Algebra

On complexity of representations of quivers

Sur la complexité des représentations de carquois

Victor G. Kac ${ }^{1}$
Department of Mathematics, M.I.T, Cambridge, MA 02139, USA

A R T I C L E IN F O

Article history:
Received 24 October 2019
Accepted 25 October 2019
Available online 11 November 2019
Presented by Michèle Vergne

A B S T R A C T

It is shown that, given a representation of a quiver over a finite field, one can check in polynomial time whether it is absolutely indecomposable.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous montrons qu'étant donné une représentation de carquois sur un corps fini, on peut vérifier en temps polynomial si elle est absolument indécomposable.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Some results on absolutely indecomposable representations of quivers

Let Γ be a finite graph without self-loops (but several edges connecting two vertices are allowed), and let \mathcal{V} denote the set of its vertices. The graph Γ with an orientation Ω of its edges is called a quiver. A representation of the quiver (Γ, Ω) over a field \mathbb{F} is a collection of finite-dimensional vector spaces $\left\{U_{v}\right\}_{v \in \mathcal{V}}$ over \mathbb{F} and linear maps $\left\{U_{v} \rightarrow U_{w}\right\}$ for each oriented edge $v \rightarrow w$. Homomorphisms and isomorphisms of two representations are defined in the obvious way. The direct sum of two representations ($\left\{U_{v}\right\},\left\{U_{v} \rightarrow U_{w}\right\}$) and ($\left\{U_{v}^{\prime}\right\},\left\{U_{v}^{\prime} \rightarrow U^{\prime}{ }_{w}\right\}$) is the representation

$$
\left(\left\{U_{v} \oplus U^{\prime}{ }_{v}\right\},\left\{U_{v} \oplus U_{v}^{\prime} \rightarrow U_{w} \oplus U_{w}^{\prime}\right\}\right)
$$

where maps are the direct sums of maps. A representation π is called indecomposable if it is not isomorphic to a direct sum of two non-zero representations; π is called absolutely indecomposable if it is indecomposable over the algebraic closure $\overline{\mathbb{F}}$ of the field \mathbb{F}.

Let $r=\# \mathcal{V}$ and let $Q=\bigoplus_{v \in \mathcal{V}} \mathbb{Z} \alpha_{v}$ be a free abelian group of rank r with a fixed basis $\left\{\alpha_{v}\right\}_{v \in \mathcal{V}}$. Let $Q_{+}=\bigoplus_{v} \mathbb{Z}_{\geq 0} \alpha_{v} \subset Q$. The dimension of a representation $\pi=\left\{U_{v}\right\}_{v \in \mathcal{V}}$ is the element

[^0]$$
\operatorname{dim} \pi=\sum_{v \in \mathcal{V}}\left(\operatorname{dim} U_{v}\right) \alpha_{v} \in Q_{+}
$$

The Cartan matrix of the graph Γ is the symmetric matrix $A=\left(a_{u v}\right)_{u, v \in \mathcal{V}}$, where $a_{v v}=2$ and $-a_{u v}$ is the number of edges, connecting u and v if $u \neq v$. Define a $\frac{1}{2} \mathbb{Z}$-valued symmetric bilinear form on Q, such that $(\alpha \mid \alpha) \in \mathbb{Z}$, by

$$
\left(\alpha_{u} \mid \alpha_{v}\right)=\frac{1}{2} a_{u v}, u, v \in \mathcal{V}
$$

and the following (involutive) automorphisms $r_{v}, v \in \mathcal{V}$, of the free abelian group Q

$$
r_{v}\left(\alpha_{u}\right)=\alpha_{u}-a_{u v} \alpha_{v}, u \in \mathcal{V}
$$

The group $W \subset$ Aut Q, generated by all $r_{v}, v \in \mathcal{V}$, is called the Weyl group of the graph Γ. It is immediate to see that the bilinear form (.|.) is invariant with respect to all $r_{v}, v \in \mathcal{V}$, hence with respect to the Weyl group W.

It is well known that the group W is finite if and only if the Cartan matrix A is positive definite, which happens if and only if all connected components of Γ are Dynkin diagrams of simple finite-dimensional Lie algebra of type $A_{r}, D_{r}, E_{6}, E_{7}, E_{8}$ (see e.g. [10]). Gabriel's theorem [4] states that for a quiver (Γ, Ω) the number of indecomposable representations, up to isomorphism, is finite if and only if the group W is finite. Moreover, in this case the map $\pi \mapsto \operatorname{dim} \pi$ establishes a bijective correspondence between isomorphism classes of indecomposable representations of (Γ, Ω) and the set of positive roots $\Delta_{+} \subset Q_{+}$of the semisimple Lie algebra with Dynkin diagram Γ, where

$$
\begin{equation*}
\Delta_{+}=\bigcup_{v \in \mathcal{V}}\left(\left(W \cdot \alpha_{v}\right) \cap Q_{+}\right) \tag{1}
\end{equation*}
$$

For an arbitrary graph Γ denote by $\Delta_{+}^{\text {re }}$ the RHS of (1); note that $(\alpha \mid \alpha)=1$ for all $\alpha \in \Delta_{+}^{\text {re }}$. Furthermore, let

$$
\begin{equation*}
\mathcal{C}=\left\{\alpha \in Q_{+} \backslash\{0\} \mid\left(\alpha \mid \alpha_{v}\right) \leq 0, v \in \mathcal{V}, \text { and } \operatorname{supp} \alpha \text { is connected }\right\}, \tag{2}
\end{equation*}
$$

where for $\alpha=\sum_{v \in \mathcal{V}} n_{v} \alpha_{v}$, we let $\operatorname{supp} \alpha=\left\{v \mid n_{v} \neq 0\right\}$. We let

$$
\Delta_{+}^{\mathrm{im}}=W \cdot \mathcal{C}, \quad \Delta_{+}=\Delta_{+}^{\mathrm{re}} \cup \Delta_{+}^{\mathrm{im}}
$$

It is easy to see that $\Delta_{+}^{\mathrm{im}} \subset Q_{+}$and that $(\alpha \mid \alpha) \in \mathbb{Z}_{\leq 0}$ for $\alpha \in \Delta_{+}^{\mathrm{im}}$. The set $\Delta_{+} \subset Q_{+}$is the set of positive roots of the Kac-Moody algebra $\mathfrak{g}(A)$, associated with the Cartan matrix A, and Δ_{+}^{im} is empty if and only if the matrix A is positive definite [7], [10].

Theorem 1. Let $\mathbb{F}=\mathbb{F}_{q}$ be a field of q elements.
(a) The number of absolutely indecomposable representations over \mathbb{F}_{q} of dimension $\alpha \in Q_{+}$of a quiver (Γ, Ω) is independent of the orientation Ω. It is zero if $\alpha \notin \Delta_{+}$, and it is given by a monic polynomial $P_{\Gamma, \alpha}(q)$ of degree $1-(\alpha \mid \alpha)$ with integer coefficients. In particular, $P_{\Gamma, \alpha}(q)=1$ if $\alpha \in \Delta_{+}^{\text {re }}$.
(b) The constant term $P_{\Gamma, \alpha}(0)$ equals to the multiplicity of the root α in $\mathfrak{g}(A)$.
(c) All coefficients of $P_{\Gamma, \alpha}(q)$ are non-negative.
(d) Consequently, for any quiver (Γ, Ω) and any $\alpha \in \Delta_{+}$there exists an absolutely indecomposable representation over \mathbb{F}_{q} of dimension α.

Claim (a) was proved in [7] and [9]; claims (b) and (c) were conjectured in [7], [9], and proved in [5] and [6] respectively. For indivisible $\alpha \in \Delta_{+}$both claims (b) and (c) were proved earlier in [2].

2. Quasi-nilpotent subalgebras of $\operatorname{End}_{\mathbb{F}} \boldsymbol{U}$

Consider a finite-dimensional vector space U over a field \mathbb{F}. An endomorphism a of U is called quasi-nilpotent if all its eigenvalues are equal; denote these eigenvalues by eig (a). They are elements of the algebraic closure $\overline{\mathbb{F}}$ of the field \mathbb{F}. An associative subalgebra A of $E^{F} U$ is called quasi-nilpotent if it consists of quasi-nilpotent elements. For an associative algebra A we denote by A_{-}the Lie algebra obtained from A by taking the bracket $[a, b]=a b-b a$. We also let $\bar{A}=\overline{\mathbb{F}} \otimes_{\mathbb{F}} A$, $\bar{U}=\overline{\mathbb{F}} \otimes_{\mathbb{F}} U$.

Lemma 1. Let A be a subalgebra of the associative algebra $\operatorname{End}_{\mathbb{F}} U$.
(a) If A is a quasi-nilpotent subalgebra, then in some basis of \bar{U}, all endomorphisms $a \in A$ have upper triangular matrices with eig(a) on the diagonal. In particular, $\operatorname{eig}(a+b)=\operatorname{eig}(a)+\operatorname{eig}(b)$ for $a, b \in A$, and A_{-}is a nilpotent Lie algebra.
(b) If A_{-}is a nilpotent Lie algebra and A has a basis, consisting of quasi-nilpotent endomorphisms, then A is a quasi-nilpotent subalgebra.

Proof. Burnside's theorem says that any subalgebra of the $\overline{\mathbb{F}}$-algebra $\operatorname{End}_{\overline{\mathbb{F}}} \bar{U}$, where \bar{U} is a finite-dimensional vector space over $\overline{\mathbb{F}}$, which acts irreducibly on \bar{U}, coincides with End \bar{U}. Hence, in some basis of \bar{U} the algebra \bar{A} consists of upper triangular block matrices with blocks End $\overline{\mathbb{F}} \overline{\mathbb{F}}^{m_{i}}$ on the diagonal, where $m_{i} \geq 1, \sum_{i} m_{i}=\operatorname{dim} \bar{U}$.

If A is a quasi-nilpotent subalgebra, then so is \bar{A}, and, in particular, End $\overline{\mathbb{F}} \overline{\mathbb{F}}^{m_{i}}$ for all i. This implies that all $m_{i}=1$. Hence \bar{A} consists of upper triangular quasi-nilpotent matrices. This proves (a).

In order to prove (b), note that if A_{-}is a nilpotent Lie algebra, then so is \bar{A}_{-}, and, in particular so are all $\left(\operatorname{End}_{\overline{\mathbb{F}}} \overline{\mathbb{F}}^{m_{i}}\right)_{-}$. It follows that all $m_{i}=1$, so that \bar{A}_{-}consists of upper triangular matrices in some basis of \bar{U}. Since A has a basis, consisting of quasi-nilpotent elements, the subalgebra A is quasi-nilpotent. This proves (b).

Corollary 1. A subalgebra A of the associative algebra $\operatorname{End}_{\mathbb{F}} U$ is quasi-nilpotent if and only if the Lie algebra A_{-}is nilpotent and A has a basis, consisting of quasi-nilpotent endomorphisms.

3. Criterion of absolute indecomposability

Let $\pi=\left(\left\{U_{v}\right\},\left\{U_{v} \rightarrow U_{w}\right\}\right)$ be a representation of a quiver (Γ, Ω) over a field \mathbb{F}, of dimension $\alpha=\sum_{v \in \mathcal{V}} n_{v} \alpha_{v}$. Let $U=\underset{v \in \mathcal{V}}{\oplus} U_{v}$. Then the space $\operatorname{Hom}_{\mathbb{F}}\left(U_{v}, U_{w}\right)$ is naturally identified with a subspace of $\operatorname{End}_{\mathbb{F}} U$, so that the representation π is identified with a collection of endomorphisms for each oriented edge $v \rightarrow w$ of the quiver $(\Gamma, \Omega):\left\{\pi_{v, w}: U_{v} \rightarrow U_{w}\right\} \subset$ $\operatorname{End}_{\mathbb{F}} U$. An endomorphism a of π decomposes as $a=\sum_{v \in \mathcal{V}} a_{v}$, where $a_{v} \in \operatorname{End}_{\mathbb{F}} U_{v} \subset \operatorname{End}_{\mathbb{F}} U$, and the condition that $a \in \operatorname{End} \pi$, the algebra of endomorphisms of π, means that

$$
\begin{equation*}
a_{w} \pi_{v, w}=\pi_{v, w} a_{v} \text { for all oriented edges } v \rightarrow w . \tag{3}
\end{equation*}
$$

This simply means that the block diagonal endomorphism a commutes with all endomorphisms $\pi_{v, w}$ in the algebra End $\mathbb{F}_{\mathbb{F}} U$. Note that (3) has an obvious solution $a_{v}=c I_{U_{v}}, v \in \mathcal{V}$, where $c \in \mathbb{F}$, hence dim End $\pi \geq 1$. In the case of equality, α lies in Δ_{+}, and it is called a Schur vector; in this and only in this case a generic representation of dimension α is absolutely indecomposable [8].

Lemma 2. The representation π is absolutely indecomposable if and only if the algebra of its endomorphisms End π is quasi-nilpotent in $\operatorname{End}_{\mathbb{F}} U$.

Proof. An endomorphism $a \in \operatorname{End} \pi \subset \operatorname{End}_{\mathbb{F}} U \subset \operatorname{End}_{\overline{\mathbb{F}}} \bar{U}$ decomposes in a sum of commuting endomorphisms $a=a_{(s)}+a_{(n)}$, where the endomorphism $a_{(s)}$ is diagonalizable and the endomorphone $a_{(n)}$ is nilpotent (Jordan decomposition). Condition (3) means that a commutes with $\pi_{v, w}$ for all oriented edges $v \rightarrow w$. By a well-known fact of linear algebra, it follows that the $\pi_{v, w}$ commute with $a_{(s)}$. But then the decomposition of \bar{U} in a direct sum of eigenspaces of $a_{(s)}$ is a decomposition of the representation π in a direct sum of representation of the quiver (Γ, Ω). Thus, π is absolutely indecomposable if and only if $a_{(s)}$ is a scalar endomorphism of \bar{U}, which is equivalent to say that a is a quasi-nilpotent endomorphism of U.

4. Main theorem

The following is the main result of the paper.

Theorem 2. Let \mathbb{F}_{q} be a fixed finite field. Then there exists an algorithm which, given as input a quiver (Γ, Ω) and its representation $\pi=\left(\left\{U_{v}\right\},\left\{U_{v} \rightarrow U_{w}\right\}\right)$ over \mathbb{F}_{q} of dimension $\sum_{v \in \mathcal{V}} n_{v} \alpha_{v}$, can decide in polynomial in $N:=\sum_{v} n_{v}$ time whether π is absolutely indecomposable or not.

Proof. By Lemma 2 one has to check whether End $\pi \subset \operatorname{End}_{\mathbb{F}_{q}} U$, where $U=\bigoplus_{v \in \mathcal{V}} U_{v}$, consists of quasi-nilpotent elements. By Corollary 1 one has to check two things:
(i) End π has a basis, consisting of quasi-nilpotent elements;
(ii) the Lie algebra (End π)_ is nilpotent.

For this we identify U_{v} with the vector space $\mathbb{F}_{q}^{n_{v}}$, so that U is identified with \mathbb{F}_{q}^{N} and End $\mathbb{F}_{q} U$ with the algebra of $N \times N$-matrices over \mathbb{F}_{q}. End π is a subspace of $\operatorname{End}_{\mathbb{F}_{q}} U$, given by linear homogeneous equation (3), hence, using Gauss elimination, we can construct in polynomial in N time a basis a_{1}, \ldots, a_{m} of End π, where $m \leq N$.

First, we check that all the a_{i} are quasi-nilpotent. This simply means that

$$
\begin{equation*}
\operatorname{det}_{U}\left(\lambda I_{N}+a_{i}\right)=\left(\lambda+\gamma_{i}\right)^{N}, \text { where } \gamma_{i} \in \overline{\mathbb{F}}_{q} \tag{4}
\end{equation*}
$$

The left-hand side of (4) can be computed in polynomial in N time by Gauss elimination. By the separability of $\overline{\mathbb{F}}_{q}$ over \mathbb{F}_{q}, (4) implies that all γ_{i} lie in \mathbb{F}_{q}. Hence we have to check that (4) holds for each i and some element $\gamma_{i} \in \mathbb{F}_{q}$, which can be done in polynomial in N time.

Second, we check that (End $\pi)_{\text {_ }}$ is a nilpotent Lie algebra. Recall that a Lie algebra \mathfrak{g} of dimension m is nilpotent if and only if the member \mathfrak{g}^{m} of the sequence of subspaces, defined inductively by

$$
\mathfrak{g}^{1}=\mathfrak{g}, \quad \mathfrak{g}^{j}=\left[\mathfrak{g}, \mathfrak{g}^{j-1}\right] \text { for } j \geq 2
$$

is zero. Given a basis $\left\{a_{i}\right\}$ of \mathfrak{g} (which we already have), the subspace \mathfrak{g}^{2} is the span over \mathbb{F}_{q} of all commutators $\left[a_{i}, a_{j}\right]$. Using Gauss elimination, construct a basis $\left\{b_{i}\right\}$ of \mathfrak{g}^{2}. Next, \mathfrak{g}^{3} is the span of commutators [a_{i}, b_{j}], and again, using Gauss elimination, choose a basis $\left\{c_{i}\right\}$ of \mathfrak{g}^{3}, etc. The Lie algebra \mathfrak{g} is nilpotent if and only if $\mathfrak{g}^{m}=0$.

5. A brief discussion on P vs NP

In terms of matrices over \mathbb{F}_{q}, a representation π over \mathbb{F}_{q} of a quiver (Γ, Ω) of dimension $\alpha=\sum_{v \in \mathcal{V}} n_{v} \alpha_{v} \in Q_{+}$is a collection of $n_{w} \times n_{v}$ matrices $\pi_{v, w}$ over \mathbb{F}_{q} for each oriented edge $v \longrightarrow w$. An endomorphism of π is a collection of $n_{v} \times n_{v}$ matrices a_{v} over \mathbb{F}_{q} for each vertex $v \in \mathcal{V}$, such that the linear homogeneous equations (3) hold. The representation π is absolutely indecomposable if for each endomorphism of π all matrices $a_{v}, v \in \mathcal{V}$, are quasi-nilpotent (equivalently, by Corollary 1, End π has a basis of elements with this property).

The following discussion was outlined to me by Mike Sipser. Given a representation π over a fixed finite field \mathbb{F}_{q} of a quiver (Γ, Ω) of dimension $\alpha \in \Delta_{+}$, which is a collection of $M_{\alpha}:=\sum_{v \rightarrow w} n_{v} n_{w}$ numbers from \mathbb{F}_{q}, the output is YES if π is absolutely indecomposable and NO otherwise. Call this problem INDEC; it is a P problem, according to Theorem 2. Define a generalization of INDEC, where some of the numbers are replaced by variables $x_{i}, i=1, \ldots, M$, where M is an integer, such that $1 \leq M \leq M_{\alpha}$, and call this problem $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M}\right]$. Say YES for the latter problem if there exist $\gamma_{1}, \ldots, \gamma_{M} \in \mathbb{F}_{q}$ we can substitute for x_{1}, \ldots, x_{M}, such that the resulting INDEC problem is YES. Obviously INDEC is in P implies that $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M}\right]$ is in NP.

Now assume that $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is actually in P. We give a polynomial in M_{α} time procedure to output an absolutely indecomposable representation. Test $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$. The answer is YES by Theorem 1 (d). Now reduce M_{α} by 1 , by trying all possible numbers from \mathbb{F}_{q} in place of $x_{M_{\alpha}}$ and test $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}-1}\right]$ for each of these numbers. The answer must be YES for at least one of these numbers. Repeat this procedure until we find all M_{α} numbers. That is our answer.

6. Conjectures and examples

Conjecture 1. INDEC $\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is not in P.
Conjecture 2. INDEC $\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is in P for any quiver (Γ, Ω) if $\alpha \in \Delta_{+}$is a Schur vector.
Conjecture 3. INDEC[$\left.x_{1}, \ldots, x_{M_{\alpha}}\right]$ is in P for any quiver (Γ, Ω) if $\alpha \in \mathcal{C}$ (defined by (2)).
Example 1. Let Γ be a Dynkin diagram of type $A_{r}, D_{r}, E_{6}, E_{7}, E_{8}$. In this case for any orientation Ω of Γ all indecomposable representations have been constructed explicitly in [4], which shows that in this case $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is in P .

Example 2. Let Γ be the extended (connected) Dynkin diagram, so that $\# \mathcal{V}=r+1$ and $\operatorname{det} A=0$. These are the only connected graphs, for which the Cartan matrix is positive semidefinite and singular. In this case all absolutely indecomposable representations for any orientation Ω have been constructed in [11] and in [3], which shows that in this case $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is in P as well. Note that in this case [7] $\Delta_{+}^{\mathrm{im}}=\mathbb{Z}_{\geq 1} \delta$, where $A \delta=0$ and $(\delta \mid \delta)=0$, and one can show that $P_{\Gamma, n \delta}(q)=q+r$ for $n \in \mathbb{Z}_{\geq 1}$.

Example 3. Let Γ_{m} be the quiver with two vertices v_{1} and v_{2}, and m arrows from v_{1} to v_{2}. For $m=1$ and 2 this is a quiver from Examples 1 and 2 respectively. For $m \geq 3$ the explicit expressions for the polynomials $P_{\Gamma_{m}, \alpha}(q)$ for an arbitrary $\alpha \in \Delta_{+}^{\mathrm{imm}}$ are unknown. Note that in this case $\Delta_{+}^{\text {re (resp. im) }}=\left\{\alpha=n_{1} \alpha_{1}+n_{2} \alpha_{2} \mid n_{i} \in \mathbb{Z}_{\geq 0}\right.$ and $n_{1}^{2}+n_{2}^{2}-m n_{1} n_{2}=1$ (resp. <0) $\}$.

Now, let (Γ, Ω) be a quiver, and let v be a vertex, which is a source or a sink. In [1] an explicitly computable reflection functor R_{v} was constructed, which sends a representation π of dimension $\alpha \neq v$ of (Γ, Ω) to a representation $R_{v}(\pi)$ of the reflected quiver $\left(\Gamma, R_{v}(\Omega)\right)$ of dimension $r_{v}(\alpha)$, preserving indecomposability, see also [7]. It follows that if the problem $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is in P for the quiver (Γ, Ω) and dimension $\alpha \neq v$, and v is a source or a sink of (Γ, Ω), then it is in P for the quiver ($\Gamma, R_{v}(\Omega)$) and dimension $r_{v}(\alpha)$.

Remark 1. If v is a source or a sink of the quiver (Γ, Ω) and $\alpha \in \Delta_{+} \backslash\{v\}$ is a Schur vector, then $r_{v}(\alpha)$ is a Schur vector for $\left(\Gamma, R_{v}(\Omega)\right)$. Also, if α is such that $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is in P, then the same holds for $r_{v}(\alpha)$.

Remark 2. For an arbitrary quiver (Γ, Ω) the set \mathcal{C} consists of Schur vectors, except for the vectors with $(\alpha \mid \alpha)=0$ [7], in which case, $\operatorname{supp} \alpha$ is a graph from Example 2 . Hence Conjecture 2 implies Conjecture 3.

Remark 3. Let Γ_{m} be a quiver from Example 3. Then, using the reflection functors, we see that for all $\alpha \in \Delta_{+}^{\text {re }}$, $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is in P. Since for this quiver $(\alpha \mid \alpha)<0$ for all $\alpha \in \mathcal{C}$, we see that all $\alpha \in \Delta_{+}^{\text {im }}$ are Schur vectors [7], and it follows from Remark 1 and Conjecture 2 that for all $\alpha \in \Delta_{+}^{\mathrm{im}}, \operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is in P as well.

However, in general, $\alpha \in \Delta_{+}$is not a Schur vector, so that a generic representation of a quiver (Γ, Ω) of dimension $\alpha \in \Delta_{+}$is not absolutely indecomposable. In this case $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ becomes a problem of finding a needle in a haystack, which leads me to (naively) believe in Conjecture 1.

In fact, I believe that for any connected quiver, different from those in Examples 1, 2, and 3, there exists $\alpha \in \Delta_{+}$, for which $\operatorname{INDEC}\left[x_{1}, \ldots, x_{M_{\alpha}}\right]$ is not in P .

Remark 4. As explained in [9], claim (a) of Theorem 1 extends to the case of Γ with self-loops. Claim (c) is proved in [6] in this generality. Theorem 2 holds in this generality as well.

Acknowledgements

I am grateful to L. Babai, L. Levin, S. Micali, B. Poonen, M. Sipser, M. Sudan, and R. Williams for very valuable discussions and correspondence.

References

[1] I.N. Bernstein, I.M. Gelfand, V.A. Ponomarev, Coxeter functors and Gabriel's theorem, Usp. Mat. Nauk 28 (1973) 17-32.
[2] W. Crawley-Boevey, M. Van den Bergh, Absolutely indecomposable representations and Kac-Moody Lie algebras, with an appendix by Hiraku Nakajima, Invent. Math. 155 (3) (2004) 537-559.
[3] P.W. Donovan, M.R. Freislich, The Representation Theory of Finite Graphs and Associated Algebras, Carleton Math. Lecture Notes, vol. 5, Carleton University, Ottawa, Ontario, Canada, 1973.
[4] P. Gabriel, Unzerlegbare Darstellungen. I, Manuscr. Math. 6 (1972) 71-103 (in German, with English summary); correction: Manuscr. Math. 6 (1972) 309.
[5] T. Hausel, Kac's conjecture from Nakajima quiver varieties, Invent. Math. 181 (1) (2010) 21-37.
[6] T. Hausel, E. Letellier, F. Rodriguez-Villegas, Positivity for Kac polynomials and DT-invariants of quivers, Ann. of Math. (2) 177 (3) (2013) 1147-1168.
[7] V.G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1) (1980) 57-92.
[8] V.G. Kac, Infinite root systems, representations of graphs and invariant theory II, J. Algebra 78 (1982) 141-162.
[9] V.G. Kac, Root systems, representations of quivers and invariant theory, in: Invariant Theory, Montecatini, 1982, in: Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 74-108.
[10] V.G. Kac, Infinite-Dimensional Lie Algebras, third edition, Cambridge University Press, Cambridge, UK, 1990.
[11] L.A. Nazarova, Representations of quivers of infinite type, Math. USSR Izv., Ser. Mat. 7 (1973) 752-791.

[^0]: E-mail address: kac@math.mit.edu.
 ${ }^{1}$ Supported in part by the Bert and Ann Kostant fund.
 https://doi.org/10.1016/j.crma.2019.10.013
 1631-073X/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

