

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Jacob Fox, Yuval Wigderson and Yufei Zhao

A short proof of the canonical polynomial van der Waerden theorem

Volume 358, issue 8 (2020), p. 957-959

Published online: 3 December 2020

https://doi.org/10.5802/crmath.101

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Number Theory / Théorie des nombres

A short proof of the canonical polynomial van der Waerden theorem

Une démonstration courte du théorème de van der Waerden polynomial canonique

Jacob Fox^{*a*}, Yuval Wigderson^{*a*} and Yufei Zhao^{*, *b*}

^a Department of Mathematics, Stanford University, Stanford, CA, USA

^b Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

E-mails: jacobfox@stanford.edu (Fox), yuvalwig@stanford.edu (Wigderson), yufeiz@mit.edu (Zhao)

Abstract. We present a short new proof of the canonical polynomial van der Waerden theorem, recently established by Girão.

Résumé. Nous présentons une nouvelle démonstration courte du théorème de van der Waerden polynomial canonique, récemment établi par Girão.

2020 Mathematics Subject Classification. 05D10, 11B30.

Funding. Fox is supported by a Packard Fellowship and by NSF award DMS-1855635. Wigderson is supported by NSF GRFP grant DGE-1656518. Zhao is supported by NSF award DMS-1764176, the MIT Solomon Buchsbaum Fund, and a Sloan Research Fellowship.

Manuscript received 9th July 2020, revised 21st July 2020, accepted 26th July 2020.

Girão [4] recently proved the following canonical version of the polynomial van der Waerden theorem. Here *canonical* [3] refers to the fact that the statement is independent of the number of colors. A set is *rainbow* if all elements have distinct colors. We write $[N] := \{1, ..., N\}$.

Theorem 1 ([4]). Let $p_1, ..., p_k$ be distinct polynomials with integer coefficients and $p_i(0) = 0$ for each *i*. For all sufficiently large *N*, every coloring of [*N*] contains a sequence $x + p_1(y), ..., x + p_k(y)$ (for some $x, y \in \mathbb{N}$) that is monochromatic or rainbow.

Girão's proof uses a color-focusing argument. Here we give a new short proof of Theorem 1, deducing it from the polynomial Szemerédi theorem of Bergelson and Leibman [1].

^{*} Corresponding author.

Theorem 2 ([1]). Let $p_1, ..., p_k$ be distinct polynomials with integer coefficients and $p_i(0) = 0$ for each *i*. Let $\varepsilon > 0$. For all *N* sufficiently large, every $A \subset [N]$ with $|A| \ge \varepsilon N$ contains $x + p_1(y), ..., x + p_k(y)$ for some $x, y \in \mathbb{N}$.

Our proof of Theorem 1 follows the strategy of Erdős and Graham [2], who deduced a canonical van der Waerden theorem (i.e., for arithmetic progressions) using Szemerédi's theorem [7].

We quote the following result, proved by Linnik [6] in his elementary solution of Waring's problem (see [5, Theorem 19.7.2]). Note the left-hand side below counts the number of solutions $f(y_1) + \cdots + f(y_{s/2}) = f(y_{s/2+1}) + \cdots + f(y_s)$ with $y_1, \ldots, y_s \in [n]$.

Theorem 3 ([6]). Fix a polynomial f of degree $d \ge 2$ with integer coefficients. Let $s = 8^{d-1}$. Then

$$\int_0^1 \left| \sum_{y=1}^n e^{2\pi i \theta f(y)} \right|^s \mathrm{d}\theta = O(n^{s-d})$$

for any $n \in \mathbb{N}$, where the constant in the big-O depends only on f.

Lemma 4. Fix a polynomial f of degree $d \ge 2$ with integer coefficients. For every $A \subset \mathbb{N}$ and $n \in \mathbb{N}$, the number of pairs $(a, y) \in A \times [n]$ with $a + f(y) \in A$ is

$$O\left(|A|^{1+\frac{1}{s}} n^{1-\frac{d}{s}}\right)$$

where $s = 8^{d-1}$.

Proof. We write

$$\widehat{1}_A(\theta) = \sum_{x \in A} e^{2\pi i \theta x}$$
 and $F(\theta) = \sum_{y=1}^n e^{2\pi i \theta f(y)}$.

Then the number of solutions to z = a + f(y) with $a, z \in A$ and $y \in [n]$ is

$$\begin{split} \int_{0}^{1} \left| \widehat{1}_{A}(\theta) \right|^{2} F(\theta) \, \mathrm{d}\theta &\leq \left(\int_{0}^{1} \left| \widehat{1}_{A}(\theta) \right|^{\frac{2s}{s-1}} \, \mathrm{d}\theta \right)^{1-\frac{1}{s}} \left(\int_{0}^{1} |F(\theta)|^{s} \, \mathrm{d}\theta \right)^{\frac{1}{s}} \quad \text{[Hölder]} \\ &\leq \left(|A|^{\frac{2}{s-1}} \int_{0}^{1} \left| \widehat{1}_{A}(\theta) \right|^{2} \, \mathrm{d}\theta \right)^{1-\frac{1}{s}} \cdot O\left(n^{1-\frac{d}{s}}\right) \quad \text{[}\left| \widehat{1}_{A}(\theta) \right| \leq |A| \text{ and Theorem 3]} \\ &= \left(|A|^{\frac{2}{s-1}} |A| \right)^{1-\frac{1}{s}} \cdot O\left(n^{1-\frac{d}{s}}\right) \quad \text{[Parseval]} \\ &= O\left(|A|^{1+\frac{1}{s}} n^{1-\frac{d}{s}} \right). \qquad \Box$$

Lemma 5. Fix a polynomial f of degree $d \ge 1$ with integer coefficients. Let $A \subset \mathbb{N}$ and $n \in \mathbb{N}$. Suppose that $|A \cap [x, x+L)| \le \varepsilon L$ for every $L \ge n^d$ and $x \in \mathbb{N}$. Then the number of pairs $(a, y) \in A \times [n]$ with $a + f(y) \in A$ is $O(\varepsilon^{1/s} |A| n)$, where $s = 8^{d-1}$.

Proof. If d = 1, then for every $x \in A$, the number of $y \in [n]$ so that $x + f(y) \in A$ is $O(\varepsilon n)$ by the local density condition on A. Summing over all $x \in A$ yields the desired bound $O(\varepsilon |A|n)$ on the number of pairs. From now on assume $d \ge 2$.

Let $m = O(n^d)$ so that $|f(y)| \le m$ for all $y \in [n]$. Let $A_i = A \cap [im, (i+2)m)$. Then $|A_i| = O(\varepsilon m)$. Every pair $a, a + f(y) \in A$ with $y \in [n]$ is contained in some A_i , and, by Lemma 4, the number of pairs contained in each A_i is

$$O\left(|A_i|^{1+\frac{1}{s}}n^{1-\frac{d}{s}}\right) = O\left((\varepsilon m)^{\frac{1}{s}}|A_i|n^{1-\frac{d}{s}}\right) = O\left(\varepsilon^{1/s}|A_i|n\right).$$

Summing over all integers *i* yields Lemma 5 (each element of *A* lies in precisely two different A_i 's).

Proof of Theorem 1. Choose a sufficiently small $\varepsilon > 0$ (depending on $p_1, ..., p_k$). Consider a coloring of [N] without monochromatic progressions $x + p_1(y), ..., x + p_k(y)$. By Theorem 2, every color class has density at most ε on every sufficiently long interval.

Let $D = \max_{i \neq j} \deg(p_i - p_j)$. Let n be an integer on the order of $N^{1/D}$ so that $x + p_1(y), ..., x + p_k(y) \in [N]$ only if $y \in [n]$. We apply Lemma 5 with A a fixed color class and $f = p_i - p_j$; for every choice of $x + p_i(y) = a_1 \in A$ and $x + p_j(y) = a_2 \in A$, we have that $a_2 + f(y) = a_1$, so (a_2, y) is a solution of the form in Lemma 5. Summing over all $i \neq j$, we see that the number of pairs $(x, y) \in \mathbb{N} \times [n]$ where at least two of $x + p_1(y), ..., x + p_k(y)$ lie in A is $O(\varepsilon^{1/8^{D-1}} |A|n)$. Summing over all color classes A, we see that the number of non-rainbow progressions $x + p_1(y), ..., x + p_k(y) \in [N]$ is $O(\varepsilon^{1/8^{D-1}} Nn)$. Since the total number of sequences $x + p_1(y), ..., x + p_k(y) \in [N]$ is on the order of Nn, some such sequence must be rainbow, as long as $\varepsilon > 0$ is small enough and N is large enough.

References

- V. Bergelson, A. Leibman, "Polynomial extensions of van der Waerden's and Szemerédi's theorems", J. Am. Math. Soc. 9 (1996), no. 3, p. 725-753.
- [2] P. Erdős, R. L. Graham, *Old and new problems and results in combinatorial number theory*, Monographies de l'Enseignement Mathématique, vol. 28, L'Enseignement Mathématique, 1980, 128 pages.
- [3] P. Erdős, R. Rado, "A combinatorial theorem", J. Lond. Math. Soc. 25 (1950), p. 249-255.
- [4] A. Girão, "A canonical polynomial van der Waerden's theorem", https://arxiv.org/abs/2004.07766.
- [5] L. K. Hua, Introduction to number theory, Springer, 1982.
- [6] Y. V. Linnik, "An elementary solution of the problem of Waring by Schnirelman's method", *Mat. Sb., N. Ser.* **12(54)** (1943), p. 225-230.
- [7] E. Szemerédi, "On sets of integers containing no *k* elements in arithmetic progression", *Acta Arith.* **27** (1975), p. 199-245.