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For a semisimple Lie group G satisfying the equal rank condition, the most basic family of 
unitary irreducible representations is the discrete series found by Harish-Chandra. In this 
paper, we study some of the branching laws for these when restricted to a subgroup H
of the same type by combining the classical results with the recent work of T. Kobayashi. 
We analyze aspects of having differential operators being symmetry-breaking operators; 
in particular, we prove in the so-called admissible case that every symmetry breaking 
(H-map) operator is a differential operator. We prove discrete decomposability under 
Harish-Chandra’s condition of cusp form on the reproducing kernels. Our techniques are 
based on realizing discrete series representations as kernels of elliptic invariant differential 
operators.
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r é s u m é

Pour un groupe de Lie semi-simple G satisfaisant la condition de rang, la famille de 
représentations irréductibles unitaires la plus fondamentale est la série discrète trouvée 
par Harish-Chandra. Dans cet article, nous étudions quelques règles de branchement 
pour ces séries restreintes à un sous-groupe H de G du même type, en combinant les 
résultats classiques avec des travaux récents de T. Kobayashi. Nous analysons des cas où 
des opérateurs de brisure de symétrie sont des opérateurs différentiels ; en particulier, 
nous prouvons dans le cas dit admissible que tout opérateur de brisure de symétries 
H-équivariant est un opérateur différentiel. Nous prouvons la propriété de décomposabilité 
discrète sous la condition de cuspidalité de Harish-Chandra sur les noyaux reproduisants.
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1. Discrete series and reproducing kernel

Let G be an arbitrary, matrix, connected semisimple Lie group. Henceforth we fix a maximal compact subgroup K for 
G and a maximal torus T for K . Harish-Chandra showed that G admits square integrable irreducible representations if 
and only if T is a Cartan subgroup of G . For this note, we always assume that T is a Cartan subgroup of G . Under these 
hypothesis, Harish-Chandra showed that the set of equivalence classes of irreducible square integrable representations is 
parameterized by a subset of a lattice in it�R . In order to state our results, we need to make explicit this parametrization 
and set up some notation. As usual, the Lie algebra of a Lie group is denoted by the corresponding lower-case Gothic letter 
followed by the subindex R. The complexification of the Lie algebra of a Lie group is denoted by the corresponding Gothic 
letter without any subscript. V � denotes the dual space to a vector space V . Let θ be the Cartan involution that corresponds 
to the subgroup K ; the associated Cartan decomposition is denoted by g = k +p. Let �(g, t) denote the root system attached 
to the Cartan subalgebra t. Hence, the set of roots �(g, t) = �c ∪ �n = �c(g, t) ∪ �n(g, t) is equal to the union the set of 
compact roots and the set of noncompact roots. From now on, we fix a system of positive roots � for �c. Henceforth, either 
the highest weight or the infinitesimal character of an irreducible representation of K is dominant with respect to �. The 
Killing form gives rise to an inner product (..., ...) in it�R. As usual, let ρ = ρG denote half of the sum of the roots for some 
system of positive roots for �(g, t). A Harish-Chandra parameter for G is λ ∈ it�R such that (λ, α) �= 0, for every α ∈ �(g, t), 
and such that λ + ρ lifts to a character of T . With each Harish-Chandra parameter λ, Harish-Chandra associates a unique 
irreducible square integrable representation (πG

λ , V G
λ ) of G of infinitesimal character λ. Moreover, Harish-Chandra showed 

that the map λ → (πG
λ , V G

λ ) is a bijection from the set of Harish-Chandra parameters dominant with respect to � onto the 
set of equivalence classes of irreducible square integrable representations for G . For short, we will refer to an irreducible 
square integrable representation as a discrete series representation.

Let (τ , W ) := (π K
λ+ρn

, V K
λ+ρn

) denote the lowest K -type of πλ := πG
λ . The highest weight of (π K

λ+ρn
, V K

λ+ρn
) is λ +ρn −ρc

[4]. We recall a Theorem of Vogan’s thesis, which states that (τ , W ) determines (πλ, V G
λ ) up to unitary equivalence. We 

recall the set of square integrable sections of the vector bundle determined by the principal bundle K → G → G/K and the 
representation (τ , W ) of K is isomorphic to the space

L2(G ×τ W ) := { f ∈ L2(G) ⊗ W :
f (gk) = τ (k)−1 f (g), g ∈ G,k ∈ K }.

Here, the action of G is by left translation Lx, x ∈ G . The inner product on L2(G) ⊗ W is given by

( f , g)Vλ =
∫

G

( f (x), g(x))W dx

where (..., ...)W is a K -invariant inner product on W . Subsequently, LD (resp. R D ) denotes the left infinitesimal (resp. right 
infinitesimal) action on functions from G of an element D in universal enveloping algebra U(g) for the Lie algebra g. As 
usual, �G denotes the Casimir operator for g. Following Hotta, Enright-Wallach [21], we realize Vλ := V G

λ as the space

H2(G, τ ) = { f ∈ L2(G) ⊗ W : f (gk) = τ (k)−1 f (g)

g ∈ G,k ∈ K , R�G f = [(λ,λ) − (ρ,ρ)] f }.
We also recall, R�G = L�G is an elliptic G-invariant operator on the vector bundle W → G ×τ W → G/K and hence, H2(G, τ )

consists of smooth sections, moreover the point evaluation ex defined by H2(G, τ ) � f �→ f (x) ∈ W is continuous for each 
x ∈ G . Therefore, the orthogonal projector Pλ onto H2(G, τ ) is an integral map (integral operator, kernel map) represented 
by the smooth reproducing kernel

Kλ : G × G → EndC(W ) (1.1)

which satisfies Kλ(·, x)�w belongs to H2(G, τ ) for each x ∈ G , w ∈ W and

(Pλ( f )(x), w)W =
∫

G

( f (y), Kλ(y, x)�w)W dy, x ∈ G, w ∈ W , f ∈ L2(G ×τ W ).

It can be shown that Kλ(y, x) = �0(x−1 y), where �0 is a constant times the spherical function associated with the 
K -type W . It readily follows that Kλ(zy, zx) = Kλ(y, x), x, y, z ∈ G and the function y �→ Kλ(y, e)�w is K -finite. Since 
Lx(Kλ(·, e)�w) = Kλ(·, x)�w , we have that Kλ(·, x) is a smooth vector in H2(G, τ ). For a closed reductive subgroup H , after 
conjugation by an inner automorphism of G , we may and will assume that L := K ∩ H is a maximal compact subgroup 
for H . That is, H is θ -stable. In this note, for irreducible square integrable representations (πλ, Vλ) for G , we would like 
to analyze its restriction to H . In particular, we study the irreducible H-subrepresentations for πλ . A result is that any 
irreducible H-subrepresentation of Vλ is a square integrable representation for H , for a proof (cf. [12, Cor. 8.7], [6]). Thus, 
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owing to the result of Harish-Chandra on the existence of square integrable representations, from now on we may and will 
assume that H admits a compact Cartan subgroup. After conjugation, we may assume that U := H ∩ T is a maximal torus in 
L = H ∩ K . Next, we consider a square integrable representation H2(H, σ) ⊂ L2(H ×σ Z) of lowest L-type (σ , Z). An aim 
of this note is to understand the nature of the intertwining operators between the unitary H-representations H2(H, σ) and 
V G

λ , the adjoint of such intertwining operators and the consequences of their structure. The details of the proof and some 
other results on the topic will appear in an article bearing the same title as this note. We would like to call the attention 
of the reader to our results in Theorem 3.3, Corollary 3.4, Theorem 4.1, and Theorem 2.6.

Notation: N = {1, 2, . . . }.

2. Structure of intertwining maps

For this section, besides G, K , T , (τ , W ), (L, H2(G, τ )) = (πG
λ , V G

λ ), H, L, U ) as in Section 1, we fix (ν, E) a finite-
dimensional representation of L and a continuous intertwining linear H-map T : L2(H ×ν E) → H2(G, τ ).

Fact 2.1. We show that T is a kernel map.

In fact, for each x ∈ G , w ∈ W the linear function L2(H ×ν E) � g �→ (T g(x), w)W is continuous. Whence, the Riesz 
representation Theorem shows that there exists a function

KT : H × G → HomC(Z , W )

such that, for each x ∈ G , w ∈ W , the map h �→ KT (h, x)�(w) belongs to L2(H ×ν E) and for g ∈ L2(H ×ν E), w ∈ W , we 
have an absolutely convergent integral and the equality

(T g(x), w)W =
∫

H

(g(h), KT (h, x)�w)Z dh. (2.1)

That is, T is the integral map

T g(x) =
∫

H

KT (h, x)g(h)dh, x ∈ G.

We also have (T (g)(x), w)W = ∫
G(T (g)(y), Kλ(y, x)�w)W dy. To follow, we make explicit some properties of the kernel of T .

Proposition 2.2. Let T : L2(H ×ν E) → H2(G, τ ) be a continuous intertwining linear H-map. Then, the function K T satisfies:
a) KT (h, x)�w = T �(y �→ Kλ(y, x)�w)(h);
b) the function h �→ KT (h, e)�w is an L-finite vector in L2(H ×ν E);
c) KT is a smooth map. Further, KT (·, x)�w is a smooth vector;
d) there exists a constant C and finitely many functions φa,b : G → C such that, for every x ∈ G, ‖KT (e, x)�‖Hom(W ,Z) ≤

C‖T �‖ 
∑

a,b |φa,b(x)|;
e) ‖KT (·, x)�‖L2(H×τ�⊗ν HomC(W ,E)) is a bounded function on G;

f) KT (hh1s, hxk) = τ (k−1)KT (h1, x)ν(s), x ∈ G, s ∈ L, h, h1 ∈ H, k ∈ K ;
g) if T � is a kernel map, with kernel KT � : G × H → Hom(W , E) and KT � (·, h)�z ∈ H2(G, τ ). Then, L(2)

D KT (h, ·) = χλ(D)KT (h, ·)
for every D in the center of U(g). Here, χλ is the infinitesimal character of πλ.

Note: The functions φa,b are defined as follows. We fix a linear basis {Xb}1≤b≤N (resp. {Ya}1≤a≤M ) for the space of 
elements in U(h) of degree less or equal than dimh (resp. for the space of elements in U(g) of degree less or equal than 
dimh). Then φa,b are defined by Ad(x−1)(Xb) = ∑

1≤a≤M φa,b(x)Ya , b = 1, · · · , N .

Definition 2.3. A representation (πλ, Vλ) is discretely decomposable over H if there exists an orthogonal family of closed, 
H-invariant, H-irreducible subspaces of Vλ such that the closure of its algebraic sum is equal to Vλ .

Definition 2.4. A representation (πλ, Vλ) is H-admissible if the representation is discretely decomposable and the multiplic-
ity of each irreducible factor is finite.

In [15] we find a complete list of triples (G, H, πλ) such that (G, H) is a symmetric pair and πλ is an H-admissible 
representation. For example, for the pair (S O (2n, 1), S O (2k) × S O (2n − 2k, 1)), there is no πλ with an admissible restriction 
to H . Whereas, for the pair (SU (m, n), S(U (m, k) × U (n − k))), there are exactly m Weyl chambers C1, . . . , Cm in it�R such 
that πλ is H-admissible if and only λ belongs to C1 ∪ · · · ∪ Cm .
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Definition 2.5. A unitary representation (π, V ) is integrable if some nonzero matrix coefficient is an integrable function.

A theorem of Trombi, Varadarajan, Hecht, and Schmid states that (πλ, Vλ) is an integrable representation if and only if 
|(λ, β)| > ∑

α∈�(g,t):(α,β)>0(α, β) for every noncompact root β .
Examples show that the adjoint T � of integral linear map T need not be an integral map, whence we would like to 

know when T � is an integral linear map. Formally, we may write T � f (h) = ∫
G KT (h, x)� f (x)dx, where the convergence of 

the integral is in the weak sense. That is, for each g ∈ L2(H ×ν E), f ∈ H2(G, τ ), we have the absolute convergence of the 
iterated integral

(T � f , g)L2(H×ν E) =
∫

G

∫

H

( f (x), KT (h, x)g(h))W dh dx.

T. Kobayashi has introduced the concept of symmetry-breaking operator. In our setting, a symmetry-breaking operator is 
a continuous H-map S: H2(G, τ ) → L2(H ×ν E). For a symmetry-breaking operator S , the above considerations applied to 
T := S� let us conclude: under our hypothesis, a symmetry-breaking operator is always a weak integral map. The next result 
gives more information about symmetry-breaking operators.

Theorem 2.6. Let S : H2(G, τ ) → L2(H ×ν E) be a continuous intertwining linear H-map. Then,
a) if the restriction to H of (L, H2(G, τ )) is discretely decomposable, then S is an integral map;
b) if (L, H2(G, τ )) is an integrable representation for G, then S restricted to the subspace of smooth vectors is an integral linear 

map.

Remark 2.7. We assume that S : H2(G, τ ) → L2(H ×ν E) is a continuous symmetry-breaking operator represented by a kernel 
K S : G × H → Hom(W , E) such that K S (·, h)�z ∈ H2(G, τ ), ∀h ∈ H , z ∈ E . This hypothesis implies that K S (x, h) = K S� (h, x)�; 
hence, from Proposition 2.2c, we may conclude that:

a) K S is a smooth map;
b) K S (hxk, hh1s) = ν(s−1)K S (s, h1)τ (k), h, h1 ∈ H , x ∈ G , s ∈ L;
c) the function G � x �→ K S (x, e)�z ∈ W , z ∈ E is L-finite.

3. Intertwining operators via differential operators

Let G, K , H, L, H2(G, τ ), (ν, E) be as usual. In [17], [14], [20], [3], and references therein, these and other authors have 
constructed H-intertwining maps between holomorphic discrete series by means of differential operators. Some authors also 
considered the case of intertwining maps between two principal series representations [2], [19]. Motivated by the fact that 
discrete series can be modeled as function spaces, an aim of this section is to analyze to what extent H-intertwining linear 
maps agree with the restriction of linear differential operators. In [14] is presented a general conjecture on the subject; we 
present a partial solution for the particular case of discrete series representations.

For the purpose of this note, a differential operator is a linear map S : C∞(G ×τ W ) → C∞(H ×ν E) such that there 
exists finitely many elements Db ∈ U(g), {wc} basis for W , da,b,c ∈ C, {za} basis for E , and such that we have, for any f ∈
C∞(G ×τ W ):

S( f )(h) =
∑
a,b,c

da,b,c ([R Db f ](h), wc)W za ∀h ∈ H . (3.1)

These family of differential operators include the H-invariant differential operators as it is shown in [17].
Sometimes we will allow the constants da,b,c to be smooth functions on H .

Example 3.1. Examples of differential operators are the normal derivatives as considered in [10], [18], [21]. For this, we 
write the Cartan decomposition as g = k + p and h = l + p′ . We have p′ = p ∩ h. Let (p/p′)(n) denote the n-th symmetric 
power of the orthogonal with respect to the Killing form of p′ in p. We denote by τn the natural representation of L in 
HomC((p/p′)(n), W ). Let λ : S(g) → U(g) denote the symmetrization map. Then, for each D ∈ (p/p′)(n) , f ∈ H2(G, τ ), h ∈ H , 
we compute the normal derivative of f in the direction D at the point h, rn( f )(D)(h) := Rλ(D) f (h). In [21], it is shown that 
rn( f ) ∈ L2(H ×τn HomC((p/p′)(n), W )), and the resulting map

rn : H2(G, τ ) → L2(H ×τn HomC((p/p′)(n), W ))

is H-equivariant and continuous for L2-topologies. As before, Kλ is the matrix kernel of Pλ . The map rn is represented by 
the matrix kernel

Krn : G × H → HomC(W , HomC((p/p′)(n), W ))
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given by

Krn (y,h)(w, D) = R(2)
λ(D)(Kλ(y,h)w).

Here, the upper index (2) means that we compute the derivative of Kλ on the second variable.

Before we state Theorem 3.3, we derive some properties of symmetry-breaking operators that are restriction of differen-
tial operators.

Lemma 3.2. Let S : H2(G, τ ) → L2(H ×ν E) be a not necessarily continuous intertwining H-map such that S is the restriction 
of a differential operator. Then, S is a kernel map. That is, there exists K S : G × H → HomC(W , E) such that y �→ K S (y, h)�z ∈
H2(G, τ ) for h ∈ H, z ∈ E and

a) (S( f )(h), z)Z = ∫
G( f (y), K S (y, h)�z)W dy for f ∈ H2(G, τ ), z ∈ E;

b) y �→ K S(y, e)�z is a K -finite vector for πλ;
c) K S is a smooth function;
d) S is continuous in L2-topologies.
Conversely, if S : H2(G, τ ) → L2(H ×ν E) is an integral H-map such that y �→ K S(y, e)�z is a K -finite vector for πλ . Then, S is 

continuous and S is the restriction of a differential operator.

Compare b) with 2.7 c). We differ the proof of the Lemma 3.2 until we state the following theorem.

Theorem 3.3. Let G, K , H, L, (τ , W ), H2(G, τ ), πλ , (ν, E), (σ , Z) be as in the previous paragraph. Let S : H2(G, τ ) → L2(H ×ν E)

denote an intertwining linear H-map. If we assume that S is continuous and resH (πλ) is an H-admissible representation, then S is 
the restriction of a linear differential operator.

For a converse statement, we have:
i) if we assume for some ν that some nonzero linear intertwining H-map S : H2(G, τ ) → L2(H ×ν E)disc is the restriction of a 

linear differential operator, then resH(πλ) is discretely decomposable;
ii) if we assume for some σ that every nonzero linear intertwining H-map S : H2(G, τ ) → H2(H, σ) is the restriction of a linear 

differential operator, then the multiplicity of (L, H2(H, σ)) in resH (πλ) is finite;
iii) if we assume for every σ that every nonzero S : H2(G, τ ) → H2(H, σ) is the restriction of a linear differential operator, then 

resH (πλ) is an H-admissible representation.

An immediate corollary is:

Corollary 3.4. If πλ is an H-admissible representation, then, for each (σ , Z), every continuous linear H-map S : H2(G, τ ) →
H2(H, σ) is the restriction of a differential operator as well as an integral map.

Example for maps S where the Theorem applies are the normal maps rn defined in Example 3.1. In particular, we 
have that resH (πλ) is discretely decomposable if and only if there exists an n such that the image of rn is contained in 
L2(H ×τn ((p/p′)(n) ⊗ W ))disc.

In [17, Theorem 5.3] as well as in [20, Theorem 3.10.1], a similar result is shown under the hypothesis that both G/K
and H/L are Hermitian symmetric spaces, that the inclusion H/L into G/K is holomorphic, and that both representations 
are holomorphic discrete series.

Proof of Lemma 3.2. We fix {z j, j = 1, · · · , dim E}, {wi, i = 1, . . . , dim W } as the respective orthonormal bases for E , W . Our 
hypothesis provides, for every f ∈ H2(G, τ ), h ∈ H , that the following equality holds:

S( f )(h) =
∑
j,b,i

d j,b,i ([R Db f ](h), wi)W z j .

In [1] we find a proof that, in the L2-kernel of an elliptic operator, L2-convergence implies uniform convergence of the 
sequence as well as any of its derivatives on compact sets. Since the Casimir operator acting on G/K is an elliptic operator, 
the result on PDE just quoted applies to H2(G, τ ). Hence, the equality (S( f )(h), z j)Z = ∑

b,i d j,b,i(R Db f (h), wi)W yields 
that the left-hand side determines a continuous linear functional on H2(G, τ ). Thus, there exists a function K S : G × H →
HomC(W , E) such that y �→ K S (y, h)�z j belongs to H2(G, τ ) and a) holds. The hypothesis S is an intertwining map, it 
yields the equality K S (h1 yk, h1hs) = ν(s−1)K S (y, h)τ (k), h1, h ∈ H , y ∈ G , s ∈ L, k ∈ K . The smoothness for K S follows from 
the fact that K �

S is equal to the map (y, h) �→ h−1 y followed by the map x �→ K S (x, e)� and that x �→ K S (x, e)� is an element 
of H2(G, τ ). Next, we justify the four equalities in the computation below. The first is due to the expression of S , the second 
is due to the identity LĎ( f )(e) = R D f (e); hence, we obtain (S( f )(e), z j)Z = ∑

b,i d j,b,i(LĎb
f (e), wi)W . The third is due to 

(1.1); finally, we recall that, for an arbitrary D ∈ U(g), it follows that any smooth vector f ∈ V ∞ is in the domain for LD ; 
λ
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in particular, y �→ Kλ(y, e)�wi is in the domain for LD . These four considerations justify the following equalities for any 
smooth vector f ∈ H2(G, τ ):∫

G

( f (y), K S(y, e)�z j)W dy = (S( f )(e), z j)

=
∑

d j,b,i(LĎb
f (e), wi)W

=
∑
j,b,i

d j,b,i

∫

G

(LĎb
f (y), Kλ(y, e)�wi)W dy

=
∑
b,i

d j,b,i

∫

G

( f (y), L(1)

Ď�
b

Kλ(y, e)�wi)W dy.

We observe that the first member and the last member of the above equalities define continuous linear functionals on 
H2(G, τ ) and that they agree on the dense subspace of smooth vectors, whence

K S(y, e)�z j =
∑
b,i

d j,b,i L(1)

Ď�
b

Kλ(y, e)�wi .

Since the right-hand side of the above equality is a K -finite vector for πλ , we have shown b). To show the continuity of S , 
we notice that S is defined by the Carleman kernel K S (for each h ∈ H , K S(·, h) ∈ H2(G, τ )) and, by hypothesis, the domain 
of the integral operator defined by K S on L2(G ×τ W ) contains H2(G, τ ). Since a Carleman kernel determines a closed map 
on its maximal domain, and H2(G, τ ) is a closed subspace, we have that S : H2(G, τ ) → L2(H ×ν E) is a closed linear map 
with domain H2(G, τ ); the closed graph Theorem leads to the continuity of S .

To show the converse statement, we explicit the hypotheses on S:
K S (hx, hh1) = K S (x, h1), h, h1 ∈ H , x ∈ G; for each Z ∈ E , y �→ K S(y, e)�z is a K -finite vector in H2(G, τ ); the domain of 

S is equal to H2(G, τ ). We show that S is a the restriction of a differential operator. In fact, since K S (x, h) = K S (h−1x, e) and 
K S(·, e) belongs to H2(G, τ ), we obtain that K S (·, h) is square integrable and hence S is a Carleman map. As in the direct 
implication, we obtain that S is continuous. To verify that S is the restriction of a differential map, we fix a nonzero vector 
w ∈ W . Since H2(G, τ ) is an irreducible representation, a result of Harish-Chandra shows that the underlying (g, K )-module 
for H2(G, τ ) is U(g)-irreducible. It readily follows that the function Kλ(·, e)�w is nonzero (otherwise Kλ would be the null 
function); therefore, for each z j , there exists D j ∈ U(g) such that K S (·, e)�z j = LD j Kλ(·, e)�w . For a smooth vector f in 
H2(G, τ ),

S( f )(h−1) = S(Lh f )(e) =
∑

j

(S Lh f (e), z j)z j

=
∑

j

∫

G

(Lh f (y), K S(y, e)�z j)w z j =
∑

j

∫

G

(Lh f (y), LD j Kλ(y, e)�w)w z j

=
∑

j

∫

G

(LD�
j
(Lh f )(y), Kλ(y, e)�w)W dy =

∑
j

(LD�
j
(Lh f )(e), w)W z j

=
∑

j

((R
Ď�

j
)(Lh−1 f )(e), w)W z j =

∑
j

((R
Ď�

j
)( f )(h−1), w)W z j .

Thus, after we have fixed a linear basis {Ri} for U(g), for a smooth vector f we have

S( f )(h) =
∑

j,i

di, j([R Ri ( f )](h), w)z j .

Owing to the result on PDEs quoted in the direct proof, the right-hand side defines a continuous linear transformation from 
H2(G, τ ) into C∞(H ×ν E). We claim that this forces S( f ) to be continuous for every f . In fact, each f in H2(G, τ ) is 
the limit of a sequence fn of smooth vectors, whence the first and last members of the above equalities agree on each fn , 
if necessary going to a subsequence; the Riez–Fischer Theorem yields that the left-hand side pointwise converges (a.e.) to 
S( f ). Thus, S( f ) agree up to a set of measure zero with a smooth function. Moreover, this argument yields that S( f ) is 
equal to the right-hand side for any f . Thus, we have shown that S is a differential operator. This concludes the proof of 
Lemma 3.2. �
Proof of Theorem 3.3. For the vector spaces E , W , we fix the respective orthonormal bases {z j}, {wi}. Since resH (πλ) is dis-
cretely decomposable, Theorem 2.6 shows that S is an integral map. For each j, the identity K S (l−1 y, e)�z j = K S(y, e)�ν(l)z j , 
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l ∈ L, y ∈ G yields x �→ K S (x, e)�z j is an L-finite vector. The hypothesis that resH (πλ) is an admissible representation allows 
us to apply [11, Prop. 1.6]. In this way, we obtain that the subspace of L-finite vectors in H2(G, τ ) is equal to the subspace 
of K -finite vectors. Whence x �→ K S (x, e)�z j is a K -finite vector. By hypothesis, H2(G, τ )K-fin is an irreducible representa-
tion under the action of U(g) and the function y �→ Kλ(y, e)�wi is nonzero and K -finite, hence, for each i, j there exists 
C j,i ∈ U(g) such that [L(1)

C j,i
Kλ](y, e)�wi = K S (y, e)�z j , for all y ∈ G . Therefore, since x �→ K S (x, e)�z j is a smooth vector for 

G , for f ∈ V ∞
λ we justify, as in the proof of Lemma 3.2, the fourth and the sixth equalities in the following computation; 

the fifth equality is due to (1.1),

S( f )(e) =
∑

j

(S( f )(e), z j)E z j =
∑

j

∫

G

( f (y), K S(y, e)�z j)W dyz j

=
∑

j

∫

G

( f (y), [L(1)
C j,i

Kλ](y, e)�wi)W dyz j

=
∑

j

∫

G

(LC�
j,i

f (y), Kλ(y, e)�wi)W dyz j

=
∑

j

([LC�
j,i

f ](e), wi)W z j =
∑

j

([R ˇC�
j,i

f ](e), wi)W z j

For h ∈ H , we apply the previous equality to f := Lh−1 f and, since S intertwines the action of H , we obtain

S( f )(h) = S(Lh−1 f )(e)

=
∑

j

([RČ�
j,i

(Lh−1 f )](e), wi)W z j =
∑

j

([R ˇC�
j,i

( f )](h), wi)W z j .

After we set D j,i := ˇC�
j,i , and recalling definition (3.1), we conclude that the fact that S is restricted to the subspace of 

smooth vectors agrees with the restriction of a differential operator. In order to show the equality for a general f ∈ H2(G, τ ), 
we argue as follows: there exists a sequence fr of elements in V ∞

λ that converges in L2-norm to f . Due to the fact that 
the Casimir operator is elliptic on G/K , the sequence fr as well as any derivatives of the sequence converge uniformly 
on compact subsets. Moreover, owing to Harish-Chandra’s Plancherel Theorem, L2(H ×ν E)disc is a finite sum of square 
integrable irreducible representations. More precisely, Harish-Chandra L2(H ×ν E)disc is a finite sum of eigenspaces for the 
Casimir operator for h. We know that the Casimir operator acts as an elliptic differential operator on L2(H ×ν E), whence 
we have that the point evaluation is a continuous linear functional on L2(H ×ν E)disc [1]. Finally, the hypothesis on resH (πλ)

gives that the image of S is contained in L2(H ×ν E)disc. Therefore, we have justified the steps in

S( f )(h) = lim
r

S( fr)(h) = lim
r

∑
j

([R D j,i fr](h), wi)W z j

=
∑

j

([R D j,i lim
r

fr](h), wi)W z j =
∑

j

([R D j,i f ](h), wi)W z j .

Whence we have shown the first statement in Theorem 3.3.
Henceforth, z(U(s)) denotes the center of the enveloping algebra of s.
To follow, we assume that, for some σ and some nonzero intertwining, H-map S : H2(G, τ ) → L2(H ×ν E)disc is the 

restriction of a linear differential operator; we show that resH (πλ) is discretely decomposable.
In fact, the hypothesis allows us to apply Lemma 3.2. In consequence, y �→ K S (y, e)�z j is a K -finite vector in H2(G, τ ). 

We claim that K S (·, e)�z j is z(U(h))-finite. In fact, Harish-Chandra’s Plancherel Theorem shows that L2(H ×ν E)disc is equal 
to a finite sum of irreducible discrete series for H . Thus, for f ∈ V ∞

λ , D ∈ z(U(h)) whenever the image of S is contained in 
an irreducible subspace, we have the equalities∫

G

( f (y), L(1)
D� K S(y, e)�z)W dy =

∫

G

(LD f (y), K S(y, e)�z)W dy

= (S(LD f )(e), z)Z = χμ(D)(S( f )(e), z)Z

= χμ(D)

∫

G

( f (y), K S(y, e)�z)W dy

The third equality holds because, by hypothesis S( f ), is an eigenfunction for z(U(h)). Therefore, the first and last members 
of the above equalities determine continuous linear functionals on H2(G, τ ) that agree in the dense subspace of smooth 
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vectors. Whence y �→ K S (y, e)�z j is an eigenfunction for z(U(h)). The general case readily follows from a similar compu-
tation. Thus, the hypothesis that S is nonzero gives us an z ∈ E such that U(h)K S (·, e)�z is a z(U(h))-finite and nonzero 
U(h)-submodule of V K -fin. We quote a result of Harish-Chandra: a U(h)-finitely generated, z(U(h))-finite, (h, L)-module has 
a finite composition series. For a proof, see [22, Corollary 3.4.7 and Theorem 4.2.1]. Therefore, the subspace U(h)K S (·, e)�z
contains an irreducible U(h)-submodule. Next, in [11, Lemma 1.5] we find a proof of: If (g, K )-module contains an irre-
ducible (h, L)-submodule, then the (g, K )-module is h-algebraically decomposable. Thus, resH (πλ) is algebraically discretely 
decomposable. The fact that πλ is unitary yields that it is discrete decomposable [13, Theorem 4.2.6]. Whence we have 
shown i).

We now assume for some σ and every intertwining linear H-map that S : H2(G, τ ) → H2(H, σ) is the restriction of a 
linear differential operator. We show that the multiplicity of (L, H2(H, σ)) in resH (πλ) is finite.

Henceforth, H2(G, τ )[V H
μ ] denotes the isotypic component for V H

μ . That is, the closure of the sum of the H-equivariant 
linear subspaces such that πλ is restricted to the subspace gives rise to a representation equivalent to V H

μ .
The first claim in Theorem 3.3 yields that resH (πλ) is discrete decomposable. Let us assume that the multiplicity of 

H2(H, σ) in resH (πλ) is infinite. Thus, there exists T1, T2, . . . such that T j : H2(H, σ) → H2(G, τ )[V H
μ ] are isometric im-

mersion intertwining linear maps such that, for r �= s, the image of Tr is orthogonal to the image of Ts and the algebraic 
sum of the subspaces Tr(H2(H, σ)) r = 1, 2, . . . is dense in H2(G, τ )[V H

μ ]. Let ι : Z → V H
μ [Z ] be the equivariant immersion 

adjoint to the evaluation at the identity. We fix a norm-one vector g0 := ι(z0) ∈ V H
μ [Z ]. There are two possibilities: for 

some r, the function KTr (·, e)�z0 is not a K -finite vector, or else for every r the function K Tr (·, e)�z0 is a K -finite vector. 
To follow, we analyze the second case; for this, we define vn := Tn(g0) and we choose a sequence of nonzero positive real 
numbers (an)n such that v0 := ∑

n an vn is not the zero vector. Due to the orthogonality for the image of the Tr and the 
choice of the sequence, v0 is not a K -finite vector. Since the stabilizer of v0 in H is equal to the stabilizer of g0 on H , 
the correspondence T : V H

μ → H2(G, τ ) defined by T (h.g0) = 1
‖v0‖h·v0 extends to an isometric immersion. We claim that 

S = T � is not the restriction of a linear differential operator. For this, we show that S(
v0‖v0‖ ) = g0 and K S (·, e)�z0 = v0‖v0‖ . On 

the one hand, we have that the following system of equations

(S( f )(e), z0)Z =
∫

G

( f (y), K S(y, e)�z0)W dy ∀ f ∈ H2(G, τ )

determines the function K S (·, e)�z0. On the other hand, for arbitrary f ∈ H2(G, τ ), we have:
∫

G

( f (y),
v0(y)

‖v0‖ )W dy = ( f , T (g0))H2(G,τ ) = (T � f , g0)H2(H,σ )

= (S( f ), ι(z0))H2(H,σ ) = (ι�(S f ), z0)Z = (S( f )(e), z0)Z .

Thus, we have shown the equality K S (·, e)�z0 = v0‖v0‖ . Therefore, if S were a differential operator, the fact v0 is not a 
K -finite vector would yield a contradiction with Lemma 3.2b. In the first case, a similar argument yields that S := T �

r is not 
the restriction of a linear differential operator. This concludes the proof of ii) in Theorem 3.3. The statements iii), iv) are 
obvious. �
Remark 3.5. The hypothesis on the image of S is quite essential. Examples and counterexamples are provided by r, r1, r2...

Example 3.6. For H/L a real form for the Hermitian symmetric space G/K and a holomorphic discrete series H2(G, τ ) for G , 
any nonzero intertwining linear H-map S : H2(G, τ ) → H2(H, σ) is never the restriction of a differential operator. Indeed, 
the statement holds because under our hypothesis resH (πλ) is not discretely decomposable [9].

3.1. Extension of an intertwining map to maximal globalization

A conjecture of Toshiyuki Kobayashi [14] predicts that, under certain hypothesis, each continuous intertwining linear 
operator between two maximal globalizations of Zuckerman modules, realized via Dolbeault cohomology, are given by 
restriction of a holomorphic differential operator. In this subsection, we show an analogous statement for the maximal 
globalization provided by the kernel of a Schmid operator.

The symbols G, K , (τ , W ), H2(G, τ ), H , L, (σ , Z), H2(H, σ) are as usual. Let

DG : C∞(G ×τ W ) → C∞(G ×τ1 W1)

be the Schmid operator [23]. Similarly, we have a Schmid operator D H : C∞(H ×σ Z) → C∞(H ×σ1 Z1). Since DG is an 
elliptic operator, K er(DG) is a closed subspace of the space of smooth sections. Thus, K er(DG ) becomes a smooth Fréchet 
representation for G . Among the properties of the kernel of the operator DG are: H2(G, τ ) is a linear subspace of K er(DG ), 
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the inclusion map H2(G, τ ) into K er(DG) is continuous, the subspace of K -finite vectors in K er(DG ) is equal to the sub-
space of K -finite vectors for H2(G, τ ), K er(DG) is a maximal globalization for the underlying Harish-Chandra module for 
(πλ, H2(G, τ )). A similar statement holds for D H . Now, we are ready to state the corresponding result.

Theorem 3.7. We assume that resH (πλ) is an H-admissible representation. Then, the following two statements holds:
a) any continuous, H-intertwining linear map S : K er(DG) → K er(D H ) is the restriction of a differential operator;
b) any continuous H-intertwining linear map S : H2(G, τ ) → H2(H, σ) extends to a continuous intertwining operator from 

K er(DG) to K er(D H ).

Nakahama in [20, Theorem 3.6] has shown a similar result under the hypothesis that both G/K , H/L are Hermitian 
symmetric spaces, the inclusion H/L into G/K is holomorphic, and both representations are holomorphic discrete series.

4. Criteria for discretely decomposable restriction

As in previous sections, we keep the hypothesis and notation of Section 1. The objects are G, K , (τ , W ), H2(G, τ ), H , L. 
We recall that the orthogonal projector Pλ onto H2(G, τ ) (1.1) is given by a smooth matrix kernel Kλ(y, x) = Kλ(x−1 y, e) =
�0(x−1 y), here �0 is the spherical function associated with the lowest K -type (τ , W ) of πG

λ . In [7] Harish-Chandra showed 
that �0 (hence tr(�0)) is a tempered function for the definition of Harish-Chandra; for another proof we refer the reader 
to [22, 8.5.1]. In [8], we find a proof that the tempered functions on G restricted to H are tempered functions. A tempered 
function is called a cusp form if the integral along the unipotent radical of any proper parabolic subgroup of G of any left 
translate of the function is equal to zero [22, 7.2.2]. Let rn : H2(G, τ ) → L2(H ×τn (p/p′)(n) ⊗ W ) be as in Example 3.1. The 
notation rn(��

0) means the family of functions rn(Kλ(·, e)�w) = rn(��
0(·)w), w ∈ W . The purpose of this section is to show 

the following Theorem.

Theorem 4.1. Let πG
λ be a discrete series for G, let �0 be its lowest K -type spherical function. Then, rn(�

�
0) is a cusp form on H, 

for every n = 0, 1, . . . , if and only if πG
λ restricted to H is discretely decomposable. In turn, this is equivalent to: for each y ∈ G, the 

restriction of Kλ(·, y) to H is a cusp form.

Remark 4.2. In [12, Fact 4.3], for a symmetric pair (G, H), T. Kobayashi shows a necessary and sufficient condition so that πλ

restricted to H is an admissible representation. Moreover, in [16, Theorem 2.8] it is shown that, for a symmetric pair (G, H), 
πλ restricted to H is algebraically discretely decomposable if and only if resH (πλ) is H-admissible. Whence, coupling the 
previously quoted result of T. Kobayashi with Theorem 4.1 and Proposition 4.3, we may state: for a symmetric pair (G, H), 
the restriction of πλ to H is admissible if and only if, for every n = 0, 1, . . . , rn(��

0) is a cusp form if and only if ��
0 is left 

z(U(h))-finite.
For a symmetric pair (G, H), another criteria for H-admissibility has been obtained by [8]. For this, they write H =

K0 × H1, with K0 a compact subgroup and H1 a noncompact subgroup. Let Hσθ be the dual subgroup to H . Then Hσθ =
K0 × H2. Let Mi denote the centralizer in L ∩ H1 = L ∩ H2 of respective Cartan subspaces. Harris, He, and Olafsson show 
that, if M1M2 = L ∩ H1, then the representation πλ restricted to H is admissible and dim HomH (π H

μ , resH (πλ)) is computed 
via a formula that involves rn , the Harish-Chandra character, the lowest L-type for π H

μ , and the limit of a sequence.
For any pair (G, H) and πλ that satisfies Condition C, in [5], it is shown that πλ is a H-admissible representation, 

and a “Blattner-Kostant”-type formula for dim HomH (π H
μ , resH (πλ)). For symmetric pairs, condition C is equivalent to 

H-admissibility.

In order to show 4.1 we first show Proposition 4.3.

Proposition 4.3. We let G, H, πG
λ , Kλ , �0 be as usual. Then, πG

λ restricted to H is a discretely decomposable representation for H if 
and only if the function y �→ Kλ(y, e)� = �̌0(y) is left z(U(h))-finite.

Proof. For the direct implication, we proceed as follows: the hypothesis that πλ is discretely decomposable allows us to 
write Vλ as the Hilbert sum of the H-isotypic components; hence, there exists a family (Pi)i∈Z≥0 of orthogonal projectors 
on Vλ that are H-equivariant, so that we have the orthogonal direct sum decomposition Vλ = ⊕i P i(Vλ), and, for every 
i, Pi(Vλ) is equal to the isotypic component of an irreducible H-module. Next, we fix w ∈ W , we recall that the func-
tion y �→ Kλ(y, e)�(w) =: kw(y) is a K -finite element of H2(G, τ ) and kw belongs to H2(G, τ )[W ] ≡ W . After that, we 
decompose H2(G, τ )[W ] as a sum of irreducible L-submodules, we write kw = f1 + · · · + f s , where f j is such that the 
linear subspace spanned by πλ(L) f j is an irreducible L-submodule of H2(G, τ )[W ]. To continue, we set f1 := f j . A re-
sult of Harish-Chandra [7, Lemma 70] states that an irreducible representation of L is the L-type of at most finitely many 
discrete series representations for H . Thus, the representation of L in the subspace spanned by π(L) f1 is an L-type of at 
most finitely many discrete series representations for H . Therefore, Pi( f1) = 0 for all but finitely many indices i. Let us 
say Pi( f1) �= 0 for i = 1, . . . , N . Since f1 is a K -finite vector in Vλ , we have that f1 is a smooth vector for πλ; therefore, 
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Pi( f1) are H-smooth vectors in Pi(Vλ). Owing to the fact that Pi(Vλ) is an isotypic representation, we have that z(U(h))

applied to Pi( f1) is contained in the one-dimensional vector subspace spanned by Pi( f1). Hence, f1 is a finite sum of 
z(U(h)-finite vectors. Thus, kw is a z(U(h))-finite vector. W is a finite dimensional vector space, let us conclude that the 
map Kλ(·, e)� = �0(·)� is left z(U(h))-finite.

For the converse statement, owing to our hypothesis, for each w ∈ W , we have that kw is z(U(h))-finite element 
of H2(G, τ )K -fin. A result of Harish-Chandra [22, Corollary 3.4.7 and Theorem 4.2.1] asserts that a U(h)-finitely gener-
ated, z(U(h))-finite, (h, L)-module has a finite composition series, whence we conclude that the representation of U(h)

in U(h)kw has a finite composition series. Thus, H2(G, τ )K -fin contains an irreducible sub-representation for U(h). Whence 
[11, Lemma 1.5] yields that

(H2(G, τ )λ)K -fin is infinitesimally discretely decomposable as h-module. Finally, since πλ is unitary, in [13, Theo-
rem 4.2.6], we find a proof that an algebraically (infinitesimally) discretely decomposable unitary representation is Hilbert 
discrete decomposable, hence πλ is discretely decomposable. �
Corollary 4.4. We assume (πλ, Vλ) is a Hilbert discretely decomposable representation for H. Then, (πλ, Vλ) is algebraically discretely 
decomposable. That is, (Vλ)K -fin can be expressed as a direct sum of U(h)-irreducible subspaces.

The Corollary follows because, as in the proof of the direct implication, we obtain each kw , w ∈ W is z(U(h))-finite, 
whence the proof for the converse statement yields that Vλ is algebraically discretely decomposable.

Now, we are ready to show Theorem 4.1.

Proof of Theorem 4.1. For the direct implication, the hypothesis is πλ restricted to H is discretely decomposable. Thus, 
Proposition 4.3 yields that Kλ(·, e)�w is z(U(h))-finite. Since [21] rn is a continuous intertwining map for H and Kλ(·, e)�w
is a tempered function, a result of [8] previously quoted let us conclude: rn(Kλ(·, e)�w) is a tempered, z(U(h))-finite function 
on H . A result of Harish-Chandra, [7][22, 7.2.2] implies rn(Kλ(·, e)�w) is a cusp form. For the converse statement, the results 
of Harish-Chandra assert that L2(H ×· (p/p′)(n) ⊗ W )disc is a finite sum of discrete series representations for H and that the 
space of cusp forms in L2(H ×· (p/p′)(n) ⊗ W ) is contained in L2(H ×· (p/p′)(n) ⊗ W )disc. Therefore, owing to the hypothesis, 
for every n, rn(Kλ(·, e)�w) belongs to L2(H ×· (p/p′)(n) ⊗ W )disc. The L2-continuity of rn , yields that rn(closure(πλ(H)kw))

is contained in a finite sum of discrete representations. Whence ⊕nrn maps continuously the closure of πλ(H)kw into 
a discrete Hilbert sum of irreducible representations. Besides, the map ⊕nrn is injective (the elements of H2(G, τ ) are 
real analytic functions). Hence, the closure of πλ(H)kw is a discrete Hilbert sum of discrete series representations. We now 
proceed as in the direct proof of Proposition 4.3 and obtain kw is a left z(U(h))-finite function. Whence Proposition 4.3 let us 
conclude that resH (πλ) is Hilbert discretely decomposable. The second equivalence follows from a simple computation. �
Remark 4.5. A simple application of Theorem 4.1 yields that the tensor product representation of G in H2(G, τ ) � H2(G, τ )�

is never discretely decomposable, because the lowest K -type trace spherical function for this particular tensor product is 
φ0(x)φ0(y); hence, restricted to G , it is not a cusp form.

5. Projectors via reproducing kernel

Let G, H, (τ , W ), H2(G, τ ) be as usual. Let (π H
μ , V H

μ ) denote an irreducible square integrable representation for H . By 
definition, the isotypic component, H2(G, τ )[V H

μ ], for V H
μ is the closure of the sum of the totality of closed H-invariant 

subspaces in H2(G, τ ) such that the resulting representation of H on the subspace is equivalent to (π H
μ , V H

μ ). Since a 
closed subspace of a reproducing kernel space is a reproducing kernel space and H2(G, τ ) is a reproducing kernel space, we 
obtain that H2(G, τ )[V H

μ ] is a reproducing kernel space. Whence the orthogonal projector Pλ,μ onto the isotypic component 
H2(G, τ )[V H

μ ] is an integral map represented by a matrix kernel Kλ,μ . Next, under the hypothesis that πλ is H-admissible, 
we present an expression for the matrix kernel Kλ,μ . We are quite convinced that the formula is true under a more general 
hypothesis. The proposed formula is as follows.

Proposition 5.1. We assume that the restriction to H of πλ is an H-admissible representation. Then, Pλ,μ is equal to the integral 
operator given by the kernel

Kλ,μ(y, x) = dμ�π H
μ
(h �→ Kλ(h

−1 y, x)) = dμ�(π H
μ )�(h �→ Kλ(hy, x)).

The expression on the right is well defined because [8] has shown that the restriction of tempered functions to H yields 
tempered functions. For H compact, the verification of 5.1 is straightforward.
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