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Abstract. Let A and B be two subsets of the nonnegative integers. We call A and B additive complements if
all sufficiently large integers n can be written as a +b, where a ∈ A and b ∈ B . Let S = {12,22,32, · · ·} be the set
of all square numbers. Ben Green was interested in the additive complement of S. He asked whether there is

an additive complement B = {bn }∞n=1 ⊆Nwhich satisfies bn = π2

16 n2+o(n2). Recently, Chen and Fang proved
that if B is such an additive complement, then

limsup
n→∞

π2

16 n2 −bn

n1/2 logn
≥

√
2

π

1

log4
.

They further conjectured that

limsup
n→∞

π2

16 n2 −bn

n1/2 logn
=+∞.

In this paper, we confirm this conjecture by giving a much more stronger result, i.e.,

limsup
n→∞

π2

16 n2 −bn

n
≥ π

4
.

2020 Mathematics Subject Classification. 11B13, 11B75.

Manuscript received 3rd August 2020, revised 19th August 2020, accepted 20th August 2020.

1. Introduction

Two subsets A and B of nonnegative integers are said to be additive complements if their sum

a +b (a ∈ A, b ∈ B)

contains all sufficiently large integers. If A and B are additive complements, we also call B an
additive complement of A. For any set L of nonnegative integers, let L(x) be the number of
elements in L which are no great than x. As usual, [x] and {x} denote the integral part and
fractional part of x respectively.

Let S = {12,22,32, · · ·} be the set of all square numbers. Given a positive integer N , let
T = {t1, t2, t3, · · ·, tl } be a subset of nonnegative integers such that every positive integer n ≤ N
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can be represented by the sum of the elements of S and T . It is sure that l
p

N ≥ N . In [6], Erdős
asked whether there exists a positive constant c such that

l
p

N > (1+ c)N

for all sufficiently large N . It was answered affirmative by Moser [8] with c = 1.06. Later the con-
stant was improved by Balasubramanian [1] to 1.15, by Balasubramanian and Soundararajan [3]
to 1.245. The best result of the constant c up to now is 4

π which was obtained by Cilleruelo [5],
Habsieger [7], Balasubramanian and Ramana [2] respectively.

Based on the above rich literature, Ben Green posed a problem to Fang about the additive
complements of the squares during her visit to the Mathematical Institute, University of Oxford
in 2016 [4]. He asked whether there is an additive complement B = {bn}∞n=1 ⊆N of S satisfies

bn = π2

16
n2 +o

(
n2) , (1)

or equivalently

B(n) = 4

π

p
N +o

(p
N

)
.

Chen and Fang [4] investigated this problem. They proved that if for any 0 < α<
√

2
π

1
log4 and

γ> 0, we have

bn ≥ π2

16
n2 −αn1/2 logn −γn1/2, n = 1,2,3, . . . ,

then B is not an additive complement of S. From which they deduced that if B is an additive
complement of S, then

limsup
n→∞

π2

16 n2 −bn

n1/2 logn
≥

√
2

π

1

log4
.

Motivated by this result, they made the following conjecture.

Conjecture. [4] If B = {b1}∞n=1 is an additive complement of S, then

limsup
n→∞

π2

16 n2 −bn

n1/2 logn
=+∞.

We confirm this conjecture by establishing the following stronger result.

Theorem 1. If B = {bn}∞n=1 is an additive complement of S, then

limsup
n→∞

π2

16 n2 −bn

n
≥ π

4
.

2. Proof of the Theorem 1

Proof. Suppose that

limsup
n→∞

π2

16 n2 −bn

n
=β< π

4
.

Then there exists a number n1 > 0 such that
π2

16 n2 −bn

n
≤β+ 1

2

(π
4
−β

)
= π

4
−δ< π

4
for all n > n1, where

δ= 1

2

(π
4
−β

)
.

That means

bn ≥ π2

16
n2 −

(π
4
−δ

)
n = π2

16

(
n − 2

π
+ 8

π2 δ

)2

−
(

1

2
− 2

π
δ

)2
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for all n > n1. Thus there exists an integer n2 ≥ n1, such that

bn ≥ π2

16

(
n − 2

π
+ 4

π2 δ

)2

for all n > n2. This implies that

B(n) ≤ 4

π

p
n + 2

π
−δ1

for all n > n2, where δ1 = 4
π2 δ is a positive constant. Let R(n) = #{(m,b) : n = m2 +b, b ∈ B} be the

representation function of n. For any positive integer N , we have

N∑
n=1

R(n) = ∑
n2+b≤N

1

= ∑
n≤p

N

∑
b≤N−n2

1

= ∑
n≤p

N

B(N −n2)

≤ ∑
n≤p

N

(
4

π

√
N −n2 + 2

π
−δ1

)
+O(1)

= 4

π

∑
n≤p

N

√
N −n2 +

(
2

π
−δ1

)p
N +O(1),

(2)

where the implied constant depends only on n2.
Now we consider the summation

∑
n≤p

N

p
N −n2. For square integer N = K 2, Euler–Maclaurian

formula with f (t ) =
p

N − t 2 shows that∑
n≤p

N

√
N −n2 =

K∑
n=0

f (n)− f (0)

= f (K )− f (0)

2
+

K∫
0

f (t )d t +
K∫

0

f ′(t )

(
{t }− 1

2

)
d t

=−K

2
+ π

4
K 2 −

K∫
0

t
(
{t }− 1

2

)
p

K 2 − t 2
d t

= π

4
N −

p
N

2
−

K−1∑
k=0

k+1∫
k

t
(
{t }− 1

2

)
p

K 2 − t 2
d t .

(3)

Note that tp
N−t 2

is a monotone increasing function on [0,
p

N ). We have

k+1∫
k

t
(
{t }− 1

2

)
p

K 2 − t 2
d t =

1
2∫

− 1
2

(
k + 1

2 +x
)(

{k + 1
2 +x}− 1

2

)√
K 2 − (

k + 1
2 +x

)2
d x

=
1
2∫

− 1
2

x
(
k + 1

2 +x
)√

K 2 − (
k + 1

2 +x
)2

d x

=
1
2∫

0

x

 k + 1
2 +x√

K 2 − (
k + 1

2 +x
)2

− k + 1
2 −x√

K 2 − (
k + 1

2 −x
)2

d x ≥ 0.

(4)
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Combining (3) with (4) gives ∑
n≤p

N

√
N −n2 ≤ π

4
N −

p
N

2
. (5)

Hence
N∑

n=1
R(n) ≤ N −

(
2

π
−

(
2

π
−δ1

))p
N +O(1) = N −δ1

p
N +O(1) (6)

for square integers N with N > n2. Recall that B is an additive complement of the squares, so
there is an integer n3 > 0 such that

R(n) ≥ 1

for all n ≥ n3. It yields that
N∑

n=1
R(n) ≥

N∑
n=n3

R(n) ≥ N −n3.

This obviously contradicts to equation (6) when N is a sufficiently large square integer. �

Remark 2. As one can see that the idea in the proof of our Theorem 1 is simple but very effective.
We use nothing but the trivial estimate on R(n), i.e., R(n) ≥ 1 for all sufficiently large integers. At
the end of this short note, we formulate a conjecture similar to the one of Chen and Fang: If
B = {bn}∞n=1 is an additive complement of S, then

limsup
n→∞

π2

16 n2 −bn

n
=+∞.
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