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We consider the problem of the nonparametric estimation in a functional regression model 
Y = r(X) + ε, with Y a real random variable response and X representing a functional 
variable taking values in a semi-metric space. The aim of this note is to find conditions 
of admissibility of Stein-type estimators of such a model under a class of balanced loss 
functions. Our method is to compare the risk with that obtained in the case of a quadratic 
loss.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère le problème de l’estimation non paramétrique dans un modèle de régression 
fonctionnelle Y = r(X) + ε, où Y est une variable aléatoire réelle et X est une variable 
fonctionnelle à valeurs dans un espace semi-métrique. Le but de cette note est de trouver 
les conditions d’admissibilité des estimateurs de type Stein de ce modèle dans une classe 
de fonctions de perte équilibrées. Notre méthode consiste à comparer le risque avec celui 
obtenu dans le cas d’une perte quadratique.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The technological developments in information processing have made possible the real-time monitoring of many pro-
cesses in different fields including stock markets, audience rating, meteorology, biochemistry, or medicine. As a consequence, 
there is an increasing availability of functional data and several interesting applications and case studies have been pub-
lished. In practice, the use of functional data is often preferable to that of large finite-dimensional vectors obtained by 
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discrete approximations of the functions. The reason is that, whereas the smoothness properties can be easily handled in 
a functional framework, they are likely to cause collinearity problems that invalidate many standard multivariate (finite-
dimensional) techniques. On the other hand, since the beginning of the 1960s, nonparametric statistical methods have been 
developed intensively, whereas a lot of scientists today collect samples of curves and other functional observations. For 
an introduction and applications of this field, the books by Ramsay and Dalzell [18], Bosq [4] and Ferraty and Vieu [11]
provide some basic methods of analysis along with diverse case studies in several areas, including criminology, economics, 
archeology, and neurophysiology. For additional case studies or theoretical developments, one can see also, e.g., Benhenni 
et al. ([1], [2]), Boente and Fraiman [3], Ramsay and Silverman ([19], [20]), Rachdi and Vieu [17], and references therein. For 
a survey on recent advances in Functional Data Analysis (FDA) and High-Dimensional Statistics (HDS) with recent selected 
papers in related fields, we can see [9] and [14].

In this work, we are concerned with the problem of the nonparametric estimation of the regression operator with 
functional data. More precisely, we are interested in the regression model:

Y = r(X) + ε (1)

where Y is the response variable taken value in R, the explanatory variable X is of functional type and the error ε is 
assumed to be normally distributed with zero mean and variance σ 2

ε .
Note that, in the parametric case, Stein in [21] proved the inadmissibility of the usual estimator Y = (Y1, ...; Y p) of a 

normal mean θ = (θ1, ...; θp) under quadratic loss function, and showed that the estimators of the form:

(1 − b

a + ‖Y ‖2
)Y

dominated Y for a (respectively b) sufficiently small (respectively large) when p ≥ 3. A few years later, James and Stein in 
[15] gave a new proof of the result of [21], where other distributions and other loss functions are considered. Since then, 
much research has been devoted to improving upon the best invariant estimator of a location vector θ by relaxing the 
normality assumption, using different loss functions, or considering more general estimators. To quote only a few of them, 
Bradwein et al. ([5], [6]) considered a generalization of James–Stein estimators under spherical symmetry distributions 
and, in another work, they present the shrinkage estimators of the location parameter for certain spherically symmetric 
distributions. The same approach is given by Cellier et al. [8], [7] under elliptically symmetric distributions. Fourdrinier 
et al. [12] focused on the estimation of a loss function for a spherically symmetric distribution in the general linear model 
and present in [13] an expository development of loss estimation with substantial emphasis on the setting where the 
distributional context is normal and its extension to the case where the underlying distribution is spherically symmetric.

Our major objective is to give necessary or sufficient conditions to establish the admissibility of Stein-type estimators; 
for this we consider a class of balanced loss functions proposed firstly by Zellner in [22], Dey et al. in [10], and Jozani et al. 
in [16]. But, in all this literature, they use only the quadratic or the weighted quadratic balanced loss function. In our case, 
more class of balanced loss functions are considered and illustrated with various examples. The main idea of the method 
used is based on the comparison of the risk calculated under the different balanced loss functions proposed with the risk 
obtained by the quadratic loss function. Consequently, we are interested in Stein’s improvement of the kernel estimator r̂(x)
in the model (1) using the balanced loss function

L(r(x), r̂g(x)) = ωφ(r̂(x), r̂g(x)) + (1 − ω)φ(r(x), r̂g(x)) (2)

where 0 < ω < 1, φ(s, t) is a differentiable function from R2 to R and g is a positive operator from E ×Rn to R, where 
(E, d) is a semi-metric space. The Stein-type estimator r̂g is defined by r̂g(x) = r̂(x) − g(x, Y ).

Contrary to what has been shown by Dey et al. in [10], in some cases the question about admissibility and dominance 
may depend mainly on ω on the one hand. On the other hand, we note that results for balanced loss functions may be 
inferred directly from the corresponding results for quadratic and weighted quadratic loss functions, as demonstrated by 
Jozani et al. in [16].

2. Model and estimators

We consider the regression model (1). From the sample (X1, Y1), ..., (Xn, Yn), we estimate the regression operator r by:

r̂(x) =
n∑

i=1

Yi W i(x) = (Y1, ..., Yn)t(W1(x), ..., Wn(x)) := Y t W

where W i(x) = �i(x)∑n
i=1 �i(x)

, �i(x) = K
(

d(x,Xi)
hn

)
and K is a real function defined on R+ . The bandwidth hn is such that: 

lim
n→∞ hn = 0.

For the convergence of the estimator r̂(x), we can see [11] for more detailed proofs.
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3. Balanced loss functions and associated risk

The balanced loss function is given by the following formula:

L(r(x), r̂g(x)) = ωφ(r̂(x), r̂g(x)) + (1 − ω)φ(r(x), r̂g(x))

where r̂g(x) = r̂(x) − g(x, Y ) is the Stein-type estimator.
The risk of any estimator r̂g will be denoted by

R(r(x), r̂g(x)) = E{L(r(x), r̂g(x))}.
Along this work, we consider distance-based balanced loss functions, which means that we have:

φ(s, t) = ψ(s − t)

where the representing function ψ is a positive function such that ψ(0) = 0. So the expression for the difference of the risk 
is:

�R(x) = R(r(x), r̂g(x)) −R(r(x), r̂(x))

= ωE{ψ(g(x, Y ))} + (1 − ω)E{ψ(r(x) − r̂(x) + g(x, Y )) − ψ(r(x) − r̂(x))}.
The method used later is to compare the difference in risk �R(x) with that obtained by considering the quadratic loss 
function L0(r(x), ̂rg(x)) = (r(x) − r̂g(x))2. If we note R0(x) the risk obtained relatively to the quadratic loss function and 
�R0(x) the difference in risk, we have:

�R0(x) = R0(r(x), r̂g(x)) −R0(r(x), r̂(x))

= E{(g2(x, Y ) − 2(r̂(x) − r(x))g(x, Y )}.
4. Admissibility and dominance. Main results

The objective in this section is to show the influence of the choice of the balanced loss function on the possibility 
of improvement of the usual estimator (the kernel estimator). We begin with examples where the choice of BLF leads to 
finding a solution to this problem of improvement by shrinkage; then we cite examples of the opposite case where the 
usual estimator can not be dominated by another estimator obtained by contraction. The following lemma gives us an 
explicit formula of the difference in risk �R0(x).

Lemma 4.1. For every differentiable function g : E ×Rn −→R, we have:

�R0(x) = E{g2(x, Y )} − 2σε

n∑
i=1

W i(x)E{∂(g(x, Y ))

∂Yi
}

where ∂ g(x, Y )/∂Yi is the partial derivative of g(x, Y ) with respect to the i-th variable Yi.

We need to apply the last lemma for the quadratic balanced loss function in order to have sufficient conditions on 
function g such that the estimator r̂g dominate r̂ under this balanced loss function through the following theorem.

Theorem 1. Let g : E ×Rn →R be a positive differentiable function. A sufficient condition for the estimator ̂r(x) − g(x, Y ) to dominate 
r̂(x) under the quadratic balanced loss function is:

g2(x, Y ) − 2(1 − ω)σε ≺ W (x),∇g(x, Y ) 	≤ 0. (3)

Sketch of the proof of Theorem 1. The basic ideas of this proof are as follows.
(i) We use the quadratic balanced function given by:

L(r(x), r̂g(x)) = ω(g(x, Y ))2 + (1 − ω)(r(x) − r̂(x) + g(x, Y ))2

to explicit the associated difference in risk by the form:

�R(x) = E{g2(x, Y )} − 2(1 − ω)E{(r̂(x) − r(x))g(x, Y )}.
(ii) We get sufficient conditions for the estimator r̂(x) − g(x, Y ) to dominate r̂(x) by applying the formula

E{(r̂(x) − r(x))g(x, Y )} = σε

n∑
i=1

W i(x)E[∇i g(x, Y )].

In order to save space, the proof may be obtained on simple request to one of the authors.
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5. Examples

In this section and for the purpose of illustrating our results, we propose some examples by considering different classes 
of balanced loss functions.

Example 1 (Weighted quadratic balanced loss).
Let us define the weighted quadratic balanced loss function by:

L(r(x), r̂g(x)) = ωτ(r̂(x) − r̂g(x))2 + (1 − ω)τ(r(x) − r̂g(x))2 (4)

= ωτ(g(x, Y ))2 + (1 − ω)τ(r(x) − r̂(x) + g(x, Y ))2, τ > 0.

A sufficient condition for the estimator r̂(x) − g(x, Y ) to dominate r̂(x) under (4) is

τ g2(x, Y ) − 2(1 − ω)τσε ≺ W (x),∇g(x, Y ) 	≤ 0. (5)

Example 2 (Logistic balanced loss).
We define the logistic balanced loss function defined by:

L(r(x), r̂g(x)) = ω(− ln
1

2
(1 + e−g2(x,Y ))) (6)

+ (1 − ω)(− ln
1

2
(1 + e−(r(x)−r̂(x)+g(x,Y ))2

)).

Under this logistic balanced loss function (6), the kernel estimator r̂(x) is admissible.

Example 3 (Reflected normal balanced loss).
We define the reflected normal balanced loss function defined by:

L(r(x), r̂g(x)) = ω(1 − e−ag2(x,Y )) (7)

+ (1 − ω)(1 − e−a(r(x)−r̂g(x))2
).

For the regression model (1), and under this reflected normal balanced loss function (7), the kernel estimator r̂(x) is admis-
sible.

Example 4 (Linex balanced loss).
Under the Linex balanced function:

L(r(x), r̂g(x)) = ω(eag(x,Y ) − ag(x, Y ) − 1) (8)

+ (1 − ω)(ea(r(x)−r̂(x)+g(x,Y )) − a(r(x) − r̂(x) + g(x, Y )) − 1).

A necessary condition for the estimator r̂g(x) to dominate the kernel estimator r̂(x) is:

ag(x, Y ) < ln(
1

ω
).

Example 5 (Absolute value balanced loss).
The absolute value balanced loss function is:

L(r(x), r̂g(x)) = ωg(x, Y ) + (1 − ω)|r(x) − r̂(x) + g(x, Y )|. (9)

For the regression model (1) and under the absolute value balanced loss function (9) with 1
2 ≤ ω < 1, the kernel estimator 

r̂(x) is admissible.

6. Concluding remarks

1. In this note, we show the impact of the choice of the loss function on the admissibility of the Stein-type estimator 
of the regression operator. In some cases, the usual estimator is dominated by the Stein estimator, whereas in other 
choices of the loss function, the situation is similar to the quadratic case, as proved in results obtained by James and 
Stein in [21].
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2. We can without difficulty project the results of this paper on the problem of the parametric regression model. This 
idea stems from the simple fact that the explanatory variable X in the model (1) is of functional type (taking values 
in a semi-metric space), so one can have analogue results for the parametric model studied in [10] or any general 
multivariate linear model.

3. The nonparametric methods used for improving the usual estimators (smoothing methods and cross-validation idea) 
leads to choose between small bias and large variance (or the contrary) with respect to interesting arguments in the 
posed problem. But as all can see, Stein’s method (shrinkage) leads to minimize the risk (and so the variance) without 
taking the bias into account.
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