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In this note, we study a sum–product estimate over matrix rings Mn(Fq). More precisely, 
for A ⊂ Mn(Fq), we have

• if |A ∩ GLn(Fq)| ≤ |A|/2, then

max {|A + A|, |A A|} � min

{
|A|q,

|A|3
q2n2−2n

}
;

• if |A ∩ GLn(Fq)| ≥ |A|/2, then

max {|A + A|, |A A|} � min

{
|A| 2

3 q
n2
3 ,

|A|3/2

q
n2
2 − 1

4

}
.

We also will provide a lower bound of |A + B| for A ⊂ SLn(Fq) and B ⊂ Mn(Fq).
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r é s u m é

Dans cette Note, nous étudions le phénomène somme–produit dans les anneaux de 
matrices Mn(Fq). Plus précisément, pour A ⊂ Mn(Fq), nous montrons :

• si |A ∩ GLn(Fq)| ≤ |A|/2, alors

max {|A + A|, |A A|} � min

{
|A|q,

|A|3
q2n2−2n

}
;

• si |A ∩ GLn(Fq)| ≥ |A|/2, alors

max {|A + A|, |A A|} � min

{
|A| 2
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Nous donnons également une minoration de |A + B| pour A ⊂ SLn(Fq) et B ⊂ Mn(Fq).
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let A be a set in Z. We define the sum and product sets as follows:

A + A = {a + b : a,b ∈ A},
A · A = {ab : a,b ∈ A}.

A celebrated result of Erdős and Szemerédi [4] states that there is no set A ⊂ Z that has both additive and multiplicative 
structures. More precisely, given any finite set A ⊂Z, we have

max{|A + A|, |A · A|} � |A|1+ε

for some positive constant ε.
In the setting of finite fields, Bourgain, Katz, and Tao [1] showed that, given any set A ⊂ Fp with p prime and pδ < |A| <

p1−δ for some δ > 0, one has

max{|A + A|, |A · A|} ≥ Cδ|A|1+ε,

for some ε = ε(δ) > 0. Note that the relation between ε and δ is difficult to determine. Using Fourier analytic methods, 
Hart, Iosevich, and Solymosi [6] obtained a bound over arbitrary finite fields that gives an explicit dependence of ε on δ. 
The precise statement of their result is as follows.

Theorem 1.1 (Hart–Iosevich–Solymosi, [6]). Let Fq be an arbitrary finite field of order q, and A be a set of Fq. Suppose that |A + A| = m
and |A · A| = n, then we have

|A|3 ≤ cm2n|A|
q

+ cq1/2mn, (1)

for some positive constant c.

We note that Theorem 1.1 is non-trivial when |A| � q1/2. In particular, if q1/2 ≤ |A| ≤ q7/10, then we have

max {|A + A|, |A · A|} � |A| 3
2

q
1
4

.

Hence, max {|A + A|, |A · A|} � |A|8/7 when |A| ∼ q7/10. We refer the interested reader to [8] for a current result when the 
size of A is not too big.

Here and throughout, X � Y means that X ≥ C Y for some positive constant C , X ∼ Y means that X � Y and Y � X .
For an integer n ≥ 2, let Mn(Fq) be the set of n × n matrices with entries in Fq , S Ln(Fq) be the special linear group in 

Mn(Fq), Zn(Fq) be the set of matrices in Mn(Fq) with zero determinant, and GLn(Fq) be the set of invertible matrices in 
Mn(Fq).

For A ⊂ Mn(Fq), we define:

A + A := {a + b : a,b ∈ A}, A A := {a · b : a,b ∈ A}.
In the setting of matrix rings, the first sum–product estimate bound over M2(Fq) was obtained by Karabulut, Koh, Shen, 
Vinh, and the author in [2]. In particular, they proved the following theorem.

Theorem 1.2 (Demiroglu Karabulut et al., [2]). For A ⊂ M2(Fq) with |A| � q3 , we have

max {|A + A|, |A A|} � min

{ |A|2
q7/2

, q2|A|1/2
}

.

The main purpose of this note is to extend this theorem to the setting of Mn(Fq) for any n ≥ 3. Our first result is as 
follows.
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Theorem 1.3. For A ⊂ Mn(Fq) with n ≥ 3, we have

• if |A ∩ GLn(Fq)| ≤ |A|/2, then

max {|A + A|, |A A|} � min

{
|A|q,

|A|3
q2n2−2n

}
;

• if |A ∩ GLn(Fq)| ≥ |A|/2, then

max {|A + A|, |A A|} � min

{
|A| 2

3 q
n2
3 ,

|A|3/2

q
n2
2 − 1

4

}
.

In [2], Demiroglu Karabulut et al. also proved that, for A ⊂ S L2(Fq) and B ⊂ M2(Fq), one has

|A + B| � min

{ |A||B|2
q3

, |A|q
}

.

This estimate was one of the two key ingredients to show that the polynomials x + yz and x(y + z) are moderate expanders
over S L2(Fq) and M2(Fq). We refer our readers to [2] for more details. In our second main theorem, we will give a lower 
bound of |A + B| where A ⊂ S Ln(Fq) and B ⊂ Mn(Fq) with n ≥ 3.

Theorem 1.4. For A ⊂ S Ln(Fq) and B ⊂ Mn(Fq) with n ≥ 3, we have

|A + B| � min

{
|A|q,

|A|2|B|
q2n2−2n−2

}
.

Corollary 1.5. Let A be a set in S Ln(Fq) with n ≥ 3. Suppose that |A| ≥ q
2n2−2n−2

2−ε with 0 < ε < 2n
n2−1

, then we have

|A + A| � min

{
|A|1+ 1

n2−1 , |A|1+ε

}
.

2. Proofs of Theorems 1.3 and 1.4

In the proofs of Theorems 1.3 and 1.4, we will make use of the following results. The first result is given by Li and Su 
[7] by using Gauss sums of general linear groups and special linear groups.

Lemma 2.1 (Theorem 3.2, [7]). Let U and V be two sets in Mn(Fq). Let Z(U , V ) be the number of pairs (u, v) ∈ U × V such that 
u + v ∈ Zn(Fq), and S(U , V ) be the number of pairs (u, v) ∈ U × V such that u + v ∈ S Ln(Fq). We have the following estimates

Z(U , V ) ≤ |Zn(Fq)||U ||V |
qn2 + qn2−n

√|U ||V |,

and

S(U , V ) ≤ |S Ln(Fq)||U ||V |
qn2 + qn2−n−1

√|U ||V |.

Theorem 2.2. For A ⊂ Zn(Fq) and B ⊂ Mn(Fq), we have

|A + B| � min

{
|A|q,

|A|2|B|
q2n2−2n

}
.

Proof. Set U = A + B and V = −B . Let Z(U , V ) be the number of pairs (u, v) ∈ U × V such that u + v ∈ Zn(Fq). For any 
pairs (a, b) ∈ A × B , we have (a + b) + (−b) ∈ Zn(Fq). Therefore, Z(U , V ) ≥ |A||B|.

Since |GLn(Fq)| = q
n2−n

2
∏n

j=1(q
j − 1) = qn2 − qn2−1 + O (qn2−2) (see [3, Theorem 99]), we have |Zn(Fq)| = qn2−1 +

O (qn2−2). Thus, it follows from Lemma 2.1 that

Z(U , V ) 	 |U ||V | + qn2−n
√|U ||V |.
q
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Therefore,

|A||B| ≤ |A + B||B|
q

+ qn2−n
√|A + B||B|.

Solving this inequality with x = √|A + B|, we obtain

x � min

{ |A||B|1/2

qn2−n
, |A|1/2q1/2

}
.

This concludes the proof of the theorem. �
The following result is given by Ferguson, Hoffman, Luca, Ostafe, and Shparlinski [5] by employing a version of the 

Kloosterman sum over matrix rings.

Lemma 2.3 (Theorem 8, [5]). Let A, B, C , D be sets in Mn(Fq). For any matrix h in GLn(Fq), let Nh(A, B, C, D) be the number of 
tuples (a, b, c, d) ∈ A × B × C × D such that (a + b)(c + d) = h. We have the following estimate

Nh(A, B, C, D) ≤ |A||B||C ||D|
qn2 + qn2− 1

2
√|A||B||C ||D|.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose |A ∩ GLn(Fq)| ≤ |A|/2. In this case, we have |A ∩ Zn(Fq)| ≥ |A|/2. Without loss of generality, 
we assume that A is a subset of Zn(Fq). It follows from Theorem 2.2 that

|A + A| � min

{
|A|q,

|A|3
q2n2−2n

}
.

Using the fact that max {|A + A|, |A A|} ≥ |A + A|, the first claim of Theorem 1.3 is proved.
Suppose that |A ∩ GLn(Fq)| ≥ |A|/2. Without loss of generality, we assume that A ⊂ GLn(Fq). Thus A A ⊂ GLn(Fq).
We now consider the following equation

(x + y)(z + t) = w, (2)

where x ∈ A + A, y ∈ −A, z ∈ A + A, t ∈ −A, w ∈ A A. Let N be the number of solutions to this equation. It is not hard to 
check that

N =
∑

w∈A A

Nw(A + A,−A, A + A,−A).

Applying Lemma 2.3 for each w ∈ A A, we obtain

N ≤ |A A|
( |A + A|2|A|2

qn2 + qn2− 1
2 |A + A||A|

)
.

On the other hand, one can check that the tuples (a + b, −b, c + d, −d, ac), with a, b, c, d ∈ A, are solutions to Eq. (2). 
Therefore,

|A|4 ≤ N ≤ |A + A|2|A A||A|2
qn2 + qn2− 1

2 |A A||A + A||A|.

Solving this inequality gives us

max {|A + A|, |A A|} � min

{
|A| 2

3 q
n2
3 ,

|A|3/2

q
n2
2 − 1

4

}
.

This completes the proof of the second claim of Theorem 1.3. �
Proof of Theorem 1.4. Set U = A + B and V = −B . Let S(U , V ) be the number of pairs (u, v) ∈ U × V such that u + v ∈
S Ln(Fq). For any pairs (a, b) ∈ A × B , we have (a + b) + (−b) ∈ S Ln(Fq). Therefore, S(U , V ) ≥ |A||B|.

Since |GLn(Fq)| = q
n2−n

2
∏n

j=1(q
j − 1) = qn2 − qn2−1 + O (qn2−2) (see [3, Theorem 99]), we have |S Ln(Fq)| = (q −

1)−1|GLn(Fq)| ∼ qn2−1 + O (qn2−2). Thus, it follows from Lemma 2.1 that
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S(U , V ) 	 |U ||V |
q

+ qn2−n−1
√|U ||V |.

Therefore,

|A||B| ≤ |A + B||B|
q

+ qn2−n−1
√|A + B||B|.

Solving this inequality with x = √|A + B|, we obtain

x � min

{ |A||B|1/2

qn2−n−1
, |A|1/2q1/2

}
,

and the theorem follows. �
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