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We study the integral equation

u(x) =
∫
Rn

up(y)

|x − y|n−α

∫
Rn

uq(z)

|y − z|n−β
dz dy, x ∈Rn,

where 0 < α, β < n and p + q = n+α+2β
n−α . We prove that all positive L

2n
n−α (Rn) solutions 

to the equation are radially symmetric and monotone decreasing about some point, and 
we classify all such solutions when p + 1 = q = n+β

n−α . As a consequence, we derive 
similar results for positive H

α
2 (Rn) solutions to the higher-fractional-order Choquard-type 

equation

(−�)
α
2 u = 1

Rn,α

(
1

|x|n−β
∗ uq

)
up in Rn.
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r é s u m é

Nous étudions l’équation intégrale

u(x) =
∫
Rn

up(y)

|x − y|n−α

∫
Rn

uq(z)

|y − z|n−β
dz dy, x ∈Rn,

où 0 < α, β < n et p +q = n+α+2β
n−α . Nous démontrons que toute solution positive L

2n
n−α (Rn)

de l’équation est à symétrie radiale et monotone décroissante autour d’un point. Nous 
classifions toutes les solutions telles que p + 1 = q = n+β

n−α . Nous en déduisons des résultats 
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similaires pour les solutions positives H
α
2 (Rn) de l’équation de type Choquard d’ordre 

fractionnaire supérieur

(−�)
α
2 u = 1

Rn,α

(
1

|x|n−β
∗ uq

)
up in Rn.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper is concerned with the symmetry and classification of positive solutions to the integral equation

u(x) =
∫
Rn

up(y)

|x − y|n−α

∫
Rn

uq(z)

|y − z|n−β
dz dy, x ∈Rn, (1.1)

where 0 < α, β < n and p + q = n+α+2β
n−α . This equation is closely related to the following higher-fractional-order equation

(−�)
α
2 u = 1

Rn,α

(
1

|x|n−β
∗ uq

)
up in Rn, (1.2)

where Rn,α = �( n−α
2 )

π
n
2 2α�( α

2 )
is the Riesz potential’s constant (see [28]).

When p = q − 1, this kind of equation is usually called the Choquard-type equation since, in 1976, P. Choquard used a 
similar equation to describe an electron trapped in its own hole, in a certain approximation to the Hartree–Fock theory of 
one-component plasma (see [18]). Such an equation with α = β = 2 also arises in the Hartree–Fock theory of the nonlinear 
Schrodinger equations (see [20]) and is helpful in understanding the blow-up or the global existence and scattering of 
the solutions to the dynamic Hartree equation in the focusing case (see [15]). Recently, Choquard-type equations were 
widely used in the study of boson stars and of other physical phenomena. It also appears as a continuous-limit model for 
mesoscopic molecular structures in chemistry. More related mathematical and physical background can be found in [10,12,
23,25,26] and the references therein.

We say that u ∈ H
α
2 (Rn) is a positive weak solution to (1.2) if u > 0 and∫

Rn

(−�)
α
4 u(−�)

α
4 φ dx = 1

Rn,α

∫
Rn

(
1

|x|n−β
∗ uq

)
upφ dx (1.3)

for any φ ∈ C∞
0 (Rn). Here the fractional Laplacian is defined by the ideas in [28]. More precisely, for u ∈ H

α
2 (Rn),

(−�)
α
4 u = F−1

(
|ξ | α

2 Fu
)

,

where, as usual,

Fu(ξ) =
∫
Rn

u(x)e−2πix·ξ dx

is the Fourier transform of u and F−1u is the inverse Fourier transform of u.
Let us also remind that H

α
2 (Rn) is the inhomogeneous Sobolev space with the norm

‖u‖
H

α
2 (Rn)

= ‖u‖L2(Rn) + ‖u‖
Ḣ

α
2 (Rn)

,

where the homogeneous Sobolev norm

‖u‖
Ḣ

α
2 (Rn)

= ‖(−�)
α
4 u‖L2(Rn) =

⎛
⎝ ∫
Rn

|ξ |α |Fu|2 dξ

⎞
⎠

1
2

.

Equation (1.2) is Ḣ
α
2 (Rn)-critical in the sense that (1.2) and the Ḣ

α
2 (Rn) norm are invariant under the scaling uρ(x) =

ρ
n−α

2 u(ρx).
Since (1.1) and (1.2) have convolution terms, it is not easy to investigate the existence of solutions directly. By setting 

v(y) = ∫
n

uq(z)
n−β dz, one can observe that Eq. (1.1) is equivalent to the integral system
R |y−z|



880 P. Le / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 878–888
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x) =
∫
Rn

up(y)v(y)

|x − y|n−α
dy, x ∈Rn,

v(x) =
∫
Rn

uq(y)

|x − y|n−β
dy, x ∈Rn.

(1.4)

The idea of considering the equivalent systems of integral equations like this was initially used by Ma and Zhao [23]. 
Much effort has been devoted to study the symmetry of positive solutions to Eq. (1.1) and its equivalent integral system (1.4)
when p + 1 = q = n+β

n−α in recent years. These symmetry results usually lead to classification results by using the techniques 
in [5,19].

When β = α ∈ (1, n) and p + 1 = q = n+α
n−α , Xu and Lei [30] and Lei [13] classified all positive L

2n
n−α (Rn) solutions to (1.4). 

Their proof rely on a previous classification result by Chen and Li [3] for a system that is more general than (1.4), but with 
the restriction α = β . Later, Wang and Tian [29] obtained a classification result for positive Hα(Rn) solutions to (1.2) when 
β = α ∈ (0, n2 ) and p + 1 = q = n+α

n−α .
The case β = n − 2α also got the attention from some authors. Liu proved in [22] a classification result for positive 

L
2n

n−2 (Rn) solutions of integral system (1.4) when α = 2, β = n − 4 and p + 1 = q = 2. Liu’s result was lately extended to the 
case where α ∈ (0, n2 ), β = n − 2α and p + 1 = q = 2 by Dai et al. [8]. Recently, a symmetry result for Eq. (1.2) in the case 
α ∈ (0, 2) and p + 1 = q was studied by some authors [7,11,24] using a direct method of moving planes developed in [4].

To the best of our knowledge, Eq. (1.1) in the case q �= p +1 or β ∈ (0, n) \{α, n −2α}, where α ∈ (0, n), has not been fully 
studied in the literature. Our main purpose in writing this paper is to establish the radial symmetry of positive solutions to 
(1.1) in that general case. Our first result therefore extends and unifies previously mentioned symmetry results.

Theorem 1.1. Assume that 0 < α, β < n and p + q = n+α+2β
n−α , where

2(α + β − n)

n − α
< p <

2n

n − α
, p ≥ 1, (1.5)

max

{
2β

n − α
,1

}
< q <

2n

n − α
. (1.6)

Then every positive solution u ∈ L
2n

n−α (Rn) to (1.1) is radially symmetric and monotone decreasing about some point.

We will employ the method of moving planes in integral forms by Chen, Li and Ou [5] to prove Theorem 1.1. The 
methods of moving planes was founded by Alexanderoff in the early 1950s. Later, it was further developed by Serrin [27], 
Gidas, Ni and Nirenberg [9], Caffarelli, Gidas and Spruck [1], Chen and Li [2], Li and Zhu [16], Li [14], Lin [21], Chen, Li and 
Ou [5], Chen, Li and Li [4], and many others.

The method of moving planes in integral forms requires the use of the Hardy–Littlewood–Sobolev inequality. Technical 
assumptions (1.5) and (1.6) are required to apply the Hardy–Littlewood–Sobolev inequality and Hölder’s inequality in our 
proof. These assumptions automatically hold in the original Choquard model (where p + 1 = q), as we can see in our next 
theorem.

Theorem 1.2. Assume that 0 < α, β < n and p + 1 = q = n+β
n−α ≥ 2. Then every positive solution u ∈ L

2n
n−α (Rn) to (1.1) must assume 

the form

u(x) = μ
n−α

2 Q (μ(x − x0)) for some μ > 0 and x0 ∈ Rn,

where Q (x) =
[

I
(n−α

2

)
I
(

n−β
2

)]− n−α
2(α+β)

(
1

1+|x|2
) n−α

2
, with I(s) = π

n
2 �( n−2s

2 )

�(n−s) for 0 < s < n
2 .

In this paper, we also establish the equivalence between the integral equation (1.1) and the Choquard-type equation (1.2).

Theorem 1.3. Assume that 0 < α, β < n and p, q ≥ 0. If u ∈ H
α
2 (Rn) is a positive weak solution to Eq. (1.2), then it satisfies the 

integral equation (1.1), and vice versa.

Combining Theorem 1.1 and 1.2 for the integral equation (1.1) with Theorem 1.3, we have the following corollary for the 
Choquard-type equation (1.2) immediately.

Proposition 1.4. The same conclusions of Theorem 1.1 and 1.2 hold for every positive solution u ∈ H
α
2 (Rn) to (1.2).

The classification result in Proposition 1.4 would provide the best constant for the corresponding Hardy–Littlewood–
Sobolev inequality. We define the norm
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‖u‖Lα,β =
⎛
⎝ ∫
Rn

∫
Rn

|u(x)| n+β
n−α |u(y)| n+β

n−α

|x − y|n−β
dx dy

⎞
⎠

n−α
2(n+β)

.

For any u ∈ H
α
2 (Rn), we have the following Hardy–Littlewood–Sobolev inequality (see [19,28])

‖u‖
Ḣ

α
2 (Rn)

≥ Sn,α,β‖u‖Lα,β , (1.7)

where the best constant Sn,α,β in (1.7) is given by

Sn,α,β = inf
u∈H

α
2 (Rn)\{0}

‖u‖
Ḣ

α
2 (Rn)

‖u‖Lα,β

. (1.8)

It is known that Sn,α,β is achieved by the extremal functions u(x) =
(

1
1+|x|2

) n−α
2

(see [19,28]). However, the explicit 
formula for Sn,α,β has not been derived in previous works, except for the case β = n − 2α (see [8, Corollary 2]). Using 
Proposition 1.4, we are able to compute Sn,α,β explicitly in terms of the gamma function as follows.

Proposition 1.5. The best constant Sn,α,β in the Hardy–Littlewood–Sobolev inequality (1.7) is given explicitly by

2
α
2 π

n(2α+β−n)
4(n+β)

(
�(α)

�(α
2 )

) β(n−α)
2α(n+β)

(
�

(n+α
2

)
�

(n−α
2

)
) 1

2
⎛
⎝�

(
n+β

2

)
�(β)

⎞
⎠

n−α
2(n+β) (

�
(n

2

)
�(n)

) α+β
2(n+β)

.

This paper is organized as follows. In Section 2, we prove the symmetry of positive solutions to (1.1), namely, Theorem 1.1. 
This result allows us to prove Theorem 1.2 on the classification of positive solutions in Section 3. The last section is devoted 
to the proofs of Theorem 1.3 and Proposition 1.5.

Unless specified, C denotes the generic positive constant whose concrete value may vary from line to line or even in the 
same line, depending on the situation. We also denote by |	| the Lebesgue measure of 	 ⊂ Rn and by Br(x) the ball of 
radius r > 0 and center x ∈Rn .

2. Symmetry of the positive solutions

To prove Theorem 1.1, we carry out the method of moving planes in integral forms (see [5]) to the integral equation (1.1)
in the x1 direction. For any λ ∈R, let

Tλ = {x ∈Rn | x1 = λ}
be the moving plane,

�λ = {x ∈Rn | x1 < λ}
be the half-space to the left of the plane and

xλ = (2λ − x1, x2, . . . , xn)

be the reflection of the point x = (x1, x2, . . . , xn) about the plane Tλ . We also define

uλ(x) := u(xλ), v(x) :=
∫
Rn

uq(y)

|x − y|n−β
dy, vλ(x) := v(xλ)

and

wλ(x) := uλ(x) − u(x).

Let us recall a version of the Hardy–Littlewood–Sobolev inequality that will be used in the method of moving planes in 
integral forms.

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality [19,28]). Let 0 < α < n and 1 < p < q be such that 1
q = 1

p − α
n . Then, we have∥∥∥∥∥∥

∫
Rn

f (y)

|x − y|n−α
dy

∥∥∥∥∥∥
Lq(Rn)

≤ Cn,α,p,q‖ f ‖L p(Rn)

for all f ∈ Lp(Rn).
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Proof of Theorem 1.1. One can observe that, for any x ∈ �λ ,

uλ(x) − u(x) =
∫
�λ

(
1

|x − y|n−α
− 1

|xλ − y|n−α

)[
up

λ(y)vλ(y) − up(y)v(y)
]

dy

=
∫
�λ

(
1

|x − y|n−α
− 1

|xλ − y|n−α

)[
up

λ(y) − up(y)
]

v(y)dy

+
∫
�λ

(
1

|x − y|n−α
− 1

|xλ − y|n−α

)
up

λ(y) [vλ(y) − v(y)] dy.

Similarly,

vλ(x) − v(x) =
∫
�λ

(
1

|x − z|n−β
− 1

|xλ − z|n−β

)[
uq

λ(z) − uq(z)
]

dz.

Combining the above two formulas, we obtain

wλ(x) =
∫
�λ

(
1

|x − y|n−α
− 1

|xλ − y|n−α

)[
up

λ(y) − up(y)
]

v(y)dy

+
∫
�λ

(
1

|x − y|n−α
− 1

|xλ − y|n−α

)
up

λ(y)

∫
�λ

(
1

|y − z|n−β
− 1

|yλ − z|n−β

)[
uq

λ(z) − uq(z)
]

dz dy.

(2.1)

Let us define

�−
λ = {x ∈ �λ | wλ(x) < 0}.

Using the mean value theorem, we get from (2.1) that, for any x ∈ �−
λ ,

0 > wλ(x) ≥ p

∫
�−

λ

(
1

|x − y|n−α
− 1

|xλ − y|n−α

)
up−1(y)wλ(y)v(y)dy

+ q

∫
�λ

(
1

|x − y|n−α
− 1

|xλ − y|n−α

)
up

λ(y)

∫
�−

λ

(
1

|y − z|n−β
− 1

|yλ − z|n−β

)
uq−1(z)wλ(z)dz dy

≥ p

∫
�−

λ

up−1(y)v(y)wλ(y)

|x − y|n−α
dy + q

∫
�λ

up
λ(y)

|x − y|n−α

∫
�−

λ

uq−1(z)wλ(z)

|y − z|n−β
dz dy.

(2.2)

We choose any r > max{ n
n−α , 2n

(p+2)(n−α)−2β
}. If p > 2α

n−α , then r is chosen in such a way that it also satisfies 
r < 2n

p(n−α)−2α . We apply the Hardy–Littlewood–Sobolev inequality to (2.2) to obtain

‖wλ‖Lr(�−
λ ) ≤ C‖up−1 v wλ‖L

nr
n+αr (�−

λ )
+ C

∥∥∥∥∥∥∥∥
up

λ(y)

∫
�−

λ

uq−1(z)wλ(z)

|y − z|n−β
dz

∥∥∥∥∥∥∥∥
L

nr
n+αr (�−

λ )

. (2.3)

On the one hand,

‖up−1 v wλ‖L
nr

n+αr (�−
λ )

≤ ‖up−1‖
L

2n
(n−α)(p−1) (�−

λ )
‖v‖

L
2n

(n−α)q−2β (�−
λ )

‖wλ‖Lr(�−
λ )

= ‖u‖p−1

L
2n

n−α (�−
λ )

∥∥∥∥∥∥
∫
Rn

uq(y)

|x − y|n−β
dy

∥∥∥∥∥∥
L

2n
(n−α)q−2β (�−

λ )

‖wλ‖Lr(�−
λ )

≤ C‖u‖p−1

L
2n

n−α (�−
λ )

‖uq‖
L

2n
(n−α)q (�−

λ )
‖wλ‖Lr(�−

λ )

= C‖u‖p+q−1
2n

n−α − ‖wλ‖Lr(�−
λ ),

(2.4)
L (�λ )



P. Le / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 878–888 883
where we use the convention that L
2n

(n−α)(p−1) (�−
λ ) = L∞(�−

λ ) if p = 1.
On the other hand,∥∥∥∥∥∥∥∥

up
λ(y)

∫
�−

λ

uq−1(z)wλ(z)

|y − z|n−β
dz

∥∥∥∥∥∥∥∥
L

nr
n+αr (�−

λ )

≤ ‖up
λ‖

L
2n

(n−α)p (�−
λ )

∥∥∥∥∥∥∥∥
∫

�−
λ

uq−1(z)wλ(z)

|y − z|n−β
dz

∥∥∥∥∥∥∥∥
L

2nr
2n+2αr−(n−α)pr (�−

λ )

≤ C‖up
λ‖

L
2n

(n−α)p (Rn)
‖uq−1 wλ‖

L
2nr

2n+2(α+β)r−(n−α)pr (�−
λ )

≤ C‖up‖
L

2n
(n−α)p (Rn)

‖uq−1‖
L

2n
(n−α)(q−1) (�−

λ )
‖wλ‖Lr(�−

λ )

= C‖u‖p

L
2n

n−α (Rn)
‖u‖q−1

L
2n

n−α (�−
λ )

‖wλ‖Lr(�−
λ ).

(2.5)

Substituting (2.4) and (2.5) into (2.3), we arrive at the following key estimate

‖wλ‖Lr(�−
λ ) ≤ C

(
‖u‖p+q−1

L
2n

n−α (�−
λ )

+ ‖u‖p

L
2n

n−α (Rn)
‖u‖q−1

L
2n

n−α (�−
λ )

)
‖wλ‖Lr(�−

λ ). (2.6)

With the aid of (2.6), we are able to start moving the plane Tλ from near λ = −∞ to the right until it reaches the 
limiting position in order to derive symmetry. This procedure contains two steps.

Step 1. We show that, for λ sufficiently negative,

wλ ≥ 0 in �λ. (2.7)

Indeed, since u ∈ L
2n

n−α (Rn) and q > 1, we can choose R0 > 0 sufficiently large that, for λ ≤ −R0, we have

‖u‖p+q−1

L
2n

n−α (�−
λ )

+ ‖u‖p

L
2n

n−α (Rn)
‖u‖q−1

L
2n

n−α (�−
λ )

≤ 1

2 C
, (2.8)

where the constant C is the same as in (2.6).
Therefore, (2.6) and (2.8) imply that ‖wλ‖Lr(�−

λ ) = 0 and hence |�−
λ | = 0 for λ ≤ −R0. Furthermore, we can deduce from 

(2.1) that wλ(x) ≥ 0 for any x ∈ �λ . Thus �−
λ = ∅ and (2.7) holds for λ ≤ −R0. This completes Step 1.

Step 2. Let

λ0 = sup{λ ∈R | wμ ≥ 0 in �μ for all μ ≤ λ}. (2.9)

By using a similar argument as in Step 1, we can also start moving the plane from near λ = +∞ to the left, thus we 
must have λ0 < ∞. Now, we will show that

wλ0 = 0 in �λ0 . (2.10)

Suppose, on the contrary, that wλ0 ≥ 0, but that wλ0 is not identically zero in �λ0 . Using (2.1), we deduce that wλ0 > 0
in �λ0 . We will obtain a contradiction to (2.9) by showing the existence of an ε > 0 small enough that wλ ≥ 0 in �λ for all 
λ ∈ [λ0, λ0 + ε).

It can be clearly seen from (2.6) that our main task is to prove the existence of ε > 0 sufficiently small that

‖u‖p+q−1

L
2n

n−α (�−
λ )

+ ‖u‖p

L
2n

n−α (Rn)
‖u‖q−1

L
2n

n−α (�−
λ )

≤ 1

2 C
(2.11)

for all λ ∈ [λ0, λ0 + ε), where the constant C is the same as in (2.6).

Since u ∈ L
2n

n−α (Rn), there exists R > 0 large enough that

‖u‖p+q−1

L
2n

n−α (Rn\B R (0))
+ ‖u‖p

L
2n

n−α (Rn)
‖u‖q−1

L
2n

n−α (Rn\B R (0))
≤ 1

4 C
. (2.12)

Now fix this R; in order to derive (2.11), we only need to show that

lim
λ→λ+

0

|�−
λ ∩ B R(0)| = 0. (2.13)

To prove this, we define Eδ = {x ∈ �λ0 ∩ B R(0) | wλ0 (x) > δ} and Fδ = {x ∈ �λ0 ∩ B R(0) | wλ0 (x) ≤ δ} for any δ > 0, and 
let Dλ = (�λ \ �λ0) ∩ B R(0) for any λ > λ0. Then,
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lim
δ→0+ |Fδ| = 0, lim

λ→λ+
0

|Dλ| = 0 (2.14)

and

�−
λ ∩ B R(0) ⊂ �−

λ ∩ (Eδ ∪ Fδ ∪ Dλ) ⊂ (�−
λ ∩ Eδ) ∪ Fδ ∪ Dλ. (2.15)

Therefore, for an arbitrarily fixed η > 0, one can choose δ > 0 small enough that |Fδ | ≤ η. For this fixed δ, we will point 
out that

lim
λ→λ+

0

|�−
λ ∩ Eδ| = 0. (2.16)

Indeed, for all x ∈ �−
λ ∩ Eδ , we have u(xλ0) − u(xλ) = wλ0 (x) − wλ(x) > δ. It follows that �−

λ ∩ Eδ ⊂ Gλ
δ := {x ∈ B R(0) |

u(xλ0 ) − u(xλ) > δ}. By Chebyshev’s inequality, we get

|Gλ
δ | ≤

1

δ
2n

n−α

∫
Gλ

δ

∣∣u(xλ0) − u(xλ)
∣∣ 2n

n−α dx

= 1

δ
2n

n−α

∫
B R (2λ0e1)

|u(x) − u(x + 2(λ0 − λ)e1)| 2n
n−α dx,

where e1 = (1, 0, . . . , 0). Hence, lim
λ→λ+

0

|Gλ
δ | = 0, from which (2.16) follows.

Therefore, by (2.14), (2.15) and (2.16), we have:

lim
λ→λ+

0

|�−
λ ∩ B R(0)| ≤ |Fδ| ≤ η.

This implies (2.13), since η > 0 is arbitrarily chosen. From (2.12) and (2.13), we arrive at (2.11).
Now we deduce from (2.6) and (2.11) that there exists an ε > 0 sufficiently small that |�−

λ | = 0 for all λ ∈ [λ0, λ0 + ε). 
Furthermore, by (2.1), we must have wλ ≥ 0 in �λ for all λ ∈ [λ0, λ0 + ε). This contradicts the definition of λ0 in (2.9). 
Therefore, (2.10) must hold.

Since Eq. (1.1) is invariant under rotation, the x1 direction can be chosen arbitrarily; we conclude that u must be radially 
symmetric and monotone decreasing about some point x0 ∈Rn . �
3. Classification of positive solutions

Proposition 3.1. Assume that 0 < α, β < n and p + 1 = q = n+β
n−α . Then Q , which is defined in Theorem 1.2, is a positive solution to 

(1.1).

Proof. The following identity was obtained in [8] for any 0 < s < n
2 (see (37) in [8])

∫
Rn

1

|x − y|2s

(
1

1 + |y|2
)n−s

dy = I(s)

(
1

1 + |x|2
)s

. (3.1)

Denoting

d =
[

I

(
n − β

2

)
I

(
n − α

2

)]− n−α
2(α+β)

and using (3.1), we have:

∫
Rn

Q q(z)

|y − z|n−β
dz =

∫
Rn

d
n+β
n−α

|y − z|n−β

(
1

1 + |y|2
) n+β

2

dz = d
n+β
n−α I

(
n − β

2

)(
1

1 + |y|2
) n−β

2

.

Therefore, for all x ∈Rn ,

∫
n

Q p(y)

|x − y|n−α

∫
n

Q q(z)

|y − z|n−β
dz dy = d

n+α+2β
n−α I

(
n − β

2

)∫
n

1

|x − y|n−α

(
1

1 + |x|2
) n+α

2

dy
R R R
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= d
n+α+2β

n−α I

(
n − β

2

)
I

(
n − α

2

)(
1

1 + |x|2
) n−α

2

= d

(
1

1 + |x|2
) n−α

2 = Q (x).

Hence, Q is a solution to (1.1). �
Using the ideas from [5,8,11], we are able to prove the following uniqueness result.

Proposition 3.2. Assume that 0 < α, β < n, p + 1 = q = n+β
n−α ≥ 2 and u ∈ L

2n
n−α (Rn) is a positive solution to (1.1). Then there exist 

μ > 0 and x0 ∈Rn such that

u(x) = μ
n−α

2 Q (μ(x − x0)) for all x ∈Rn,

where Q is defined in Theorem 1.2.

Proof. By Theorem 1.1 and the invariance of Eq. (1.1) under translations and scalings, we may assume that u ∈ L
2n

n−α (Rn) is 
radially symmetric and monotone decreasing about some x0 ∈Rn . Moreover, one can observe that u satisfies the following 
asymptotic property

u∞ := lim|x|→∞|x|n−αu(x) < ∞.

Step 1. We claim that if x0 = 0, then

u(sx + a) = 1

|x|n−α
u

(
sx

|x|2 + a

)
(3.2)

for any x ∈Rn \ {0} and a ∈Rn , where s =
(

u∞
u(a)

) 1
n−α

.

We first assume a = 0. Let x1 ∈Rn \ {0} be any fixed point and e = x1

|x1| . We define

w(x) = 1

|x|n−α
u

(
s(

x

|x|2 − e)

)
, (3.3)

then it is clear that w(0) = sα−nu∞ = u(0) = w(e) and s
n−α

2 w is also a positive solution to (1.1). Therefore, w must be 
radially symmetric with respect to some point x that lies on the hyperplane e⊥ + 1

2 e through 1
2 e, which is perpendicular to e. 

Furthermore, since u is radially symmetric about 0, for any 1
2 < r < 1, consider two different points y1, y2 ∈ ∂ Br(0) ∩∂ Br(e), 

we can deduce from (3.3) that

w(y1) = 1

|y1|n−α
u

(
s(

y1

|y1|2 − e)

)
= 1

|y2|n−α
u

(
s(

y2

|y2|2 − e)

)
= w(y2).

Therefore, w(x) = w(|x − 1
2 e|) on the hyperplane e⊥ + 1

2 e, and hence x = 1
2 e and w is actually radially symmetric about 

1
2 e.

We choose some η ∈ (− 1
2 , 1

2

)
such that |x1| = 1

2 +η
1
2 −η

, then, from (3.3), we have

1

| 1
2 − η|n−α

u

(
s

1
2 + η
1
2 − η

e

)
= w

(
(

1

2
− η)e

)
= w

(
(

1

2
+ η)e

)
= 1

| 1
2 + η|n−α

u

(
s

1
2 − η
1
2 + η

e

)
,

which implies that

u(sx1) = 1

|x1|n−α
u

(
sx1

|x1|2
)

.

If a �= 0, then (3.2) follows by considering u(· + a) instead of u itself.
Step 2. We have

u(x0)u∞ =
[

I

(
n − α

)
I

(
n − β

)]− n−α
α+β

. (3.4)

2 2
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To prove (3.4), we may use (3.2) and similar arguments as in the proof of [5, Lemma 3.2].
Step 3. We define

v(x) = μ− n−α
2 u(μ−1x + x0),

where μ =
(

u(x0)
u∞

) 1
n−α

, then v is also a positive solution to (1.1) with radial symmetry about the origin and v(0) = v∞ . We 
show that v = Q in Rn .

To prove this, using (3.2) and (3.4), similar argument as in [5, p. 338] yields that v ≤ Q in Rn or v ≥ Q in Rn . Since 
(3.4) implies v(0) = Q (0) and v , Q are solutions to Eq. (1.1), we must have v = Q in Rn . Hence,

u(x) = μ
n−α

2 Q (μ(x − x0)) for all x ∈Rn.

The proof is completed. �
Proof of Theorem 1.2. Theorem 1.2 is a consequence of Propositions 3.1 and 3.2. �
Remark 3.1. Instead of relying on Theorem 1.1, one may also use the method of moving spheres in integral forms (see [17,
31]) to derive the property (3.2) directly when p + 1 = q = n+β

n−α ≥ 2. Then the classification result follows as above. This 
approach would lead us to another proof of Theorem 1.2.

However, the method of moving spheres cannot be used to prove the symmetry of positive solutions to (1.1) in the 
case p + 1 �= q. Therefore, we have to use the moving plane method to establish Theorem 1.1. Then we choose to exploit 
that symmetry result to prove Theorem 1.2 for the consistency of the presentation of this paper. It is well known that, if 

u satisfies (3.2), then u has the form u(x) = c
(

t
t2+|x−x0|2

) n−α
2

for some c, t > 0 and x0 ∈ Rn (see [5,17]). The purpose of 
Proposition 3.1 is that it gives an explicit formula for c so that such u is a solution to (1.1).

4. Choquard-type equations and the Hardy–Littlewood–Sobolev inequality

This last section is devoted to the proofs of the equivalence between Eqs. (1.1) and (1.2). We also compute the best 
constant Sn,α,β in the Hardy–Littlewood–Sobolev inequality (1.7).

Proof of Theorem 1.3. Assume u ∈ H
α
2 (Rn) is a positive solution to Eq. (1.2). For any φ ∈ C∞

0 (Rn), let

ψ(x) =
∫
Rn

Rn,αφ(y)

|x − y|n−α
dy.

Then (−�)
α
2 ψ = φ. Consequently, ψ ∈ Hα(Rn) ⊂ H

α
2 (Rn) and hence (1.3) holds for ψ∫

Rn

(−�)
α
4 u(x)(−�)

α
4 ψ(x)dx = 1

Rn,α

∫
Rn

(
1

|x|n−β
∗ uq

)
(x)up(x)ψ(x)dx.

Integrating by parts the left-hand side and exchanging the order of integration of the right-hand side yield that

∫
Rn

u(x)φ(x)dx =
∫
Rn

⎛
⎝ ∫
Rn

up(y)

|x − y|n−α

∫
Rn

uq(z)

|y − z|n−β
dz dy

⎞
⎠φ(x)dx.

Since φ ∈ C∞
0 (Rn) is arbitrary, we conclude that u satisfies the integral equation (1.1).

Now we assume u ∈ H
α
2 (Rn) is a positive weak solution to Eq. (1.1). Applying the Fourier transform to both sides of (1.1)

(see [28]), we get

Fu(ξ) = 1

Rn,α(2π|ξ |)α F
[(

1

|x|n−β
∗ uq

)
up

]
(ξ).

It follows that, for any φ ∈ C∞
0 (Rn),∫

Rn

(−�)
α
4 u(−�)

α
4 φ dx = 1

Rn,α

∫
Rn

F
[(

1

|x|n−β
∗ uq

)
up

]
Fφ dξ

= 1

Rn,α

∫
Rn

(
1

|x|n−β
∗ uq

)
upφ dx,

which implies that u is also a weak solution to Eq. (1.2). �
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Proof of Proposition 1.5. Equation (1.2) is the corresponding Euler–Lagrange equation for the minimization problem de-
scribed in (1.8). Since minimization problem (1.8) can be attained by the extremal function Q defined in Theorem 1.2, one 
can deduce from the definition of Sn,α,β , Eq. (1.2) and Proposition 1.4 that

‖Q ‖
Ḣ

α
2 (Rn)

= Sn,α,β‖Q ‖Lα,β and ‖Q ‖2

Ḣ
α
2 (Rn)

= 1

Rn,α
‖Q ‖

2(n+β)
n−α

Lα,β .

Therefore, the best constant Sn,α,β for the Hardy–Littlewood–Sobolev inequality (1.7) can be calculated as

Sn,α,β = R
α−n

2(n+β)

n,α ‖Q ‖
α+β
n+β

Ḣ
α
2 (Rn)

. (4.1)

Let Sn,α be the best constant in the Sobolev inequality

‖u‖
Ḣ

α
2 (Rn)

≥ Sn,α‖u‖
L

2n
n−α (Rn)

for any u ∈ H
α
2 (Rn). Then Sn,α is given by

Sn,α = (4π)
α
4

(
�

(n+α
2

)
�

(n−α
2

)
) 1

2
(

�
(n

2

)
�(n)

) α
2n

, (4.2)

(see [6,19]) and Sn,α is achieved by the extremal function

P (x) := I

(
n − α

2

)− n−α
2α

(
1

1 + |x|2
) n−α

2

,

which solves the critical fractional Lane–Emden equation

(−�)
α
2 u = 1

Rn,α
u

n+α
n−α in Rn.

Hence,

‖P‖
Ḣ

α
2 (Rn)

= Sn,α‖P‖
L

2n
n−α (Rn)

and ‖P‖2

Ḣ
α
2 (Rn)

= 1

Rn,α
‖P‖

2n
n−α

L
2n

n−α (Rn)
.

This leads to

‖P‖
Ḣ

α
2 (Rn)

= R
n−α
2α

n,α S
n
α
n,α. (4.3)

From (4.1), (4.3), and the fact that

Q (x) = I

(
n − α

2

) β(n−α)
2α(α+β)

I

(
n − β

2

)− n−α
2(α+β)

P (x),

we have

Sn,α,β = R
β(n−α)

2α(n+β)

n,α I

(
n − α

2

) β(n−α)
2α(n+β)

I

(
n − β

2

)− n−α
2(n+β)

S
n(α+β)
α(n+β)

n,α . (4.4)

Now we may use (4.4), (4.2) and the definition of Rn,α and I(s) to get the conclusion. �
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