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We give some arithmetic-geometric interpretations of the moments M2[a1], M1[a2], and 
M1[s2] of the Sato–Tate group of an abelian variety A defined over a number field by 
relating them to the ranks of the endomorphism ring and Néron–Severi group of A.
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r é s u m é

Nous donons des interprétations arithmético-géométriques des moments M2[a1], M1[a2], et 
M1[s2] du groupe de Sato–Tate d’une variété abélienne A definie sur un corps de nombres 
en les rapportant aux rangs de l’anneau d’endomorphismes et du groupe de Néron–Severi 
de A.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let A be an abelian variety of dimension g ≥ 1 defined over a number field k. For a rational prime �, let

ρA,� : Gk → Aut(V�(A))

denote the �-adic representation attached to A given by the action of the absolute Galois group of Gk on the rational Tate 
module of A. Let G� denote the Zariski closure of the image of ρ�,A , viewed as a subgroup scheme of GSp2g , let G1

� denote 
the kernel of the restriction to G� of the similitude character, and fix an embedding ι of Q� into C. The Sato–Tate group
ST(A) of A is a maximal compact subgroup of the C-points of the base change G1

� ×Q�,ι C (see [4, §2] and [8, Chap. 8]).
Throughout this note, we shall assume that the algebraic Sato–Tate conjecture of Banaszak and Kedlaya [1, Conjecture 

2.1] holds for A. This conjecture is known, for example, when g ≤ 3 (see [1, Thm. 6.11]), or more generally, whenever the 
Mumford–Tate conjecture holds for A (see [2]). It predicts the existence of an algebraic reductive group AST(A) defined over 
Q such that

AST(A) ×Q Q� � G1
�
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for every prime �. In this case, ST(A) can be defined as a maximal compact subgroup of the C-points of AST(A) ×Q C, 
which depends neither on the choice of a prime � nor on the choice of an embedding ι.

By construction, ST(A) comes equipped with a faithful self-dual representation

ρ : ST(A) → GL(V ),

where V is a C vector space of dimension 2g . We call ρ the standard representation of ST(A) and use it to view ST(A) as 
a compact real Lie subgroup of USp(2g).

In this note, we are interested in the following three virtual characters of ST(A):

a1 = Tr
(

V
)
, a2 = Tr

( ∧2 V
)
, s2 = a2

1 − 2a2 .

For a nonnegative integer j, define the jth moment of a virtual character ϕ as the virtual multiplicity of the trivial repre-
sentation in ϕ j . In particular, we have

M2[a1] = dimC
(

V ⊗2)ST(A)
, (1)

M1[a2] = dimC
(∧2 V

)ST(A)
,

M1[s2] = M2[a1] − 2M1[a2].
Let End(A) denote the ring of endomorphisms of A (defined over k).

Proposition 1. We have

M2[a1] = rkZ(End(A)) .

Proof. By Faltings’ isogeny theorem [3], we have

rkZ(End(A)) = dimQ�
(End(A) ⊗Q�) = dimQ�

(EndG�
(V�(A))) .

Observing that homotheties centralize V�(A) ⊗ V�(A)∨ and that Weyl’s unitarian trick allows us to pass from G1
� to the 

maximal compact subgroup ST(A), we obtain

dimQ�

(
V�(A) ⊗ V�(A)∨

)G� = dimQ�

(
V�(A) ⊗ V�(A)∨

)G1
� = dimC

(
V ⊗ V ∨)ST(A)

.

The proposition follows from the definition of M2[a1] and the self-duality of V . �
Let NS(A) denote the Néron–Severi group of A.

Proposition 2. We have

M1[a2] = rkZ(NS(A)) .

Proof. As explained in [9, §2] (and in [10, Eq. (9)] using the same argument over finite fields), Faltings isogeny theorem 
provides an isomorphism

NS(A) ⊗Z Q� � (
H2

ét(AQ,Q�)(1)
)Gk � (( ∧2 V�(A)

)
(−1)

)G�
,

where we have denoted Tate twists in the usual way and we have used the isomorphism V�(A) � H1
ét(AQ, Q�)(1). Then, 

as in the proof of Proposition 1, we have

rkZ(NS(A)) = dimQ�

(( ∧2 V�(A)
)
(−1)

)G1
� = dimC

( ∧2 V
)ST(A) = M1[a2],

which completes the proof. �
In order to obtain a description of M[s2], we will first relate rkZ(End(A)) with rkZ(NS(A)). There are three division 

algebras over R: the quaternions H, the complex field C, and the real field R itself. By Wedderburn’s theorem we have

End(A) ⊗R �
∏

i

Mti (R) ×
∏

i

Mni (H) ×
∏

i

Mpi (C) , (2)

for some nonnegative integers ti , ni , pi , where Mn denotes the n × n matrix ring.
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Table 1
R-algebra dimensions for isotypic A by Albert type.

Type dimR(End(A) ⊗R) dimR
(
(End(A) ⊗R)†) 2

∑
i ni − ∑

i ti

(I) er2 er(r + 1)/2 −er
(II) 4er2 e(r + 2r2) −2er
(III) 4er2 e(−r + 2r2) 2er
(IV) 2er2d2 er2d2 0

Lemma 3. With the notation of equation (2), we have

rkZ(End(A)) − 2 · rkZ(NS(A)) = 2
∑

i

ni −
∑

i

ti .

In particular, we have the following inequality

2 · rkZ(NS(A)) − g ≤ rkZ(End(A)) ≤ 2 · rkZ(NS(A)) + g . (3)

Proof. Let † denote the Rosati involution of End(A) ⊗R. As explained in [6, p. 190], we have rkZ(NS(A)) = dimR((End(A) ⊗
R)†). For the first part of the lemma, it thus suffices to prove

dimR(End(A) ⊗R) − 2 · dimR
(
(End(A) ⊗R)†) = 2

∑

i

ni −
∑

i

ti . (4)

We say that an abelian variety defined over k is isotypic if it is isogenous (over k) to the power of a simple abelian variety. 
Since both the left-hand and right-hand sides of (4) are additive in the isotypic components of A, we may reduce to the case 
where A is isotypic. We thus may assume that A is the rth power of a simple abelian variety B . By Albert’s classification of 
division algebras with a positive involution [6, Thm. 2, §21], there are four possibilities for End(A) ⊗Z R, namely

(I) Mr(R
e) , (II) Mr(M2(R)e) , (III) Mr(H

e) , (IV) Mr(Md(C)e) ,

where e and d are nonnegative integers. The action of the Rosati involution † on End(A) ⊗Z R is also described in [6, 
Thm. 2, §21], and the dimension of its fixed subspace can be easily read from the parameter η listed on [6, Table on p. 202]. 
The first part of the lemma then follows from the computations listed in Table 1.

For the second part of the lemma, we need to show that

−g ≤ 2
∑

i

ni −
∑

i

ti ≤ g. (5)

All sides of (5) are additive in the isotypic components of A, thus the result follows from Table 1 once we take into account 
that e ≤ dim(B) for type (I), and that 2e ≤ dim(B) for types (II) and (III) (see [6, Table on p. 202]). �

As an immediate consequence of Proposition 1, Proposition 2, and Lemma 3, we obtain the following corollary.

Corollary 4. With the notation of equation (2), we have

M1[s2] = 2
∑

i

ni −
∑

i

ti .

Remark 5. The moment M1[s2] can also be interpreted as a Frobenius–Schur indicator, which allows us to give an alternative 
proof of (4), conditional on the Mumford–Tate conjecture, which does not make use of Albert’s classification. Recall that ρ :
ST(A) → GL(V ) denotes the standard representation of ST(A) and let �2(ρ) be the central function defined as �2(ρ)(g) =
ρ(g2) for every g ∈ ST(A); note that s2 is simply Tr �2(ρ). Thus, the moment M1[s2] is the Frobenius–Schur indicator μ(ρ)

of the standard representation ρ , which is just the multiplicity of the trivial representation in �2(ρ). Inequality (4) simply 
asserts that the trivial bound |μ(ρ)| ≤ 2g can be improved to the sharper bound |μ(ρ)| ≤ g . Recall that the Frobenius–Schur 
indicator of an irreducible representation can only take the values 1, −1, and 0, depending on whether the representation is 
realizable over R, has real trace, but it is not realizable over R, or has trace taking some value in C \R, respectively (see [7, 
p. 108]). To obtain the sharper bound, it suffices to show that any irreducible constituent σ of the standard representation 
ρ having real trace must have dimension at least 2. This follows from our assumption that the Mumford–Tate conjecture 
holds for A.

The results in this note explain, in particular, certain redundancies in Table 8 of [4], which Seoyoung Kim used to prove 
Proposition 1 in the case where A is an abelian surface [5, Proof of Thm. 3.4].



826 E. Costa et al. / C. R. Acad. Sci. Paris, Ser. I 357 (2019) 823–826
Acknowledgements

The main results of this paper were discovered during the Arithmetic of Curves workshop held at Baskerville Hall in 
Hay-on-Wye, Wales, in August 2018. We thank the organizers, Alexander Betts, Tim and Vladimir Dokchitser, and Celine 
Maistret for their kind invitation to participate. We also thank Seoyoung Kim for her interest in this note. The authors were 
financially supported by the Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation via Simons 
Foundation grant 550033. Fité was partially supported by MTM2015-63829-P (Ministerio de Economía y Competitividad).

References

[1] G. Banaszak, K.S. Kedlaya, An algebraic Sato–Tate group and Sato–Tate conjecture, Indiana Univ. Math. J. 64 (2015) 245–274.
[2] V. Cantoral Farfán, J. Commelin, The Mumford–Tate conjecture implies the algebraic Sato–Tate conjecture of Banaszak and Kedlaya, arXiv:1905 .04086.
[3] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983) 349–366.
[4] F. Fité, K.S. Kedlaya, A.V. Sutherland, V. Rotger, Sato–Tate distributions and Galois endomorphism modules in genus 2, Compos. Math. 148 (2012) 

1390–1442.
[5] S. Kim, The Sato–Tate conjecture and Nagao’s conjecture, arXiv:1712 .02775.
[6] D. Mumford, Abelian Varieties, Tata Institute of Fundamental Research, Bombay, Oxford University Press, 1970.
[7] J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.
[8] J.-P. Serre, Lectures on N X (p), CRC Press, Boca Raton, FL, USA, 2012.
[9] J. Tate, Algebraic cycles and poles of zeta functions, in: Arithmetical Algebraic Geometry, Proceedings of a Conference Held at Purdue University, IN, 

USA, 5–7 December 1963, Harper & Row, New York, 1965, pp. 93–110.
[10] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966) 134–144.

http://refhub.elsevier.com/S1631-073X(19)30245-6/bib424B3135s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib4343s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib46616C3833s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib464B52533132s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib464B52533132s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib4Bs1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib4D756D3730s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib5365723737s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib5365723132s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib5461743635s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib5461743635s1
http://refhub.elsevier.com/S1631-073X(19)30245-6/bib5461743636s1

	Arithmetic invariants from Sato-Tate moments
	Acknowledgements
	References


