{5}\right)
$$

along the double-line locus in $\mathbf{H}_{2}\left(V_{5}\right)$. Specially, the compactification $\mathbf{M}_{2}\left(V_{5}\right)$ is smooth.
The key idea of the proof of Theorem 1.1 is to use the branchvarieties compactification that was studied in [1]. We firstly find a flat family of conics in V_{5} by using local chart computation. Secondly, we perform the normalization of the flat family followed by the base change over the blown-up space $\widetilde{\mathbf{H}_{2}}\left(V_{5}\right)$. By a local computation, one can check that the modified family provides a bijective morphism to $\mathbf{M}_{2}\left(V_{5}\right)$. Lastly, we confirm that $\mathbf{M}_{2}\left(V_{5}\right)$ is a normal variety by using a deformation theoretical argument. This implies that the blown-up space $\widetilde{\mathbf{H}_{2}}\left(V_{5}\right)$ is isomorphic to $\mathbf{M}_{2}\left(V_{5}\right)$ by Zariski's main theorem (Proposition 3.3). Using Theorem 1.1, we compute the virtual Poincaré polynomial of the Kontsevich space $\mathcal{M}_{2}\left(V_{5}\right)$ (Corollary 3.5).

2. Preliminary

2.1. Non-free lines in V_{5}

We need some algebro-geometric properties of the lines to describe the blow-up center of $\mathbf{H}_{2}\left(V_{5}\right)$.

Proposition 2.1 ([10, Section 1]). The normal bundle of a line L in V_{5} is isomorphic to

$$
N_{L / V_{5}} \cong \mathcal{O}_{L}(1) \oplus \mathcal{O}_{L}(-1) \text { or } \mathcal{O}_{L} \oplus \mathcal{O}_{L}
$$

Definition 2.2. The line of the first (resp. second) type in Proposition 2.1 is called a non-free (resp. free) line.
Lemma 2.3 ([10, Section 2]). The locus C_{0} of the non-free lines in the Hilbert scheme $\mathbf{H}_{1}\left(V_{5}\right)\left(\cong \mathbb{P}^{2}\right)$ is a smooth conic.

2.2. Results in [4]

In [4], as a generalization of the case $X=\mathbb{P}^{r}$ ([15, Section 4] and [6]), the authors compared the compactifications of rational curves such that a projective variety X is convex ([4, Lemma 2.1]). That is,

$$
\mathrm{H}^{1}\left(\mathbb{P}^{1}, f^{*} T_{X}\right)=0
$$

for any morphism $f: \mathbb{P}^{1} \rightarrow X$. For example, the Grassmannian variety $\operatorname{Gr}(k, n)$ is convex because the tangent bundle $T_{\operatorname{Gr}(k, n)}$ is globally generated.

Definition 2.4. On the other hand, for a line L in X, let us define the double line by a non-split extension sheaf F fitting into the short exact sequence

$$
0 \rightarrow \mathcal{O}_{L}(-1) \rightarrow F \rightarrow \mathcal{O}_{L} \rightarrow 0
$$

where $F \cong \mathcal{O}_{L^{2}}$, so that L^{2} is a non-reduced conic.

The authors in [4] proved that compactifications of degree-two rational curves are related by explicit blow-ups/downs.

Theorem 2.5 ([4, Theorem 3.7 and Remark 3.8]). For a projective convex variety $X, \mathbf{M}_{2}(X)$ and $\mathbf{H}_{2}(X)$ are related by blow-ups as follows:

Here $\Gamma(X)$ is the blowing up center such that
(1) $\Gamma^{1}(X)$ is the locus of stable maps parameterizing the double covering of lines and
(2) $\Gamma_{2}^{1}(X)$ is the locus of the double lines in X.

The comparison result of the case $X=\mathbb{P}^{r}([15$, Section 4]) was generalized in Theorem 2.5 . The key point of the proof is to show that the blow-up center $\Gamma^{1}\left(\mathbb{P}^{r}\right)$ cleanly intersects with $\mathbf{M}_{2}(X)$ for any convex variety $X \subset \mathbb{P}^{r}$.

Remark 2.6. The del Pezzo variety V_{5} is not convex by Proposition 2.1. In fact, let $f: \mathbb{P}^{1} \rightarrow L \subset V_{5}$ be the degree-2 covering map where L is a non-free line. From the tangent bundle sequence, $\left.0 \rightarrow T_{L} \rightarrow T_{V_{5}}\right|_{L} \rightarrow N_{L / V_{5}} \rightarrow 0$ and $f_{*} \mathcal{O}_{\mathbb{P}^{1}} \cong$ $\mathcal{O}_{L} \oplus \mathcal{O}_{L}(-1)$, we see that

$$
\mathrm{H}^{1}\left(\mathbb{P}^{1}, f^{*} T_{V_{5}}\right) \rightarrow \mathrm{H}^{1}\left(\mathbb{P}^{1}, f^{*} N_{L / V_{5}}\right) \cong \mathrm{H}^{1}\left(L, N_{L / V_{5}} \otimes f_{*} \mathcal{O}_{C}\right)=\mathbb{C}
$$

and thus $\mathrm{H}^{1}\left(\mathbb{P}^{1}, f^{*} T_{V_{5}}\right) \neq 0$.
Remark 2.7. Let L be a line in V_{5}. From the isomorphism $\operatorname{Ext}^{1}\left(\mathcal{O}_{L}, \mathcal{O}_{L}(-1)\right) \cong \mathrm{H}^{0}\left(N_{L / V_{5}}(-1)\right)$, the supporting line L of the double line $\mathcal{O}_{L^{2}}$ must be non-free by Proposition 2.1.

2.3. Deformation theory of stable maps

The local structure of the space $\mathcal{M}_{d}(Y)$ was well studied in [17, Proposition 1.4, 1.5]. The deformation theory of the maps will be used for studying the normality of irreducible components of $\mathcal{M}_{2}\left(V_{5}\right)$ (Proposition 3.4).

Proposition 2.8. Let $[f: C \rightarrow Y] \in \mathcal{M}_{d}(Y)$. Then, the tangent space (resp. the obstruction space) of $\mathcal{M}_{d}(Y)$ at [f] is given by

$$
\operatorname{Ext}^{1}\left(\left[f^{*} \Omega_{Y} \rightarrow \Omega_{C}\right], \mathcal{O}_{C}\right) \quad\left(\text { resp. } \operatorname{Ext}^{2}\left(\left[f^{*} \Omega_{Y} \rightarrow \Omega_{C}\right], \mathcal{O}_{C}\right)\right)
$$

where $\left[f^{*} \Omega_{Y} \rightarrow \Omega_{C}\right]$ is thought of as a complex of sheaves concentrated on the interval $[-1,0]$.

Lemma 2.9. Let Y be a locally complete intersection of a smooth projective variety X. Let $f: C \rightarrow Y \subset X$ be a stable map that factors through Y. Then there exists an exact sequence:

$$
\begin{aligned}
0 & \rightarrow \operatorname{Ext}^{1}\left(\left[f^{*} \Omega_{Y} \rightarrow \Omega_{C}\right], \mathcal{O}_{C}\right) \rightarrow \operatorname{Ext}^{1}\left(\left[f^{*} \Omega_{X} \rightarrow \Omega_{C}\right], \mathcal{O}_{C}\right) \rightarrow \mathrm{H}^{0}\left(f^{*} N_{Y / X}\right) \\
& \rightarrow \operatorname{Ext}^{2}\left(\left[f^{*} \Omega_{Y} \rightarrow \Omega_{C}\right], \mathcal{O}_{C}\right) \rightarrow \operatorname{Ext}^{2}\left(\left[f^{*} \Omega_{X} \rightarrow \Omega_{C}\right], \mathcal{O}_{C}\right) \rightarrow \mathrm{H}^{1}\left(f^{*} N_{Y / X}\right) \rightarrow 0
\end{aligned}
$$

where $N_{Y / X}$ is the normal bundle of Y in X.

Proof. For the proof, see [3, Lemma 2.10].

3. Comparison of compactifications

In this section, our main goal is to prove Theorem 1.1. To do this, we find a flat family of conics over $\mathbf{H}_{2}\left(V_{5}\right)$ and modify the family by using the normalization along the fiber. Furthermore, we prove that the irreducible components of $\mathcal{M}_{2}\left(V_{5}\right)$ are normal by using the graph space and deformation theory. In the last subsection, we obtain the virtual Poincaré polynomial of $\mathcal{M}_{2}\left(V_{5}\right)$ by using the comparison result.

3.1. Conics in V_{5}

It was proved that $\mathbf{H}_{2}\left(V_{5}\right)$ is isomorphic to \mathbb{P}^{4} in [8] (cf. [21, Proposition 2.32]). Let us recall the correspondence between \mathbb{P}^{4} and $\mathbf{H}_{2}\left(V_{5}\right)$. Let $\mathcal{U}:=\left.\mathcal{U}\right|_{V_{5}}$ be the restriction on V_{5} of the universal rank-two subbundle on $\operatorname{Gr}(2,5)$. Note that $c_{1}(\mathcal{U})=-1$ and $c_{2}(\mathcal{U})=2$. Then, by [8 , Lemma 3.3], we know that

$$
\operatorname{Hom}\left(\mathcal{U}, \mathcal{O}_{V_{5}}\right) \cong \mathrm{H}^{0}\left(\mathcal{U}^{*}\right)=\mathbb{C}^{5}
$$

Let

$$
\begin{equation*}
\phi: \mathcal{U} \rightarrow \mathcal{O}_{V_{5}} \tag{1}
\end{equation*}
$$

be a non-zero homomorphism. Let $\operatorname{im}(\phi) \cong I_{C_{\phi}}$ for some subscheme C_{ϕ} in V_{5}. By the stability of \mathcal{U}, we have $\operatorname{codim}\left(C_{\phi}\right) \geq 2$. Hence, $c_{1}\left(I_{C_{\phi}}\right)=0$. Also the kernel of ϕ in (1) is a reflexive sheaf of rank one and thus it is a line bundle on V_{5} ([12, Proposition 1.1, 1.9]). Therefore, we obtain $\operatorname{ker}(\phi)=\mathcal{O}_{V_{5}}(-1)$. That is, we have

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{V_{5}}(-1) \rightarrow \mathcal{U} \rightarrow I_{C_{\phi}} \rightarrow 0 \tag{2}
\end{equation*}
$$

By considering the Chern classes, one can check that the curve C_{ϕ} is a conic. Hence, we obtain a morphism

$$
\begin{equation*}
\Psi: \mathbb{P}\left(\operatorname{Hom}\left(\mathcal{U}, \mathcal{O}_{V_{5}}\right)\right)=\mathbb{P}^{4} \longrightarrow \mathbf{H}_{2}\left(V_{5}\right), \Psi([\phi])=\left[I_{C_{\phi}}\right] . \tag{3}
\end{equation*}
$$

From its construction, one can check that the morphism Ψ is injective. Since $\mathbf{H}_{2}\left(V_{5}\right)$ is irreducible and smooth ([5, Theorem 1.2, Proposition 7.2]), the map Ψ is an isomorphism by Zariski's main theorem.

Remark 3.1. The isomorphism Ψ in (3) can be described in the following geometric way. Let V_{4} be a 4-dimensional subvector space in \mathbb{C}^{5}. Then the class $\left[\operatorname{Gr}\left(2, V_{4}\right)\right]$ is the Schubert cycle of type $\sigma_{1,1}$ in $\operatorname{Gr}(2,5)$. Since $\operatorname{Gr}\left(2, V_{4}\right)$ is a degree-two hypersurface in $\mathbb{P}\left(\wedge^{2} V_{4}\right)$, and thus the intersection with \mathbb{P}^{6} must be a conic:

$$
C=\operatorname{Gr}\left(2, V_{4}\right) \cap \mathbb{P}^{6} \subset \operatorname{Gr}(2,5) \cap \mathbb{P}^{6} \subset \mathbb{P}^{9} .
$$

3.2. Universal family of $\mathbf{H}_{2}\left(V_{5}\right)$

Recall that the non-free lines in V_{5} consist of a conic in $\mathbf{H}_{1}\left(V_{5}\right)$ (Lemma 2.3). Also, the double structure on the non-free line L is unique because $\mathrm{H}^{0}\left(N_{L / V_{5}}(-1)\right)=\mathbb{C}$. It was proved that the locus of the double lines in $\mathbf{H}_{2}\left(V_{5}\right)$ is a smooth rational quartic curve [14, Proposition 1.2.2]. Following this argument, one can describe the universal family of conics in V_{5}. For details, let us consider the flag variety $\operatorname{Gr}(2,4,5)$ of type $(2,4,5)$:

where the vertical map is the projection onto the second component. Let

$$
\mathcal{C}:=\left.\operatorname{Gr}(2,4,5)\right|_{V_{5}}
$$

be the restriction of the flag variety $\operatorname{Gr}(2,4,5)$ on $V_{5}=\operatorname{Gr}(2,5) \cap \mathbb{P}^{6}$. From the geometric construction of conics in V_{5} (Remark 3.1), we have a flat family of conics in V_{5} over $\operatorname{Gr}(4,5)$:

Let us find the defining equation of \mathcal{C} around a double line. Let $\left\{x_{i j}\right\}, 0 \leq i<j \leq 4$ be the Plücker coordinate of $\operatorname{Gr}(2,5) \subset \mathbb{P}^{9}$ and the linear section \mathbb{P}^{6} be $I_{\mathbb{P}^{6}}=\left\langle x_{12}-x_{03}, x_{13}-x_{24}, x_{14}-x_{02}\right\rangle$. For the standard basis $\left\{e_{j} \mid j=0,1,2,3,4\right\}$ of \mathbb{C}^{5}, let us define

$$
\mathbb{C}^{4}=\operatorname{span}\left\langle t_{1} e_{0}+e_{1}, t_{2} e_{0}+e_{2}, t_{3} e_{0}+e_{3}, t_{4} e_{0}+e_{4}\right\rangle
$$

for $\left[1: t_{1}: t_{2}: t_{3}: t_{4}\right] \in \operatorname{Gr}(4,5)$. In this ordered basis of \mathbb{C}^{4}, the affine chart $\left[\begin{array}{llll}1 & 0 & s_{1} & s_{2} \\ 0 & 1 & s_{3} & s_{4}\end{array}\right] \in \operatorname{Gr}(2,4)$ parameterizes the 2-dimensional subvector spaces in \mathbb{C}^{5}, which is in the following form:

$$
\left[\begin{array}{lllll}
t_{1}+t_{2}+s_{1} t_{3}+s_{2} t_{4} & 1 & 1 & s_{1} & s_{2} \\
t_{1}+t_{2}+s_{3} t_{3}+s_{4} t_{4} & 1 & 1 & s_{3} & s_{4}
\end{array}\right]
$$

Under the Plücker embedding $\operatorname{Gr}(2,5) \subset \mathbb{P}^{9}$, eliminating the variables $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ by using the Macaulay2 computer program ([11]), one can see that the defining equation of \mathcal{C} is given by (cf. [14, Section 2.5.4])

$$
\left\{\begin{array}{l}
x_{12}-x_{03}=x_{13}-x_{24}=x_{14}-x_{02}=0 \tag{4}\\
x_{01}=-t_{2} x_{12}-t_{3} x_{13}-t_{4} x_{14} \\
x_{02}=t_{1} x_{12}-t_{3} x_{23}-t_{4} x_{24} \\
x_{03}=t_{1} x_{13}+t_{2} x_{23}-t_{4} x_{34} \\
x_{04}=t_{1} x_{14}+t_{2} x_{24}+t_{3} x_{34} \\
-t_{3} x_{23}^{2}-t_{4} x_{23} x_{24}-x_{24}^{2}+t_{2} x_{23} x_{34}+t_{1} x_{24} x_{34}-t_{4} x_{34}^{2}+t_{1}^{2} x_{23} x_{24}+t_{1} t_{2} x_{23}^{2}-t_{1} t_{4} x_{23} x_{34}=0
\end{array}\right.
$$

Note that the fiber $\left.\mathcal{C}\right|_{(0,0,0,0)}$ at the origin $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=(0,0,0,0)$ defines the double line

$$
I_{L^{2}}=\left\langle x_{01}, x_{02}, x_{03}, x_{04}, x_{12}, x_{14}, x_{13}-x_{24}, x_{24}^{2}\right\rangle
$$

in V_{5}.
Corollary 3.2 ([14, Proposition 1.2.2]). Under the above notation, the locus of the double lines in $\mathbf{H}_{2}\left(V_{5}\right)=\mathbb{P}^{4}$ is defined by

$$
\left\{\left(t_{1},-\frac{t_{1}^{3}}{8}, \frac{t_{1}^{4}}{64}, \frac{t_{1}^{2}}{4}\right) \in \mathbb{C}_{\left(t_{1}, t_{2}, t_{3}, t_{4}\right)}^{4}\right\}
$$

Proof. The double-line locus around the origin $(0,0,0,0) \in \mathbb{C}_{\left(t_{1}, t_{2}, t_{3}, t_{4}\right)}^{4} \subset \mathbf{H}_{2}\left(V_{5}\right)$ can be directly computed. The condition that the last equation in (4) should be a square is exactly the rank-one condition of the symmetric matrix

$$
\operatorname{rk}\left[\begin{array}{ccc}
t_{1} t_{2}-t_{3} & \frac{t_{1}^{2}-t_{4}}{2} & \frac{t_{2}-t_{1} t_{4}}{2} \\
\frac{t_{1}^{2}-t_{4}}{2} & -1 & \frac{t_{1}}{2} \\
\frac{t_{2}-t_{1} t_{4}}{2} & \frac{t_{1}}{2} & -t_{4}
\end{array}\right] \leq 1
$$

Using the Macaulay2 computer program ([11]) again, one can check that this is equivalent to

$$
\left\langle t_{4}^{2}-4 t_{3}, t_{1} t_{4}+2 t_{2}, 2 t_{1} t_{3}+t_{2} t_{4}, t_{2}^{2}-4 t_{3} t_{4}, t_{1} t_{2}+2 t_{4}^{2}, t_{1}^{2}-4 t_{4}\right\rangle
$$

which is the defining ideal of the rational normal quartic curve in $\mathbf{H}_{2}\left(V_{5}\right)$.

3.3. Birational relation between $\mathbf{M}_{2}\left(V_{5}\right)$ and $\mathbf{H}_{2}\left(V_{5}\right)$

By modifying the presentation (4) of the universal family \mathcal{C} in V_{5}, we have the following Proposition.
Proposition 3.3. There exists a smooth blow-up

$$
\mathbf{M}_{2}\left(V_{5}\right) \longrightarrow \mathbf{H}_{2}\left(V_{5}\right)
$$

along the double-line locus $C_{0}\left(\cong \mathbb{P}^{1}\right)$ in $\mathbf{H}_{2}\left(V_{5}\right)$. Especially, the compactification $\mathbf{M}_{2}\left(V_{5}\right)$ is smooth.

Proof. Let

$$
p: \operatorname{bl}_{C_{0}} \mathbf{H}_{2}\left(V_{5}\right) \longrightarrow \mathbf{H}_{2}\left(V_{5}\right)
$$

be the blow-up space of $\mathbf{H}_{2}\left(V_{5}\right)$ along the double line locus C_{0}. Let $\mathcal{C}^{\prime}:=(p \times \mathrm{id})^{*} \mathcal{C}$ be the pull-back of the flat family \mathcal{C} by the map $p \times$ id. Let

$$
p_{2}: \mathrm{bl}_{C_{0} \mathbf{H}_{2}\left(V_{5}\right)} \longrightarrow \mathrm{bl}_{C_{0} \mathbf{H}_{2}\left(V_{5}\right)}
$$

be the two-fold covering map ramified along the exceptional divisor $p^{-1}\left(C_{0}\right)$ and $\mathcal{C}^{\prime \prime}:=\left(p_{2} \times \mathrm{id}\right)^{*} \mathcal{C}^{\prime}$. Let

$$
q: \widetilde{\mathcal{C}^{\prime \prime}} \longrightarrow \mathcal{C}^{\prime \prime}
$$

be the normalization of $\mathcal{C}^{\prime \prime}$ in the (general) fiber over $\mathrm{bl}_{\mathrm{C}_{0} \mathbf{H}_{2}\left(V_{5}\right)} \backslash p^{-1}\left(C_{0}\right)$. Then, we have a flat family of stable maps over $\mathrm{bl}_{\mathrm{C}_{0}} \mathbf{H}_{2}\left(V_{5}\right)([1$, Theorem 2.5])

This can be checked by a local computation. Let $(0, a \epsilon, b \epsilon, c \epsilon)$ be the arbitrary normal curve in $\mathbb{C}_{\left(t_{1}, t_{2}, t_{3}, t_{4}\right)}^{4}$ at the double line (the origin). Then the universal curve \mathcal{C} in (4) becomes

$$
x_{13}-x_{24}=x_{12}=x_{14}=x_{01}=x_{02}=x_{03}=x_{04}=0(\bmod \epsilon)
$$

and

$$
p f(\epsilon):=p f(0, a \epsilon, b \epsilon, c \epsilon)=-b \epsilon x^{2}-c \epsilon x y-y^{2}+a \epsilon x z-c \epsilon z^{2}=0
$$

where $x=x_{23}, y=x_{24}, z=x_{34}$. Let us perform the double covering $\epsilon=t^{2}$ along the divisor. Then

$$
p f\left(t^{2}\right)=-b t^{2} x^{2}-c t^{2} x y-y^{2}+a t^{2} x z-c t^{2} z^{2}=0
$$

After normalization along the general fiber (i.e. $\bar{y}=\frac{y}{t}$ and dividing by t^{2}), we have a flat family of degree-two curves

$$
-b x^{2}-c t x \bar{y}-\bar{y}^{2}+a x z-c z^{2}=0
$$

Now, the central fiber at $t=0$ becomes

$$
\left.\tilde{\mathcal{C}^{\prime \prime}}\right|_{0}=-b x^{2}-\bar{y}^{2}+a x z-c z^{2}=0
$$

This is obviously a reduced curve of degree two (i.e. smooth conic or pair of lines) in the plane $\mathbb{P}_{[x: \bar{y}: z]}^{2}$ whenever $(a, b, c) \neq 0$. Also, this defines a double covering map $\pi:\left.\widetilde{\mathcal{C}^{\prime \prime}}\right|_{0} \subset \mathbb{P}_{[x: \bar{y}: z]}^{2} \rightarrow V(\bar{y}=0)=\mathbb{P}^{1}$ given by the projection from a point $[0: 1: 0]$. Note that the covering map π is bijectively determined by the homogeneous coordinates $\mathbb{P}^{2}=\mathbb{P}\left(\mathbb{C}_{(a, b, c)}^{3}\right)$, because on the line $\bar{y}=0$, two ramification points are uniquely defined by the equation $-b x^{2}+a x z-c z^{2}=0$.

After all, we have a bijective morphism $\mathrm{bl}_{C_{0}} \mathbf{H}_{2}\left(V_{5}\right) \rightarrow \mathbf{M}_{2}\left(V_{5}\right)$ by the functoriality of the moduli space of stable maps ([9, Theorem 1]). From the normality of $\mathbf{M}_{2}\left(V_{5}\right)$ (Proposition 3.4 below), we conclude that the morphism is an isomorphism by Zariski's main theorem.

3.4. Normality of irreducible components of $\mathcal{M}_{2}\left(V_{5}\right)$

As it has been done in [3, Proposition 4.1], one can see that the Kontsevich space $\mathcal{M}_{2}\left(V_{5}\right)$ has two irreducible components. That is,

$$
\mathcal{M}_{2}\left(V_{5}\right)=\mathbf{M}_{2}\left(V_{5}\right) \cup \mathbf{L}_{2}\left(V_{5}\right)
$$

where $\mathbf{M}_{2}\left(V_{5}\right)$ is the irreducible component containing the smooth conic space $\mathbf{R}_{2}\left(V_{5}\right)$ and $\mathbf{L}_{2}\left(V_{5}\right)$ is the locus of the double covering of a line in V_{5}. Also, the intersection part parameterizes double-covering maps of a non-free line in V_{5}. Note that $\operatorname{dim} \mathbf{M}_{2}\left(V_{5}\right)=\operatorname{dim} \mathbf{L}_{2}\left(V_{5}\right)=4$ and $\operatorname{dim} \mathbf{M}_{2}\left(V_{5}\right) \cap \mathbf{L}_{2}\left(V_{5}\right)=3$. In this subsection, we finish the proof of Proposition 3.3 by proving the following thing.

Proposition 3.4. The two irreducible components $\mathbf{M}_{2}\left(V_{5}\right)$ and $\mathbf{L}_{2}\left(V_{5}\right)$ are normal.
Proof. It is straightforward to check that the obstruction space of the map in the complement $\mathcal{M}_{2}\left(V_{5}\right) \backslash\left(\mathbf{M}_{2}\left(V_{5}\right) \cap \mathbf{L}_{2}\left(V_{5}\right)\right)$ vanishes. Therefore, the moduli space has at most finite group quotient singularity, which implies the normality on the complement.

For the intersection part, we use the result of [20, Theorem 0.1] (cf. [18, Theorem 6.1.3]). By the Plücker embedding $V_{5} \subset \mathbb{P}^{9}$, one can see that $\mathcal{M}_{2}\left(V_{5}\right)$ is a $\operatorname{SL}(2)$-quotient of the moduli space $\mathcal{M}_{(1,2)}\left(\mathbb{P}^{1} \times V_{5}\right)$ of stable maps $f: C \rightarrow \mathbb{P}^{1} \times V_{5}$ with bi-degree $f_{*}[C]=(1,2)$:

$$
\pi: \mathcal{M}_{(1,2)}\left(\mathbb{P}^{1} \times V_{5}\right) \rightarrow \mathcal{M}_{(1,2)}\left(\mathbb{P}^{1} \times V_{5}\right) / / \operatorname{SL}(2) \cong \mathcal{M}_{2}\left(V_{5}\right)
$$

Let us denote the inverse image $\pi^{-1}\left(\mathbf{M}_{2}\left(V_{5}\right)\right)$ and $\pi^{-1}\left(\mathbf{L}_{2}\left(V_{5}\right)\right)$ by the same notation. Let $\mathbf{Q}=\mathbf{M}_{2}\left(V_{5}\right) \cap \mathbf{L}_{2}\left(V_{5}\right)$. We prove that the two spaces $\mathbf{M}_{2}\left(V_{5}\right)$ and $\mathbf{L}_{2}\left(V_{5}\right)$ are smooth at $\left[f: C \rightarrow \mathbb{P}^{1} \times L \subset \mathbb{P}^{1} \times V_{5}\right] \in Q, L \in C_{0}$ (Lemma 2.3) and thus that their $\operatorname{SL}(2)$-quotient spaces are normal (cf. [15, Proposition 6.2]). By the projection formula and ($\left.p_{2} \circ f\right)_{*} \mathcal{O}_{C} \cong \mathcal{O}_{L} \oplus \mathcal{O}_{L}(-1)$, one can see that the tangent space of $[f]$ in $\mathcal{M}_{(1,2)}\left(\mathbb{P}^{1} \times V_{5}\right)$ is canonically isomorphic to

$$
\begin{equation*}
\mathrm{H}^{0}\left(\left(p_{2} \circ f\right)^{*} T_{V_{5}}\right) \cong \mathrm{H}^{0}\left(T_{V_{5}} \otimes\left(p_{2} \circ f\right)_{*} \mathcal{O}_{C}\right) \cong \mathrm{H}^{0}\left(\left.T_{V_{5}}\right|_{L}\right) \oplus \mathrm{H}^{0}\left(\left.T_{V_{5}}\right|_{L}(-1)\right) \tag{5}
\end{equation*}
$$

where $p_{2}: \mathbb{P}^{1} \times V_{5} \rightarrow V_{5}$ is the projection into the second component.
Let us consider the deformation of the map [f] in $\mathbf{M}_{2}\left(V_{5}\right)$. Recall that the locus of double lines in $\mathbf{H}_{1}\left(V_{5}\right)$ is a smooth conic C_{0} (Lemma 2.3). Thus, the normal space $N_{C_{0} / \mathbf{H}_{1}\left(V_{5}\right)}$ at [L] is canonically isomorphic to the quotient space $\mathrm{H}^{0}\left(N_{L / V_{5}}\right) / T_{[L]} C_{0}$, which is the normal deformation of \mathbf{Q} in $\mathbf{L}_{2}\left(V_{5}\right)$. Hence, the deformation of [f] in $\mathbf{M}_{2}\left(V_{5}\right)$ is cut out by the composition map

$$
\mathrm{H}^{0}\left(\left(p_{2} \circ f\right)^{*} T_{V_{5}}\right) \rightarrow \mathrm{H}^{0}\left(\left.T_{V_{5}}\right|_{L}\right) \rightarrow \mathrm{H}^{0}\left(N_{L / V_{5}}\right) \rightarrow \mathrm{H}^{0}\left(N_{L / V_{5}}\right) / T_{[L]} C_{0}(\cong \mathbb{C})
$$

where the second map comes from the tangent bundle sequence $\left.0 \rightarrow T_{L} \rightarrow T_{V_{5}}\right|_{L} \rightarrow N_{L / V_{5}} \rightarrow 0$. Therefore $\mathbf{M}_{2}\left(V_{5}\right)$ is smooth at [f].

Let us describe the space $\mathrm{H}^{0}\left(\left.N_{L / V_{5}}\right|_{L}(-1)\right)$ to find the deformation space of [f] in $\mathbf{L}_{2}\left(V_{5}\right)$. From the normal bundle sequence $\left.0 \rightarrow N_{L / V_{5}} \rightarrow N_{L / \mathbb{P}^{9}} \rightarrow N_{V_{5} / \mathbb{P}^{9}}\right|_{L} \rightarrow 0$ of $L \subset V_{5} \subset \mathbb{P}^{9}$, we obtain an inclusion map

$$
\begin{equation*}
\mathrm{H}^{0}\left(\left.N_{L / V_{5}}\right|_{L}(-1)\right) \subset \mathrm{H}^{0}\left(\left.N_{L / \mathbb{P}^{9}}\right|_{L}(-1)\right) \tag{6}
\end{equation*}
$$

By Lemma 2.9, the projection formula and $g_{*} \mathcal{O}_{C} \cong \mathcal{O}_{L} \oplus \mathcal{O}_{L}(-1)$ for $g:=p_{2} \circ f$, we have

where from the surjective map in the diagram (7) of the first row comes $\operatorname{Ext}^{2}\left(\left[g^{*} \Omega_{L} \rightarrow \Omega_{C}\right], \mathcal{O}_{C}\right)=0$ because L is convex. From this, the latter space in (6) is the normal deformation space of $[g]$ along the double-covering locus in $\mathbf{M}_{2}\left(\mathbb{P}^{9}\right)$. Hence, the deformation space of $[f]$ in $\mathbf{L}_{2}\left(V_{5}\right)$ is cut out by the surjective map

$$
\mathrm{H}^{0}\left(\left(p_{2} \circ f\right)^{*} T_{V_{5}}\right) \rightarrow \mathrm{H}^{0}\left(\left.T_{V_{5}}\right|_{L}(-1)\right) \rightarrow \mathrm{H}^{0}\left(\left.N_{L / V_{5}}\right|_{L}(-1)\right)=\mathbb{C}
$$

where the first map comes from the isomorphism in (5). After all, we finish the proof of the normality of two irreducible components.

3.5. Virtual Poincaré polynomial of $\mathcal{M}_{2}\left(V_{5}\right)$

In this section, we compute the virtual Poincaré polynomial of $\mathcal{M}_{2}\left(V_{5}\right)$ by Proposition 3.5. Let X be a quasi-projective variety. For the Hodge-Deligne polynomial $\mathrm{E}_{c}(X)(u, v)$ for compactly supported cohomology of X, let

$$
\mathrm{P}(X):=\mathrm{E}_{c}(X)(-t,-t)
$$

be the virtual Poincaré polynomial of X. The motivic properties of the virtual Poincaré polynomial is well studied in [19, Theorem 2.2] and [2, Lemma 3.1].

Proposition 3.5.

(1) $\mathrm{P}\left(\mathbb{P}^{n}\right)=\frac{t^{2 n+2}-1}{t^{2}-1}$.
(2) $\mathrm{P}(X)=\mathrm{P}(Z)+\mathrm{P}(X \backslash Z)$ for any closed subset $Z \subset X$.
(3) $\mathrm{P}(X)=\mathrm{P}(F) \cdot \mathrm{P}(B)$ for the Zariski (resp. étal) locally trivial fibration $X \rightarrow B$ with constant fiber F (resp. $\mathrm{Gr}(k, n)$).

Corollary 3.6. The virtual Poincaré polynomial of $\mathbf{M}_{2}\left(V_{5}\right)$ and $\mathbf{L}_{2}\left(V_{5}\right)$ is given by

$$
\mathrm{P}\left(\mathbf{M}_{2}\left(V_{5}\right)\right)=\mathrm{P}\left(\mathbf{L}_{2}\left(V_{5}\right)\right)=1+2 t^{2}+3 t^{4}+2 t^{6}+t^{8}
$$

Hence, the virtual Poincaré polynomial of the Kontsevich space $\mathcal{M}_{2}\left(V_{5}\right)$ is

$$
\mathrm{P}\left(\mathcal{M}_{2}\left(V_{5}\right)\right)=1+2 t^{2}+4 t^{4}+3 t^{6}+2 t^{8}
$$

Proof. From Proposition 3.3 and the fact that $\mathbf{L}_{2}\left(V_{5}\right)$ is a $\mathcal{M}_{2}\left(\mathbb{P}^{1}\right)\left(\cong \mathbb{P}^{2}\right)$-fibration over $\mathbf{H}_{1}\left(V_{5}\right)$,

$$
\mathrm{P}\left(\mathbf{M}_{2}\left(V_{5}\right)\right)=\mathrm{P}\left(\mathbb{P}^{4}\right)+\mathrm{P}\left(\mathbb{P}^{1}\right)\left(\mathrm{P}\left(\mathbb{P}^{2}\right)-1\right), \mathrm{P}\left(\mathbf{L}_{2}\left(V_{5}\right)\right)=\mathrm{P}\left(\mathbb{P}^{2}\right) \cdot \mathrm{P}\left(\mathbf{H}_{1}\left(V_{5}\right)\right) .
$$

By the property (2) of Proposition 3.5, we have

$$
\mathrm{P}\left(\mathcal{M}_{2}\left(V_{5}\right)\right)=\mathrm{P}\left(\mathbf{M}_{2}\left(V_{5}\right)\right)+\mathrm{P}\left(\mathbf{L}_{2}\left(V_{5}\right)\right)-\mathrm{P}\left(\mathbb{P}^{2}\right) \cdot \mathrm{P}\left(C_{0}\right)
$$

Cooking up the above, we obtain the results.

Acknowledgement

We thank the anonymous referee for invaluable comments and suggestions. Kiryong Chung is partially supported by Korea NRF grant 2019R1F1A1042516.

References

[1] V. Alexeev, A. Knutson, Complete moduli spaces of branchvarieties, J. Reine Angew. Math. 639 (2010) 39-71.
[2] B. Bakker, A. Jorza, Higher rank stable pairs on k3 surfaces, Commun. Number Theory Phys. 6 (4) (2012) 805-847.
[3] K. Chung, A desingularization of Kontsevich's compactification of twisted cubics in V_{5}, arXiv:1902.01658, 2019.
[4] K. Chung, J. Hong, Y.-H. Kiem, Compactified moduli spaces of rational curves in projective homogeneous varieties, J. Math. Soc. Jpn. 64 (4) (2012) 1211-1248.
[5] K. Chung, J. Hong, S. Lee, Geometry of moduli spaces of rational curves in linear sections of Grassmannian Gr(2, 5), J. Pure Appl. Algebra 222 (4) (2018) 868-888.
[6] K. Chung, Y.-H. Kiem, Hilbert scheme of rational cubic curves via stable maps, Amer. J. Math. 133 (3) (2011) 797-834.
[7] K. Chung, H.-B. Moon, Mori's program for the moduli space of conics in Grassmannian, Taiwan. J. Math. 21 (3) (June 2017) 621-652.
[8] D. Faenzi, Bundles over the Fano threefold V_{5}, Commun. Algebra 33 (9) (2005) 3061-3080.
[9] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, in: Algebraic Geometry-Santa Cruz 1995, in: Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, USA, 1997, pp. 45-96.
[10] M. Furushima, N. Nakayama, The family of lines on the Fano threefold V_{5}, Nagoya Math. J. 116 (1989) 111-122.
[11] D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
[12] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980) 121-176.
[13] D. Huybrechts, M. Lehn, The Geometry of Moduli Spaces of Sheaves, second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 2010.
[14] A. Iliev, The Fano surface of the Gushel threefold, Compos. Math. 94 (1) (1994) 81-107.
[15] Y.-H. Kiem, Hecke correspondence, stable maps, and the Kirwan desingularization, Duke Math. J. 136 (3) (2007) 585-618.
[16] B. Kim, R. Pandharipande, The connectedness of the moduli space of maps to homogeneous spaces, in: Symplectic Geometry and Mirror Symmetry, Seoul, 2000, World Sci. Publ., River Edge, NJ, USA, 2001, pp. 187-201.
[17] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1) (1998) $119-174$.
[18] H.-B. Moon, Birational Geometry of Moduli Spaces of Curves of Genus Zero, PhD thesis, Seoul National University, 2011.
[19] V. Muñoz, Hodge polynomials of the moduli spaces of rank 3 pairs, Geom. Dedic. 136 (2008) 17-46.
[20] A.E. Parker, An elementary GIT construction of the moduli space of stable maps, Ill. J. Math. 51 (3) (2007) 1003-1025.
[21] G. Sanna, Rational Curves and Instantons on the Fano Threefold Y_{5}, PhD thesis, 2014.
[22] M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (3) (1996) 691-723.

[^0]: E-mail addresses: krchung@knu.ac.kr (K. Chung), sangbum.yoo@gmail.com (S.-B. Yoo).
 https://doi.org/10.1016/j.crma.2019.09.003
 1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

