Number theory/Combinatorics

A sum-product theorem in matrix rings over finite fields

Un théorème somme-produit dans les anneaux de matrices sur les corps finis

Thang Pham

Department of Mathematics, University of Rochester, NY, USA

ARTICLE INFO

Article history:

Received 22 December 2018
Accepted after revision 12 September 2019
Available online 26 September 2019
Presented by the Editorial Board

A B S T R A C T

In this note, we study a sum-product estimate over matrix rings $M_{n}\left(\mathbb{F}_{q}\right)$. More precisely, for $A \subset M_{n}\left(\mathbb{F}_{q}\right)$, we have

- if $\left|A \cap G L_{n}\left(\mathbb{F}_{q}\right)\right| \leq|A| / 2$, then

$$
\max \{|A+A|,|A A|\} \gg \min \left\{|A| q, \frac{|A|^{3}}{q^{2 n^{2}-2 n}}\right\}
$$

- if $\left|A \cap G L_{n}\left(\mathbb{F}_{q}\right)\right| \geq|A| / 2$, then

$$
\max \{|A+A|,|A A|\} \gg \min \left\{|A|^{\frac{2}{3}} q^{\frac{n^{2}}{3}}, \frac{|A|^{3 / 2}}{q^{\frac{n^{2}}{2}-\frac{1}{4}}}\right\}
$$

We also will provide a lower bound of $|A+B|$ for $A \subset S L_{n}\left(\mathbb{F}_{q}\right)$ and $B \subset M_{n}\left(\mathbb{F}_{q}\right)$.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans cette Note, nous étudions le phénomène somme-produit dans les anneaux de matrices $M_{n}\left(\mathbf{F}_{q}\right)$. Plus précisément, pour $A \subset M_{n}\left(\mathbf{F}_{q}\right)$, nous montrons :

- si $\left|A \cap G L_{n}\left(\mathbf{F}_{q}\right)\right| \leq|A| / 2$, alors

$$
\max \{|A+A|,|A A|\} \gg \min \left\{|A| q, \frac{|A|^{3}}{q^{2 n^{2}-2 n}}\right\}
$$

- si $\left|A \cap G L_{n}\left(\mathbf{F}_{q}\right)\right| \geq|A| / 2$, alors

$$
\max \{|A+A|,|A A|\} \gg \min \left\{|A|^{\frac{2}{3}} q^{\frac{n^{2}}{3}}, \frac{|A|^{3 / 2}}{q^{\frac{n^{2}}{2}-\frac{1}{4}}}\right\}
$$

[^0]Nous donnons également une minoration de $|A+B|$ pour $A \subset S L_{n}\left(\mathbf{F}_{q}\right)$ et $B \subset M_{n}\left(\mathbf{F}_{q}\right)$.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let A be a set in \mathbb{Z}. We define the sum and product sets as follows:

$$
\begin{aligned}
& A+A=\{a+b: a, b \in A\}, \\
& A \cdot A=\{a b: a, b \in A\}
\end{aligned}
$$

A celebrated result of Erdős and Szemerédi [4] states that there is no set $A \subset \mathbb{Z}$ that has both additive and multiplicative structures. More precisely, given any finite set $A \subset \mathbb{Z}$, we have

$$
\max \{|A+A|,|A \cdot A|\} \gg|A|^{1+\varepsilon}
$$

for some positive constant ε.
In the setting of finite fields, Bourgain, Katz, and Tao [1] showed that, given any set $A \subset \mathbb{F}_{p}$ with p prime and $p^{\delta}<|A|<$ $p^{1-\delta}$ for some $\delta>0$, one has

$$
\max \{|A+A|,|A \cdot A|\} \geq C_{\delta}|A|^{1+\varepsilon}
$$

for some $\varepsilon=\varepsilon(\delta)>0$. Note that the relation between ε and δ is difficult to determine. Using Fourier analytic methods, Hart, Iosevich, and Solymosi [6] obtained a bound over arbitrary finite fields that gives an explicit dependence of ε on δ. The precise statement of their result is as follows.

Theorem 1.1 (Hart-Iosevich-Solymosi, [6]). Let \mathbb{F}_{q} be an arbitrary finite field of order q, and A be a set of \mathbb{F}_{q}. Suppose that $|A+A|=m$ and $|A \cdot A|=n$, then we have

$$
\begin{equation*}
|A|^{3} \leq \frac{c m^{2} n|A|}{q}+c q^{1 / 2} m n \tag{1}
\end{equation*}
$$

for some positive constant c.
We note that Theorem 1.1 is non-trivial when $|A| \gg q^{1 / 2}$. In particular, if $q^{1 / 2} \leq|A| \leq q^{7 / 10}$, then we have

$$
\max \{|A+A|,|A \cdot A|\} \gg \frac{|A|^{\frac{3}{2}}}{q^{\frac{1}{4}}}
$$

Hence, $\max \{|A+A|,|A \cdot A|\} \gg|A|^{8 / 7}$ when $|A| \sim q^{7 / 10}$. We refer the interested reader to [8] for a current result when the size of A is not too big.

Here and throughout, $X \gg Y$ means that $X \geq C Y$ for some positive constant $C, X \sim Y$ means that $X \gg Y$ and $Y \gg X$.
For an integer $n \geq 2$, let $M_{n}\left(\mathbb{F}_{q}\right)$ be the set of $n \times n$ matrices with entries in $\mathbb{F}_{q}, S L_{n}\left(\mathbb{F}_{q}\right)$ be the special linear group in $M_{n}\left(\mathbb{F}_{q}\right), Z_{n}\left(\mathbb{F}_{q}\right)$ be the set of matrices in $M_{n}\left(\mathbb{F}_{q}\right)$ with zero determinant, and $G L_{n}\left(\mathbb{F}_{q}\right)$ be the set of invertible matrices in $M_{n}\left(\mathbb{F}_{q}\right)$.

For $A \subset M_{n}\left(\mathbb{F}_{q}\right)$, we define:

$$
A+A:=\{a+b: a, b \in A\}, A A:=\{a \cdot b: a, b \in A\} .
$$

In the setting of matrix rings, the first sum-product estimate bound over $M_{2}\left(\mathbb{F}_{q}\right)$ was obtained by Karabulut, Koh, Shen, Vinh, and the author in [2]. In particular, they proved the following theorem.

Theorem 1.2 (Demiroglu Karabulut et al., [2]). For $A \subset M_{2}\left(\mathbb{F}_{q}\right)$ with $|A| \gg q^{3}$, we have

$$
\max \{|A+A|,|A A|\} \gg \min \left\{\frac{|A|^{2}}{q^{7 / 2}}, q^{2}|A|^{1 / 2}\right\}
$$

The main purpose of this note is to extend this theorem to the setting of $M_{n}\left(\mathbb{F}_{q}\right)$ for any $n \geq 3$. Our first result is as follows.

Theorem 1.3. For $A \subset M_{n}\left(\mathbb{F}_{q}\right)$ with $n \geq 3$, we have

- if $\left|A \cap G L_{n}\left(\mathbb{F}_{q}\right)\right| \leq|A| / 2$, then

$$
\max \{|A+A|,|A A|\} \gg \min \left\{|A| q, \frac{|A|^{3}}{q^{2 n^{2}-2 n}}\right\}
$$

- if $\left|A \cap G L_{n}\left(\mathbb{F}_{q}\right)\right| \geq|A| / 2$, then

$$
\max \{|A+A|,|A A|\} \gg \min \left\{|A|^{\frac{2}{3}} q^{\frac{n^{2}}{3}}, \frac{|A|^{3 / 2}}{q^{\frac{n^{2}}{2}-\frac{1}{4}}}\right\}
$$

In [2], Demiroglu Karabulut et al. also proved that, for $A \subset S L_{2}\left(\mathbb{F}_{q}\right)$ and $B \subset M_{2}\left(\mathbb{F}_{q}\right)$, one has

$$
|A+B| \gg \min \left\{\frac{|A||B|^{2}}{q^{3}},|A| q\right\}
$$

This estimate was one of the two key ingredients to show that the polynomials $x+y z$ and $x(y+z)$ are moderate expanders over $S L_{2}\left(\mathbb{F}_{q}\right)$ and $M_{2}\left(\mathbb{F}_{q}\right)$. We refer our readers to [2] for more details. In our second main theorem, we will give a lower bound of $|A+B|$ where $A \subset S L_{n}\left(\mathbb{F}_{q}\right)$ and $B \subset M_{n}\left(\mathbb{F}_{q}\right)$ with $n \geq 3$.

Theorem 1.4. For $A \subset S L_{n}\left(\mathbb{F}_{q}\right)$ and $B \subset M_{n}\left(\mathbb{F}_{q}\right)$ with $n \geq 3$, we have

$$
|A+B| \gg \min \left\{|A| q, \frac{|A|^{2}|B|}{q^{2 n^{2}-2 n-2}}\right\} .
$$

Corollary 1.5. Let A be a set in $S L_{n}\left(\mathbb{F}_{q}\right)$ with $n \geq 3$. Suppose that $|A| \geq q^{\frac{2 n^{2}-2 n-2}{2-\varepsilon}}$ with $0<\varepsilon<\frac{2 n}{n^{2}-1}$, then we have

$$
|A+A| \gg \min \left\{|A|^{1+\frac{1}{n^{2}-1}},|A|^{1+\varepsilon}\right\}
$$

2. Proofs of Theorems 1.3 and 1.4

In the proofs of Theorems 1.3 and 1.4 , we will make use of the following results. The first result is given by Li and Su [7] by using Gauss sums of general linear groups and special linear groups.

Lemma 2.1 (Theorem 3.2, [7]). Let U and V be two sets in $M_{n}\left(\mathbb{F}_{q}\right)$. Let $Z(U, V)$ be the number of pairs $(u, v) \in U \times V$ such that $u+v \in Z_{n}\left(\mathbb{F}_{q}\right)$, and $S(U, V)$ be the number of pairs $(u, v) \in U \times V$ such that $u+v \in S L_{n}\left(\mathbb{F}_{q}\right)$. We have the following estimates

$$
Z(U, V) \leq \frac{\left|Z_{n}\left(\mathbb{F}_{q}\right)\right||U||V|}{q^{n^{2}}}+q^{n^{2}-n} \sqrt{|U||V|}
$$

and

$$
S(U, V) \leq \frac{\left|S L_{n}\left(\mathbb{F}_{q}\right)\right||U||V|}{q^{n^{2}}}+q^{n^{2}-n-1} \sqrt{|U||V|}
$$

Theorem 2.2. For $A \subset Z_{n}\left(\mathbb{F}_{q}\right)$ and $B \subset M_{n}\left(\mathbb{F}_{q}\right)$, we have

$$
|A+B| \gg \min \left\{|A| q, \frac{|A|^{2}|B|}{q^{2 n^{2}-2 n}}\right\}
$$

Proof. Set $U=A+B$ and $V=-B$. Let $Z(U, V)$ be the number of pairs $(u, v) \in U \times V$ such that $u+v \in Z_{n}\left(\mathbb{F}_{q}\right)$. For any pairs $(a, b) \in A \times B$, we have $(a+b)+(-b) \in Z_{n}\left(\mathbb{F}_{q}\right)$. Therefore, $Z(U, V) \geq|A||B|$.

Since $\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|=q^{\frac{n^{2}-n}{2}} \prod_{j=1}^{n}\left(q^{j}-1\right)=q^{n^{2}}-q^{n^{2}-1}+O\left(q^{n^{2}-2}\right.$) (see [3, Theorem 99]), we have $\left|Z_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n^{2}-1}+$ $O\left(q^{n^{2}-2}\right)$. Thus, it follows from Lemma 2.1 that

$$
Z(U, V) \ll \frac{|U||V|}{q}+q^{n^{2}-n} \sqrt{|U||V|} .
$$

Therefore,

$$
|A||B| \leq \frac{|A+B||B|}{q}+q^{n^{2}-n} \sqrt{|A+B||B|} .
$$

Solving this inequality with $x=\sqrt{|A+B|}$, we obtain

$$
x \gg \min \left\{\frac{|A||B|^{1 / 2}}{q^{n^{2}-n}},|A|^{1 / 2} q^{1 / 2}\right\}
$$

This concludes the proof of the theorem.
The following result is given by Ferguson, Hoffman, Luca, Ostafe, and Shparlinski [5] by employing a version of the Kloosterman sum over matrix rings.

Lemma 2.3 (Theorem 8, [5]). Let A, B, C, D be sets in $M_{n}\left(\mathbb{F}_{q}\right)$. For any matrix h in $G L_{n}\left(\mathbb{F}_{q}\right)$, let $N_{h}(A, B, C, D)$ be the number of tuples $(a, b, c, d) \in A \times B \times C \times D$ such that $(a+b)(c+d)=h$. We have the following estimate

$$
N_{h}(A, B, C, D) \leq \frac{|A||B\|C\| D|}{q^{n^{2}}}+q^{n^{2}-\frac{1}{2}} \sqrt{|A||B \| C||D|}
$$

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. Suppose $\left|A \cap G L_{n}\left(\mathbb{F}_{q}\right)\right| \leq|A| / 2$. In this case, we have $\left|A \cap Z_{n}\left(\mathbb{F}_{q}\right)\right| \geq|A| / 2$. Without loss of generality, we assume that A is a subset of $Z_{n}\left(\mathbb{F}_{q}\right)$. It follows from Theorem 2.2 that

$$
|A+A| \gg \min \left\{|A| q, \frac{|A|^{3}}{q^{2 n^{2}-2 n}}\right\}
$$

Using the fact that $\max \{|A+A|,|A A|\} \geq|A+A|$, the first claim of Theorem 1.3 is proved.
Suppose that $\left|A \cap G L_{n}\left(\mathbb{F}_{q}\right)\right| \geq|A| / 2$. Without loss of generality, we assume that $A \subset G L_{n}\left(\mathbb{F}_{q}\right)$. Thus $A A \subset G L_{n}\left(\mathbb{F}_{q}\right)$.
We now consider the following equation

$$
\begin{equation*}
(x+y)(z+t)=w \tag{2}
\end{equation*}
$$

where $x \in A+A, y \in-A, z \in A+A, t \in-A, w \in A A$. Let N be the number of solutions to this equation. It is not hard to check that

$$
N=\sum_{w \in A A} N_{w}(A+A,-A, A+A,-A)
$$

Applying Lemma 2.3 for each $w \in A A$, we obtain

$$
N \leq|A A|\left(\frac{|A+A|^{2}|A|^{2}}{q^{n^{2}}}+q^{n^{2}-\frac{1}{2}}|A+A||A|\right)
$$

On the other hand, one can check that the tuples $(a+b,-b, c+d,-d, a c)$, with $a, b, c, d \in A$, are solutions to Eq. (2). Therefore,

$$
|A|^{4} \leq N \leq \frac{|A+A|^{2}|A A||A|^{2}}{q^{n^{2}}}+q^{n^{2}-\frac{1}{2}}|A A||A+A||A|
$$

Solving this inequality gives us

$$
\max \{|A+A|,|A A|\} \gg \min \left\{|A|^{\frac{2}{3}} q^{\frac{n^{2}}{3}}, \frac{|A|^{3 / 2}}{q^{\frac{n^{2}}{2}-\frac{1}{4}}}\right\}
$$

This completes the proof of the second claim of Theorem 1.3.
Proof of Theorem 1.4. Set $U=A+B$ and $V=-B$. Let $S(U, V)$ be the number of pairs $(u, v) \in U \times V$ such that $u+v \in$ $S L_{n}\left(\mathbb{F}_{q}\right)$. For any pairs $(a, b) \in A \times B$, we have $(a+b)+(-b) \in S L_{n}\left(\mathbb{F}_{q}\right)$. Therefore, $S(U, V) \geq|A||B|$.

Since $\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|=q^{\frac{n^{2}-n}{2}} \prod_{j=1}^{n}\left(q^{j}-1\right)=q^{n^{2}}-q^{n^{2}-1}+O\left(q^{n^{2}-2}\right)$ (see [3, Theorem 99]), we have $\left|S L_{n}\left(\mathbb{F}_{q}\right)\right|=(q-$ 1) ${ }^{-1}\left|G L_{n}\left(\mathbb{F}_{q}\right)\right| \sim q^{n^{2}-1}+O\left(q^{n^{2}-2}\right)$. Thus, it follows from Lemma 2.1 that

$$
S(U, V) \ll \frac{|U||V|}{q}+q^{n^{2}-n-1} \sqrt{|U||V|}
$$

Therefore,

$$
|A||B| \leq \frac{|A+B||B|}{q}+q^{n^{2}-n-1} \sqrt{|A+B||B|}
$$

Solving this inequality with $x=\sqrt{|A+B|}$, we obtain

$$
x \gg \min \left\{\frac{|A||B|^{1 / 2}}{q^{n^{2}-n-1}},|A|^{1 / 2} q^{1 / 2}\right\}
$$

and the theorem follows.

Acknowledgement

The author would like to thank Igor Shparlinski for drawing his attention to the paper [7] while the paper was preparing. The author would like to thank the referee for valuable suggestions. The author was supported by Swiss National Science Foundation grant P400P2-183916.

References

[1] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004) 27-57.
[2] Y. Demiroglu Karabulut, D. Koh, T. Pham, C-Y. Shen, L.A. Vinh, Expanding phenomena over matrix rings, Forum Math. 31 (4) (2019), https://doi.org/10. 1515/forum-2019-0032.
[3] L.E. Dickson, Linear Groups: With an Exposition of the Galois Field Theory, Dover Publ. Inc., New York, 1958.
[4] P. Erdős, E. Szemerédi, On sums and products of integers, in: Studies in Pure Mathematics. To the Memory of Paul Turan, Birkhäuser Verlag, Basel, Switzerland, 1983, pp. 213-218.
[5] R. Ferguson, C. Hoffman, F. Luca, A. Ostafe, I. Shparlinski, Some additive combinatorics problems in matrix rings, Rev. Mat. Complut. 23 (2) (2010) 501-513.
[6] D. Hart, A. Iosevich, J. Solymosi, Sum-product estimates in finite fields via Kloosterman sums, Int. Math. Res. Not. 2007 (5) (2007) rnm007.
[7] Y. Li, H. Su, Gauss sums over some matrix groups, J. Number Theory 132 (12) (2012) 2967-2976.
[8] M. Rudnev, G. Shakan, I. Shkredov, Stronger sum-product inequalities for small sets, arXiv:1808.08465, 2018.

[^0]: E-mail address: vanthangpham@rochester.edu.
 https://doi.org/10.1016/j.crma.2019.09.008
 1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

