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Abstract. This work exploits structural properties of a class of functional Vandermonde matrices to empha-
size some qualitative properties of a class of linear autonomous nth order differential equation with forcing
term consisting in the delayed dependent-variable. More precisely, it deals with the stabilizing effect of delay
parameter coupled with the coexistence of the maximal number of real spectral values. The derived condi-
tions are necessary and sufficient and, to the best of the authors’ knowledge, represent a novelty in the liter-
ature. Under appropriate conditions, such a configuration characterizes the spectral abscissa corresponding
to the studied equation. A new stability criterion is proposed. This criterion extends recent results in factor-
izing quasipolynomial functions. The applicative potential of the proposed method is illustrated through the
stabilization of coupled oscillators.

Résumé. Ce travail exploite les propriétés structurelles d’une classe de matrices de Vandermonde fonction-
nelles, pour mettre en évidence certaines propriétés qualitatives d’une classe d’équation différentielle d’ordre
n, autonome linéaire avec un terme source dépendant de la variable retardée. Plus précisément, il traite de
l’effet stabilisateur du paramètre de retard couplé à la coexistence du nombre maximal de valeurs spectrales
réelles. Les conditions dérivées sont nécessaires et suffisantes et, à la connaissance des auteurs, représentent
une nouveauté dans la littérature. Sous des conditions appropriées, une telle configuration caractérise l’abs-
cisse spectrale correspondant à l’équation étudiée. Un nouveau critère de stabilité est proposé. Ce critère
étend les résultats récents sur la factorisation de fonctions quasi-polynomiales. Le potentiel applicatif du
procédé proposé est illustré par la stabilisation d’oscillateurs couplés.
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1. Introduction

Matrices arising from a wide range of problems in mathematics and engineering typically dis-
play characteristic structures. In particular, exploiting such a structure in problems from dynam-
ical systems is known to be challenging for understanding of complex qualitative behaviors and
for characterizing system’s properties, see, for instance, [6] and references therein. This study is
a crossroad between the investigation of the invertibility of a class of such structured matrices
which is related to Multivariate Interpolation Problems (namely, the well-known Lagrange Inter-
polation Problem) and the localisation of spectral values of linear time-delay systems. The study
of conditions on the time-delay systems parameters guaranteeing the exponential stability of so-
lutions is a question of ongoing interest and, to the best of the authors’ knowledge, it remains
an open problem. In particular, in frequency-domain, the problem reduces to the analysis of the
distribution of the roots of the corresponding characteristic function, which is an entire function
called characteristic quasipolynomial), see for instance [4, 14, 16, 24, 36, 37, 39].

The starting point of the present work is a property, discussed in recent studies, called
Multiplicity-Induced-Dominancy, see, for instance, [3,9]. As a matter of fact, it is shown that mul-
tiple spectral values for time-delay systems can be appropriately characterized by using the so-
called Birkhoff/Vandermonde-based approach; see for instance [5–7, 13]. More precisely, in previ-
ous works, it is emphasized that the admissible multiplicity of the real spectral values is bounded
by the generic Polya and Szegö bound (denoted PSB ), which is nothing else but the degree of the
corresponding quasipolynomial (i.e the number of the involved polynomials plus their degree
minus one), see for instance [32, Problem 206.2 p. 144 and p. 347]. It is worth mentioning that
such a bound was recovered by using structured matrices in [6] rather than the standard prin-
ciple argument as it was proved by Polya and Szegö in [32]. It is important to point out that the
multiplicity of a root itself is not essential as such but its connection with the dominancy of this
root is a meaningful tool for control synthesis.

To the best of the authors’ knowledge, the first analytical proof of the dominancy of a spectral
value for the scalar equation with a single delay was presented and discussed in the 50s, see [17].
The dominancy property is further explored and analytically shown in the scalar delay system
case in [13], and in second-order systems controlled by a delayed proportional controller is pro-
posed in [10,12] where its applicability in damping active vibrations for a piezo-actuated beam is
proved. An extension to the delayed proportional-derivative controller case is proposed in [8, 11]
where the dominancy property is parametrically characterized and proven using the argument
principle. Recently, in [2] it is shown that, under appropriate conditions, the coexistence of ex-
actly PSB distinct negative zeros of quasipolynomial of reduced degree guarantees the exponen-
tial stability of the zero solution of the corresponding time-delay system. The dominancy of such
real spectral values is proved by using an extended factorization technique which generalizes the
one provided in [2]. Finally, to the best of the authors’ knowledge, the necessary and sufficient con-
ditions derived in the present paper as well as corresponding control strategy represent a novelty.
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The present work investigates the effect of structural properties of a class of functional Van-
dermonde matrices and its effect on qualitative properties of a corresponding linear autonomous
time-delay system of retarded type. More precisely, the aim of this work is three-fold: first, it em-
phasizes the link between the invertibility of a class of structured functional Vandermonde ma-
trices and the coexistence of distinct real spectral values of linear time-delay systems, which al-
lows to recover the maximal number of distinct real spectral values that may coexist for a given
time-delay system. Second, if the number of coexistent real spectral values reaches the PSB , then
a necessary and sufficient condition for the asymptotic stability is provided (which is equivalent
to the exponential stability [19, p. 79]), see also [26] for an estimate of the exponential decay rate
for stable linear delay systems. Notice also that the constructive approach we propose, which
consists in providing an appropriate factorization of a given quasipolynomial function and then
to focus on the location of zeros of one of its factors, gives further insights on such a qualita-
tive property. Namely, it furnishes the exact exponential decay rate rather than just counting the
number of the quasipolynomial roots on the left-half plane as may be done by using the principle
argument, see, for instance, [37]. Finally, we present the main ingredients some control-oriented
algorithmic procedure that can be useful for developing a systematic toolbox for testing all the
properties mentioned above.

The class of dynamical systems considered in this work is represented by an nth order linear
autonomous system of ordinary differential equations with a forcing delay term. This class of
systems has an applicative interest particularly in control design problems. As a matter of fact,
the forcing term may be seen as a delayed-input able to stabilize the system’s solutions. The idea
of exploiting the delay effect in controllers design was first introduced in [38] where it is shown
that the conventional proportional controller equipped with an appropriate time-delay performs
an averaged derivative action and thus can replace the proportional-derivative controller, see
also [34]. Furthermore, it was stressed in [28] that time-delay has a stabilizing effect in the control
design. Indeed, the closed-loop stability is guaranteed precisely by the existence of the delay in
the control loop. Also in [27] it is shown that a chain of n integrators can be stabilized using n
distinct delay blocks, where a delay block is described by two parameters: a “gain” and a “delay”.
The interest of considering control laws of the form

∑m
k=1γk y(t −τk ) lies in the simplicity of the

controller as well as in its easy practical implementation.
From a control theory point of view, the problem we consider and the approach we propose

give rise to an exponential decay assignment method using two “control” parameters a “gain”
and a “delay”. Notice that the idea of using roots assignment for controller-design for time-
delay system is not new. For instance, in [22] a feedback law yields a finite spectrum of the
closed-loop system, located at an arbitrarily preassigned set of points in the complex plane. In
the case of systems with delays in control only, a necessary and sufficient condition for finite
spectrum assignment is obtained. Notice that the resulting feedback law involves integrals over
the past control. In case of delays in state variables it is shown that a technique based on
the finite Laplace transform leads to a constructive design procedure. The resulting feedback
consists of proportional and (finite interval) integral terms over present and past values of state
variables. In [21], a similar finite pole placement for time-delay systems with commensurate
delays is proposed. Feedback laws defined in terms of Volterra equations are obtained due to the
properties of the Bezout ring of operators including derivatives, localized and distributed delays.
Other analytical/numerical placement methods for retarded time-delay systems are proposed
in [23, 25], see also [40] for further insights on pole-placement methods for retarded time-delays
systems with proportional-integral-derivative controller-design.

The remaining paper is organized as follows. In Section 2, the problem formulation is pre-
sented and some technical lemmas are derived. Section 3 is devoted to the main results of the
paper. Section 4 gives an illustrative example showing the potential of the method to address
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some practical applications. Some concluding remarks end the paper. Finally, the reader finds
proofs of the technical lemmas in the Appendix A.

2. Problem settings and prerequisites

In this paper, we are interested in studying the stabilizing effect of the coexistence of the maximal
number of real spectral values for the generic n-order ordinary differential equation perturbed
by a forcing delay term:

y (n)(t )+
n−1∑

k=0
ak y (k)(t )+αy(t −τ) = 0, t ∈R+, (1)

under appropriate initial conditions belonging to the Banach space of continuous functions
C ([−τ,0],R) which is an infinite-dimensional differential equation with a single constant delay
τ> 0.

From a control theory point of view, the aim is to establish a delayed-output-feedback con-
troller u(t ) =−α y(t −τ) able to stabilize solutions of the following control system:

y (n)(t )+
n−1∑

k=0
ak y (k)(t ) = u(t ). (2)

The particular cases of first and second order equations are considered in [2], where a stabi-
lizing effect of the coexistence of respectively 2 and 3 negative real roots is shown. By this paper,
one generalizes such a result for arbitrary order n.

In the Laplace domain, the corresponding quasipolynomial characteristic function defined by
∆n :C×R∗

+ −→C writes

∆n(s,τ) := sn +
n−1∑

k=0
ak sk +αe−τs . (3)

One can prove that the quasipolynomial function (3) admits an infinite number of zeros, see
for instance the references [1,4,20,33]. The study of zeros of an entire function [20] of the form (3)
plays a crucial role in the analysis of asymptotic stability of the zero solution of Equation (1).
Indeed, the zero solution is asymptotically stable if, and only if, all the zeros of (3) are in the open
left-half complex plane [24].

2.1. Counting quasipolynomial roots in horizontal strips

The following result was first introduced and claimed in the problems collection published in
1925 by G. Pólya and G. Szegö. In the fourth edition of their book [32, Problem 206.2, p. 144
and p. Z347], G. Pólya and G. Szegö emphasize that the proof was obtained by N. Obreschkoff
in 1928 using the principle argument, see [29]. Such a result gives a bound for the number of
quasipolynomial’s roots in any horizontal strip. As a consequence, a bound for the number of
quasipolynomial’s real roots can be easily deduced.

Theorem 1 ( [32]). Let τ1, . . . , τN denote real numbers such that τ1 < τ2 < . . . < τN and d1, . . . , dN

positive integers such that d1 +d2 + . . . +dN = D. Let fi , j stand for the function fi , j (s) = si−1eτ j s ,
for 1 ≤ i ≤ d j and 1 ≤ j ≤ N . Let ]PS be the number of zeros of the function

f (s) =
∑

1≤ j ≤N
1≤ i ≤d j

ci , j fi , j (s) (4)

that are contained in the horizontal strip α≤ Im(z) ≤β. Assuming that
∑

1≤k ≤d1

|ck,1| > 0 and
∑

1≤k ≤dN

|ck, N | > 0

C. R. Mathématique, 2020, 358, n 9-10, 1011-1032
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then
(τN −τ1)(β−α)

2π
−D +1 ≤ ]PS ≤ (τN −τ1)(β−α)

2π
+D +N −1. (5)

Settingα=β= 0, the above theorem yields ]PS ≤ D+N−1 where D stands for the sum of the degrees
of the polynomials involved in the quasipolynomial function f and N designates the associated
number of polynomials. This gives a sharp bound for the number of f ’s real roots. Notice that
D +N −1 corresponds to the degree of the quasipolynomial f . 1

Let’s investigate the coexistence of n +1 real (negative) roots for the quasipolynomial ∆n(. , τ).
Due to the linearity of ∆n with respect to its coefficients (ak )0≤k ≤n−1 and α, one reduces
the system ∆n(s1,τ) = . . . = ∆n(sn+1, τ) = 0 to the linear system Vn(X n+1, τ).V = b where

V = (an−1, . . . , a0,α)T , b =−(sn
1 , . . . , sn

n+1)T and X n+1 ∆= (s1, s2, · · · , sn+1):

Vn
(
X n+1,τ

)=




sn−1
1 sn−2

1 · · · s1 1 e−τs1

sn−1
2 sn−2

2 · · · s2 1 e−τs2

...
...

. . .
...

...
...

sn−1
n sn−2

n · · · sn 1 e−τsn

sn−1
n+1 sn−2

n+1 · · · sn+1 1 e−τsn+1




. (6)

In the sequel, such a matrix is called structured functional Vandermonde type matrix due to its
form and its structural properties.

2.2. The determinant of a structured functional Vandermonde type matrix

As reported in [18, p. 121], the Vandermonde matrix appears in a control problems when studying
the controllability of a finite dimensional dynamical system. More precisely, the controllability
property is guaranteed by the invertibility of such a matrix, see also [15, 35]. Next, in the context
of time-delay systems, the use of the standard Vandermonde matrix properties was proposed
by [24,27] when controlling some chain of integrators by delay blocks. Analogously to the Birkhoff
interpolation problem, in [6] the non degeneracy of some functional Birkhoffmatrices represents
a fundamental assumption for investigating the codimension of the zero spectral values for time-
delay systems. Here, we further exploit the algebraic properties of such structured matrices into
a different context.

The following auxiliary result explicitly gives the determinant of the structured functional
Vandermonde type matrix (6). Its proof is presented in the Appendix. In the sequel, we adopt
the notation [x, y]t to designate the t−convex combination of the real (or complex) numbers x
and y , that is: [x, y]t = t x + (1− t ) y for t ∈ [0,1].

Theorem 2. For any distinct real numbers sn+1 < ·· · < s2 < s1, and τ> 0, the structured functional
Vandermonde type matrix Vn(X n+1,τ) is invertible. Moreover, its determinant is

Qn
(
X n+1,τ

)= det
(
Vn

(
X n+1,τ

))= τn
n+1∏

i< j
i , j=1

(
si − s j

)
Fτ,n

(
X n+1) , (7)

which is always positive and where Fτ,n :Rn+1 →R∗
+ is defined as follows:

Fτ,n
(
X n+1)=

1∫

0

· · ·
1∫

0︸ ︷︷ ︸
n times

n−1∏

k=1
(1− tk )n−k .e

−τ
[

s1,[s2, ··· [sn , sn+1]tn ···]t2

]
t1 d tn · · · d t1

1The quasipolynomial degree is defined as the sum of degrees of the involved polynomials plus the corresponding
number of delays
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Remark 3. It is worth mentioning that the product in the expression of Qn given by (7) corre-
sponds to the determinant of the standard Vandermonde matrix, see for instance [30].

2.3. Symmetry property

The multivariate function Fτ,n admits an interesting invariance property that will be emphasized
in the following Lemma 4 which will be used in the proof of the main results. Its proof is presented
in the Appendix A.

Lemma 4. For any positive delay τ the functional Fτ,n is invariant for any permutation of the
finite sequence (s1, s2, · · · , sn+1) , namely, for any permutation σ of X n+1, we have

Fτ,n
(
X n+1)= Fτ,n

(
σ

(
X n+1)) .

For instance, for n = 2, Lemma 4 allows saying that for all (x, y, z) ∈R3,

Fτ,2
(
x, y, z

)=
1∫

0

1∫

0

(1− t1)e−τ(t1x+(1−t1)(t2 y+(1−t2) z))d t1 d t2

and

Fτ,2
(
x, y, z

)= Fτ,2
(
x, z, y

)= Fτ,2
(
y, x, z

)= Fτ,2
(
y, z, x

)= Fτ,2
(
z, x, y

)= Fτ,2
(
z, y, x

)
.

Remark 5. The symmetry property emphasized in the above Lemma 4 is justified by the convex-
ity property on the argument of the exponential kernel. Its proof (see the Appendix A) relies on
some simple change of coordinates.

2.4. Shifting properties

The following Lemmas 6 and 7 exhibit some shifting properties that will be used in proving the
main results. Their proofs are presented in the Appendix A.

Lemma 6. Let (si )n+1
i=1 be a sequence of distinct real numbers. For 1 ≤ m ≤ n, let ( jk )1≤k ≤m+1 be

any subsequence from {1, . . . , n +1}. Let

(S jk )1≤k ≤m+1 ⊂ (Si )1≤ i ≤n+1

For 1 ≤ M ≤ n −1, let the corresponding set of m−tuple partitions be

Im, M =
{

(i1, i2, · · · , im) ∈Nm ,
m∑

j=1
i j = M

}
.

Then
∑

(i1, i2, ··· , im )∈ Im, M

m∏

k=1
sik

jk
−

∑

(i1, i2, ··· , im )∈ Im, M

m∏

k=1
sik

jk+1
= (

s j1 − s jm+1

) ∑

(i1, i2, ··· , im+1)∈ Im+1, M−1

m+1∏

k=1
sik

jk

Lemma 7. Let τ > 0 and n ≥ 1. Let (si )n+1
i=1 be a sequence of distinct real numbers. For any

subsequence (sik )k=m+1
k=1 from (si )n+1

i=1 , the function Fτ,m satisfies

Fτ,m−1
(
si1 , si2 , · · · , sim

)−Fτ,m−1
(
si2 , · · · , sim , sim+1

)=−τ(
si1 − sim+1

)
Fτ,m

(
si1 , si2 , · · · , sim , sim+1

)
.

Remark 8.

• Lemma 6 and Lemma 7 remain valid even if the elements of the sequence (si )1≤ i ≤n+1 are
distinct and complex.

• Under the conditions of Lemma 7 it is obvious that Fτ,n > 0 for any τ> 0.
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2.5. Factorization property

The following Lemma 9 provides an explicit way to factorize a given quasipolynomial function (3)
having at least n distinct real roots. This will be used in the proof of the main results.

Lemma 9. Assume that the quasipolynomial (3) admits n distinct real roots sn < . . . < s1 then it
can be written under the following factorized form:

∆n(s, τ) =
n∏

i=1
(s − si )

[
1+ (−τ)nαFτ,n (s, s1, · · · , sn)

]
. (8)

3. Main results

In this section, we provide mainly two Theorems 10 and 12 exploiting the structural properties
of the considered class of functional Vandermonde matrices to give some qualitative properties
of the solutions of (1). More precisely, the first Theorem 10 gives conditions on the coexistence
of real roots of the quasipolynomial ∆n . The second Theorem 12 emphasizes the effect of the
coexistence of such real roots on the remaining roots of ∆n . Finally, the combination of those
results allows to give some important insights on the exponential stability of the solutions of (1).

3.1. Coexistence of n +1 real roots of ∆n

The following Theorem 10 allows recovering PSB as a bound of the admissible number of
coexisting real roots for the quasipolynomial (3), see for instance [32]. This provides an alternative
constructive analytical proof based on factorization techniques. Furthermore, explicit conditions
on the parameters guaranteeing the coexistence of such a number of real roots is provided
allowing to Vieta’s-like formulas for quasipolynomials.

Theorem 10.
(i) The maximal number of coexisting real roots of the quasipolynomial (3) is n +1.

(ii) For a fixed τ > 0, Equation (3) admits n + 1 distinct real spectral values sn+1, sn , · · · , s2

and s1 with sn+1 < ·· · < s2 < s1 if, and only if, the coefficients (ak )0≤k ≤n−1 and α are
respectively given by the following functions in τ and X n+1 = (s1, . . . , sn+1)

a0
(
X n+1,τ

)= 1

Qn
(
X n+1,τ

) det




sn−1
1 sn−2

1 · · · s1 −sn
1 e−τs1

sn−1
2 sn−2

2 · · · s2 −sn
2 e−τs2

...
...

. . .
...

...
...

sn−1
n sn−2

n · · · sn −sn
n e−τsn

sn−1
n+1 sn−2

n+1 · · · sn+1 −sn
n+1 e−τsn+1




, (9)

and for 1 ≤ k ≤ n −1 one has:

ak
(
X n+1,τ

)= 1

Qn
(
X n+1,τ

) det




sn−1
1 sn−2

1 · · · sk+1
1 −sn

1 sk−1
1 · · · s1 1 e−τs1

sn−1
2 sn−2

2 · · · sk+1
2 −sn

2 sk−1
2 · · · s2 1 e−τs2

...
...

. . .
...

...
...

. . .
...

...
...

sn−1
n sn−2

n · · · sk+1
n −sn

n sk−1
n · · · sn 1 e−τsn

sn−1
n+1 sn−2

n+1 · · · sk+1
n+1 −sn

n+1 sk+1
n+1 · · · sn+1 1 e−τsn+1




, (10)
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and

α
(
X n+1,τ

)= 1

Qn
(
X n+1,τ

) det




sn−1
1 sn−2

1 · · · s1 1 −sn
1

sn−1
2 sn−2

2 · · · s2 1 −sn
2

...
...

. . .
...

...
...

sn−1
n sn−2

n · · · sn 1 −sn
n

sn−1
n+1 sn−2

n+1 · · · sn+1 1 −sn
n+1




. (11)

Remark 11.
• From a control theory point of view, recall the design problem presented in (2), which

consists in tuning the controller gain α and the delay parameter τ such that the closed-
loop system’s solution is asymptotically stable. In such a problem, the sign of the con-
troller gain is important with respect to the system’s structure. More precisely, it is impor-
tant to emphasize that in our design procedure, the coefficient α is of alternate sign with
respect to the parity of the derivative order n.

• One can observe that the asymptotic expansion of the coefficients ak allows to recover
the well-know Vieta’s formulas. This comes from the fact that when τ→∞ the quasipoly-
nomial ∆n reduces to a polynomial of degree n. So here the important fact to emphasize
is the disappearance of the (n +1)th real root of the quasipolynomial ∆n .

Proof of Theorem 10. Let us start by the proof of (ii) and we conclude by (i). (ii) Assume that (3)
admits n+1 real spectral values s1 > s2 > ·· · > sn+1. This means that the coefficients (ak )0≤k ≤n−1

and α satisfy the linear system

∆n(si , τ) = sn
i +

n−1∑

k=0
ak sk

i +αe−τsi = 0, for all i = 1, · · · , n +1. (12)

Thanks to the invertibility of structured functional Vandermonde type matrix Vn(X n+1, τ) as as-
serted in Theorem 2, one deals with a Cramer system with respect to the coefficients (ak )0≤k ≤n−1

and α. So that, one easily computes these coefficients with the standard formulas allowing to
get (9), (10) and (11) respectively. In particular, the expression of α(X n+1,τ) is reduced to

α
(
X n+1,τ

)=

(−1)n+1
n+1∏
i< j

i , j=1

(
si − s j

)

detVn
(
X n+1, τ

) = (−1)n+1 [
τnFτ,n

(
X n+1)]−1

(13)

showing the alternating sign of α. i ) Let proceed by contradiction in assuming the coexistence of
n +2 real roots of (3). We shall use the factorization of (3) derived in Lemma 9, that is:

∆n(s, τ) =
n∏

i=1
(s − si )

[
1+ (−τ)nα

(
X n+1,τ

)
Fτ,n (s, s1, · · · , sn)

]
.

Since we assumed that sn+1 and sn+2 are two distinct real roots of ∆n then one has




∆n(sn+1,τ) =
n∏

i=1
(sn+1 − si )

[
1+ (−τ)nα

(
X n+1,τ

)
Fτ,n (sn+1, s1, · · · , sn)

]= 0,

∆n(sn+2,τ) =
n∏

i=1
(sn+2 − si )

[
1+ (−τ)nα

(
X n+1,τ

)
Fτ,n (sn+2, s1, · · · , sn)

]= 0.
(14)

Since
n∏

i=1
(sn+1 − si ) 6= 0 and

n∏
i=1

(sn+2 − si ) 6= 0, one gets:

{[
1+ (−τ)nα

(
X n+1,τ

)
Fτ,n (sn+1, s1, · · · , sn)

] = 0,[
1+ (−τ)nα

(
X n+1,τ

)
Fτ,n (sn+2, s1, · · · , sn)

] = 0.
(15)
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Hence, by subtracting equations in (15), and because α(X n+1,τ) 6= 0 (see (13)), we obtain the
following equation

Fτ,n (sn+1, s1, · · · , sn)−Fτ,n (sn+2, s1, · · · , sn) = 0.

Furthermore, using the shifting property from Lemma 7, one gets:

−τ (sn+1 − sn+2)Fτ,n+1 (s1, · · · , sn+2) = 0.

Finally, from the definition of Fτ,n+1, it follows the inconsistency in assuming the coexistence of
n +2 distinct real roots. �

3.2. On qualitative properties of s1 as a root of ∆n

To study the stability of solutions of Equation (3), one needs to study the negativity as well as
the dominancy of the root s1 by using an adequate factorization of the quasipolynomial ∆n(s, τ)
defined in (3).

Theorem 12. For a fixed τ> 0, assume that Equation (3) admits n+1 distinct real spectral values
sn+1 < ·· · < s2 < s1.

The following assertions hold:

(i) (Negativity) The spectral value s1 is negative if, and only if, there exists τ∗ > 0 such that

an−1
(
X n+1,τ∗

)+
n∑

k=2
sk = 0. (16)

(ii) (Dominancy) The spectral value s1 is the spectral abscissa of Equation (1).

Proof of Theorem 12.
(i) Assume that s1 < 0. Since the parameter an−1 given by (10) is a continuous function with

respect to the delay τ and thanks to the l’Hospital’s rule one asserts that its asymptotic
behavior is described by:

lim
τ→0

an−1(X n+1,τ) =−∞ and lim
τ→∞an−1(X n+1,τ) =−

n∑

k=1
sk > 0,

which proves the existence of

τ∗ > 0 such that an−1(X n+1,τ∗)+
n∑

k=2
sk = 0.

Conversely, to show the negativity of s1, one exploits the determinant expressions pro-
vided in Theorem 2, allowing to write for any τ> 0 one has:

an−1
(
X n+1,τ

)=−
n∑

k=1
sk −

1

τ

Fτ,n−1(s1, . . . , sn)

Fτ,n(s1, . . . , sn+1)
.

In particular

an−1
(
X n+1, τ∗

)+
n∑

k=2
sk =−s1 −

1

τ∗
Fτ∗,n−1(s1, . . . , sn)

Fτ∗,n(s1, . . . , sn+1)
.

Using (16) and the positivity of τ∗ as well as the positivity of both Fτ∗,n and Fτ∗,n−1 one
concludes

s1 =− 1

τ∗
Fτ∗,n−1(s1, . . . , sn)

Fτ∗,n(s1, . . . , sn+1)
< 0.
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(ii) The proof of dominancy property for s1 is based on the quasipolynomial factorization
established in the proof of Theorem 10, especially, the formula (8). Let us assume that
there exists some s0 = ζ+ jη a root of ∆n(s,τ) = 0 such that ζ > s1. This means that
P (s0,τ) = 0. Hence

1 = (−1)n+1τnα(X n+1,τ)Fτ,n (s0, s1, · · · , sn)

= (−1)n+1τnα(X n+1,τ)Re
(
Fτ,n (s0, s1, · · · , sn)

)

= τn ∣∣α(X n+1,τ)
∣∣Re

(
Fτ,n (s0, s1, · · · , sn)

)

≤ τn ∣∣α(X n+1, τ)
∣∣Fτ,n (ζ, s1, · · · , sn) .

(17)

Denote by x2,n the quantity [s2, · · · [sn−1, sn]tn · · · ]t3 . Rewriting the term [ζ, [x2,n , s1]t2 ]t1 as
follows [

ζ,
[
x2,n , s1

]
t2

]
t1
= t1 (ζ− s1)+ s1 + t2 (1− t1)

(
x2,n − s1

)

= t1 (ζ− s1)+
[
x2,n , s1

]
t2(1−t1)

= t1 (ζ− s1)+
[

s1,
[
x2,n , s1

]
t2

]
t1

.

Then, using the following estimates
[

s1,
[
x2,n , s1

]
t2

]
t1
>

[
s1,

[
x2,n , sn+1

]
t2

]
t1

and e−τt1(ζ−s1) < 1, ∀ t1 ∈ ]0,1[

we get from (17) and Lemma 4

1 ≤ τn ∣∣α(X n+1,τ)
∣∣

1∫

0

· · ·
1∫

0︸ ︷︷ ︸
n times

n−1∏

k=1
(1− tk )n−k e−τt1(ζ−s1)e

−τ
[
ζ,[x2,n ,s1]t2

]
t1 d tn · · · d t1

< τn ∣∣α(X n+1, τ)
∣∣

1∫

0

· · ·
1∫

0︸ ︷︷ ︸
n times

n−1∏

k=1
(1− tk )n−k e

−τ
[

s1,[x2,n ,sn+1]t2

]
t1 d tn · · · d t1

= τn ∣∣α(X n+1,τ)
∣∣Fτ,n (s1, s2, · · · , sn+1) = 1 (thanks to (13)),

which is inconsistent. Thus, the dominancy of s1 is proved. The proof of Theorem 12 is
achieved.

�

Remark 13. Note that the factorization (8) of ∆n(. , τ) allows to retrieve the explicit expression of
the coefficient α defined in (11), since sn+1 is a root of quasipolynomial ∆n(. , τ). Just replace s by
sn+1 in (8).

3.3. Exponential stability

Note that for linear retarded functional differential equations, the exponential stability is equiv-
alent to the uniform asymptotic stability, [19, p. 79]. Further, for the linear autonomous retarded
functional differential equations, asymptotic stability implies uniform asymptotic stability and,
hence, exponential stability. Recall that Theorem 10 gives necessary and sufficient conditions for
the coexistence of n +1 real roots of (3). Theorem 12 gives a necessary and sufficient conditions
for the negativity of all such real roots and asserts that the roots of (3) have necessarily Re(s) < s1.
So, the following result which is a direct consequence of Theorems 10-12 allows an appropriate
characterization of the exponential stability.
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Corollary 14. If equation (3) admits (n +1) distinct real spectral values sn+1 < . . . < s1 and (16) is
satisfied then the trivial solution of (1) is exponentially stable with s1 as a decay rate.

3.4. Control design perspectives: Strategy steps on a comprehensive example

Corollary 14 gives rise a new partial pole placement methodology which consists in assigning n+1
distinct roots sn+1 < . . . < s1 < 0 for ∆n . This assignment guarantees the exponential stability of
the closed-loop system with s1 as exponential decay rate.

Let us exhibit the steps of the proposed design on some comprehensive example of second-
order dynamics subject to some delay in the input. It is well known that second-order linear
systems capture the dynamic behavior of many natural phenomena, and have found wide
applications in a variety of fields, such as vibration and structural analysis.

Consider the following control problem:

ẍ(t )+2ξω ẋ(t )+ω2 x(t ) = u(t ) (18)

whereω> 0 and 0 < ξ< 1 stand respectively for the oscillator natural frequency and the damping
factor and we consider a controller u having a proportional-minus-delay structure as suggested
in [38]; that is

u(t ) =−α0 x(t )−α1 x(t −τ).

Thus, the corresponding closed-loop characteristic function is given by:

∆2(s,τ) = s2 +2ξω s +ω2 +α0 +α1e−τ s .

(Step 1) Since the degree of the quasipolynomial deg(∆2) = 3 then the first step of our approach
consists in assigning three negative roots s3 < s2 < s1. For simplicity, let consider the case
of equidistributed roots, which corresponds to s3 = s1 −2d and s2 = s1 −d with d > 0.

(Step 2) One solves the system of the three transcendental equations for the control parameters
(α0, α1, τ) in terms of the system physical parameters (ξ,ω) as well as the assigned root s1

and the distance between two successive roots “d”. One obtains the following solution:




τ = σ
d ,

α0 = 3/2 (−2ξω+d −2 s1) (−2/3ξω+d −2/3 s1)e−σ−2ξω s1 −ω2 − s1
2,

α1 = −1/2 (−2ξω+d −2 s1) (−2ξω+3d −2 s1)e−
σ(−s1+d)

d

(19)

with

σ= ln

(−2ξω+3d −2 s1

−2ξω+d −2 s1

)
.

At this stage, the distance d is not yet fixed.
(Step 3) The distance d has to be chosen such that the positivity of the delay τ is guaranteed. To

do so, one has to chose d such that:

−2ξω+3d −2 s1

−2ξω+d −2 s1
= 1+ 2d

−2ξω+d −2 s1
> 1

which is equivalent to chose d such that d > 2(s1 +ξω). In particular, if s1 is set such that
s1 <−ξω then d can be arbitrarily chosen.

4. Stabilizing coupled oscillators using delayed output feedback

To show the potential of the obtained results for applications, consider as an illustrative example
a more involved system consisting in two coupled oscillators. Coupled oscillations occur when
two or more oscillating systems are connected in such a way the motion energy is transferred
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between them. The dynamics of coupled oscillators plays an important role in a variety of sys-
tems in nature and technology, see for instance [31] and references therein. Their ability to dis-
play complex self-organized dynamical phenomena makes them an important tool to explain
fundamental mechanism of emergent dynamics in coupled systems. It is known that when the
coupling is small then each oscillator operates at its natural frequency and the system is then said
to be incoherent. However, when the coupling exceeds a certain threshold then the system spon-
taneously synchronizes. Here we consider the mechanical system of two coupled oscillators as
depicted in Figure 1 and we aim to design a stabilizing delayed controller, which corresponds to
oscillation quenching. Using the fundamental principle of dynamics and the standard assump-
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−2ξω+3d −2 s1
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−2ξω+d −2 s1
> 1

which is equivalent to chose d such that d > 2(s1 +ξω). In particular, if s1 is set such that
s1 <−ξω then d can be arbitrarily chosen.

4. Stabilizing coupled oscillators using delayed output feedback

To show the potential of the obtained results for applications, consider as an illustrative example
a more involved system consisting in two coupled oscillators. Coupled oscillations occur when
two or more oscillating systems are connected in such a way the motion energy is transferred be-
tween them. The dynamics of coupled oscillators plays an important role in a variety of systems
in nature and technology, see for instance [31] and references therein. Their ability to display
complex self-organized dynamical phenomena makes them an important tool to explain funda-
mental mechanism of emergent dynamics in coupled systems. It is known that when the cou-
pling is small then each oscillator operates at its natural frequency and the system is then said to
be incoherent. However, when the coupling exceeds a certain threshold then the system spon-
taneously synchronizes. Here we consider the mechanical system of two coupled oscillators as
depicted in Figure 1 and we aim to design a stabilizing delayed controller, which corresponds to
oscillation quenching. Using the fundamental principle of dynamics and the standard assump-

Figure 1. Coupled damped oscillators.

tion about the linearity of the damping lead to the following differential equations governing the
motion of the system:

{
m1ẍ1(t ) =−b1ẋ1(t )−k1x1(t )+k2 (x2(t )−x1(t ))+ f (t ),

m2ẍ2(t ) =−k2 (x2(t )−x1(t )) .
(20)

where the parameters values are chosen accordingly to some experimental setting: b1 = 2, k1 =
1, k2 = 2/3, m1 = 1/2, m2 = 3. If the forcing term f acts on the system as an input and takes a
proportional-minus-delay structure as suggested in [38], that is:

f (t ) =−α1 x1(t )−α2 x2(t )−α0 x2(t −τ), (21)

and by setting ζ(t ) = (x1(t ), ẋ1(t ), x2(t ), ẋ2(t )), then the closed-loop system writes as:

ζ̇(t ) = A0ζ(t )+ A1ζ(t −τ), (22)
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tion about the linearity of the damping lead to the following differential equations governing the
motion of the system:

{
m1 ẍ1(t ) =−b1 ẋ1(t )−k1x1(t )+k2 (x2(t )−x1(t ))+ f (t ),

m2 ẍ2(t ) =−k2 (x2(t )−x1(t )) .
(20)

where the parameters values are chosen accordingly to some experimental setting: b1 = 2, k1

= 1, k2 = 2/3, m1 = 1/2, m2 = 3. If the forcing term f acts on the system as an input and takes
a proportional-minus-delay structure as suggested in [38], that is:

f (t ) =−α1 x1(t )−α2 x2(t )−α0 x2(t −τ), (21)

and by setting ζ(t ) = (x1(t ), ẋ1(t ), x2(t ), ẋ2(t )), then the closed-loop system writes as:

ζ̇(t ) = A0ζ(t )+ A1ζ(t −τ), (22)

where

A0 =




0 1 0 0

− k2+k1+α1
m1

− b1
m1

k2−α2
m1

0

0 0 0 1

k2
m2

0 − k2
m2

0




and A1 =




0 0 0 0

0 0 − α0
m1

0

0 0 0 0

0 0 0 0




.

The corresponding characteristic quasipolynomial function has the form (3) and writes explicitly
as follows:

∆4(s,τ)

= s4 + b1s3

m1
+ (α1m2 +k1m2 +k2m1 +k2m2) s2

m1m2
+ b1k2s

m1m2
+ α1k2 +α2k2 +k1k2

m1m2
+ e−sτα0k2

m1m2
. (23)

The aim is to establish values for controller’s gains α0, α1, α2 as well as the value of the delay pa-
rameter τ> 0 enabling us to assign 5 negative roots of the quasipolynomial (23) guaranteeing the
exponential stability of the trivial solution of the closed-loop system as asserted in Theorem 12
and Corollary 14. To simplify the design task, we consider the case of equidistributed negative
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spectral values where the distance between two consecutive roots is d which, for the moment, is
left as a “free” parameter. By setting a targeted decay rate or equivalently the rightmost root, for
instance at s1 =−1; that is sk+1 =−(1+k d) for k = 1, . . . , 4 one then applies Theorem 12. Solving,
the obtained set of equations gives the appropriate distance and the controller’s parameters the
gains values




d =
3p

26900+300
p

7329
90 + 40

9
3p

26900+300
p

7329
+2/9 ≈ 0.7571217245,

τ =− 45d(3d−2)(− ln(5)+ln(3))
7 ≈ 0.6746941850,

α0 =− 4860d 2+567d+378
40 3

135d2
7 − 90d

7 5−
135d2

7 + 90d
7 ≈−45.75153460,

α1 = 10d 2 + 11
9 ≈ 6.954555281,

α2 = 4860d 2+567d+378
40 3

135d2
7 − 90d

7 5−
135d2

7 + 90d
7 e−

45d(3d−2)(− ln(5)+ln(3))
7 −55d 2 − 251

36

≈ 51.32999300.

(24)

The obtained positive value of d guarantees the positivity of the delay τ and allows the spectrum
distribution illustrated in Figure 2 in closed-loop.

Figure 2. (Left) Spectrum distribution of the closed-loop system (22) using a proportional-
minus-delay controller. The parameters values are given in (24). (Right) The closed-loop
time-domain simulation of the state variable ζ(t ) in the time-window of 15 seconds. x1(t )
in solid red plot, ẋ1(t ) in dashed orange, x2(t ) in solid blue and ẋ2(t ) in dashed green. Initial
conditions are taken ζ(t ) = (1,1/2,3, 1/4) for all t ∈ [−τ,0].

5. Concluding remarks

In this paper, we investigated conditions on the coefficients of the nth order linear ordinary dif-
ferential equations with delayed-state forcing term guaranteeing the coexistence of the maximal
number of real spectral values. Such a number corresponds to the well-known Polya and Szegö
bound for quasipolynomial’s real roots n and it was recovered by using an analytical constructive
approach. Furthermore, an easy to check criterion was provided, allowing the characterization
of the stabilizing effect of the coexistence of such spectral values. It is worth noting that such a
configuration guarantees the exponential stability and explicitly describes the corresponding ex-
ponential decay rate. The potential of the derived results to applications is illustrated through the
problem of constructing appropriate stabilizing controllers for some system of coupled oscilla-
tors.
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Appendix A. Proof of the technical lemmas

Proof of Lemma 4. Without any loss of generality, it suffices to consider the following permuta-
tion

σi (s1, s2, · · · , si , si+1, · · · , sn+1) = (s1, s2, · · · , si+1, si , · · · , sn+1) ,

where 1 ≤ i ≤ n. Any other permutation of sets of indices is none other than the composition of
such permutations. For example, if σi , j , with j − i > 1, is such that

σi , j
(
s1, s2, · · · , si , · · · , s j , · · · , sn+1

)= (
s1, s2, · · · , s j , · · · , si , · · · , sn+1

)
,

then

σi , j =σi ◦σi+1 ◦ · · · ◦σ j−2 ◦σ j−1 ◦ · · · ◦σi+1 ◦σi .

Write

[
s1,

[
s2, · · · [sn , sn+1]tn · · ·

]
t2

]
t1

as

t1s1 + (1− t1) t2s2 + ·· · +
i−1∏

k=1
(1− tk ) ti si +

i∏

k=1
(1− tk ) ti+1si+1 + ·· ·

+
n−1∏

k=1
(1− tk ) tn sn +

n∏

k=1
(1− tk ) sn+1.

It is then necessary to introduce a suitable change of variable, that switches the coefficient of
si with the coefficient of si+1, without affecting the other coefficients. Let









uk = tk , k 6= i ∧ i +1,

ui = (1− ti ) ti+1

ui+1 = ti
1−ti+1+ti ti+1

if 1 ≤ i ≤ n −1

and

{
uk = tk , 1 ≤ k ≤ n −1

un = 1− tn
if i = n

(25)

Clearly, ui ∈ ]0,1[ for all 1 ≤ i ≤ n −1. Moreover, from (1− ti )(1− ti+1) > 0, we have 1− ti+1 +
ti ti+1 > ti > 0, hence ui+1 ∈ ]0,1[. The Jacobian matrix

J = D(u1, u2, · · · , un)

D(t1, t2, · · · , tn)

is such that

det J = ti −1

ti ti+1 − ti+1 +1
6= 0, for all 1 ≤ i ≤ n −1.
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So, (25) defines a C 1− diffeomorphism from ]0,1[n into ]0,1[n , for all 1 ≤ i ≤ n − 1, and the
following properties

ti

i−1∏

k=1
(1− tk ) = ui+1

i∏

k=1
(1−uk ) ,

ti+1

i∏

k=1
(1− tk ) = ui

i−1∏

k=1
(1−uk ) ,

tm

m−1∏

k=1
(1− tk ) = um

m−1∏

k=1
(1−uk ) , ∀ m ∈ {2, · · · , n} , m 6= i ∧ i +1

are satisfied.
On the other hand, from

du1du2 · · · dun =
∣∣∣∣det

D (u1,u2, · · · , un)

D (t1, t2, · · · , tn)

∣∣∣∣d t1 d t2 · · · d tn = 1− ti

1−ui
d t1 d t2 · · · d tn ,

one gets
n−1∏

k=1
(1− tk )n−k d t1d t2 · · · d tn =

n−1∏

k=1
(1−uk )n−k du1 du2 · · · dun .

The case i = n is simpler so omitted. The symmetry property is well proven. �

Proof of Lemma 6. Let us first observe that the preceding sums (or the homogeneous forms
of degree M and M − 1 respectively) are invariant under any permutation between the sik , for
k ∈ {1, · · · , m +1}. Thus, by using the well-known factorization

sim−1
j1

− sim−1
jm+1

= (
s j1 − s jm+1

) im−1−1∑

im=0
sim

j1
sim−1−im−1

jm+1
,

we have

∑

(i1, i2, ··· , im )∈ Im, M

m∏

k=1
sik

jk
−

∑

(i1, i2, ··· , im )∈ Im, M

m∏

k=1
sik

jk+1

=
M∑

i1=0
· · ·

ik−1∑

ik=0
· · ·

im−2∑

im−1=0
sim−1

j1
sim−2−im−1

j2
· · · sim−k−im−k+1

jk
· · · si1−i2

jm−1
sM−i1

jm

−
M∑

i1=0
· · ·

ik−1∑

ik=0
· · ·

im−2∑

im−1=0
sim−1

jm+1
sim−2−im−1

j2
· · · sim−k−im−k+1

jk
· · · sM−i1

jm

=
M∑

i1=0
· · ·

ik−1∑

ik=0
· · ·

im−2∑

im−1=0

(
sim−1

j1
− sim−1

jm+1

)(
sim−2−im−1

j2
· · · sim−k−im−k+1

jk
· · · sM−i1

jm

)

=(
s j1 − s jm+1

) M∑

i1=0
· · ·

ik−1∑

ik=0
· · ·

im−2∑

im−1=0

im−1−1∑

im=0

(
sim

j1
sim−1−im−1

jm+1

)(
sim−2−im−1

j2
· · · sim−k−im−k+1

jk
· · · sM−i1

jm

)

=(
s j1 − s jm+1

) ∑

(i1, i2, ··· , im+1)∈ Im+1, M−1

m+1∏

k=1
sik

jk
.

�

Proof of Lemma 7. In view of Lemma 4, we have

Fτ,m−1
(
si1 , si2 , · · · , sim

)= Fτ,m−1
(
si2 , · · · , sim , si1

)
,
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hence

Fτ,m−1
(
si1 , si2 , · · · , sim

)−Fτ,m−1
(
si2 , · · · , sim , sim+1

)

=
1∫

0

· · ·
1∫

0︸ ︷︷ ︸
(m−1) times

m−2∏

k=1
(1− tk )m−1−k .

(
e
−τ

[
si2 , ···[sim , si1

]
tm−1

···
]

t1 −e
−τ

[
si2 , ···[sim , sim+1

]
tm−1

···
]

t1

)

d tm−1 · · · d t1

Using the judicious form of the exponential in brackets,

e
−τ

[
si2 , ···[sim , si1

]
tm−1

···
]

t1 = e
−τ

[
si2 , ···[sm−2,tm−1sim ]tm−2

···
]

t1 e
−τ

m−1∏
k=1

(1−tk )si1

which allows isolating the last term of the convex combination, we obtain by virtue of the mean
value theorem applied to

x 7−→ e
−τ

m−1∏
k=1

(1−tk )x
:

e
−τ

[
si2 , ···[sim , si1

]
tm−1

···
]

t1 −e
−τ

[
si2 , ···[sim , sim+1

]
tm−1

···
]

t1

= e
−τ

[
si2 , ···[sm−2, tm−1 sim ]tm−2

···
]

t1


−τ

m−1∏

k=1
(1− tk )

(
si1 − sim+1

) 1∫

0

e−τ
(
tm si1+(1−tm )sim+1

)
d tm




=−τ
m−1∏

k=1
(1− tk )

(
si1 − sim+1

)
e
−τ

[
si2 , ···[sm−2,tm−1sim ]tm−2

···
]

t1

1∫

0

e
−τ

m−1∏
k=1

(1−tk )
(
tm si1+(1−tm )sim+1

)

d tm

Hence, as a consequence of the two properties

m−1∏

k=1
(1− tk ) .

m−2∏

k=1
(1− tk )m−1−k =

m−1∏

k=1
(1− tk )m−k

and

[
si2 , · · · [sm−2, tm−1 sim

]
tm−2

· · ·
]

t1
+

m−1∏

k=1
(1− tk )

(
tm si1 + (1− tm) sim+1

)

=
[

si2 , · · ·
[

sm−2,

[
sim ,

[
sim+1,si1

]
tm

]
tm−1

]

tm−2

· · ·
]

t1

and Lemma 4, one obtains

Fτ,m−1
(
si1 , si2 , · · · , sim

)−Fτ,m−1
(
si2 , · · · , sim , sim+1

)

=−τ(
si1 − sim+1

) 1∫

0

· · ·
1∫

0︸ ︷︷ ︸
m times

m−1∏

k=1
(1− tk )m−k .e

−τ
[

si2 , ···
[

sm−2,

[
sim ,

[
sim+1,si1

]
tm

]
tm−1

]

tm−2

···
]

t1

d tmd tm−1 · · · d t1 =−τ(
si1 − sim+1

)
Fτ,m .

This achieves the proof of the Lemma 7. �

Proof of Theorem 2. The calculation is done in n steps. The idea is to have at each step k in the
next-to-last column only "1". Then, a linear combination of the lines makes it possible to reduce
the size of the determinant of a unit, as well as to recover the factors (si − s j ), with i − j = k, using
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Lemmas 7 and 6. To do so, denoting by Li the i th line of Vn(τ) := Vn(s1, s2, · · · , sn+1,τ). Replacing
Li by Li −Li+1, for i = 1, · · · , n, in detVn(τ), we get

detVn (τ) = det




sn−1
1 − sn−1

2 sn−2
1 − sn−2

2 · · · s1 − s2 0 e−τs1 −e−τs2

sn−1
2 − sn−1

3 sn−2
2 − sn−2

3 · · · s2 − s3 0 e−τs2 −e−τs3

...
...

. . .
...

...
...

sn−1
n − sn−1

n+1 sn−2
n − sn−2

n+1 · · · sn − sn+1 0 e−τsn −e−τsn+1

sn−1
n+1 sn−2

n+1 · · · sn+1 1 e−τsn+1




.

Using the mean value theorem as follows,

e−τsi −e−τsi+1 =−τ (si − si+1)

1∫

0

e−τ(t si+(1−t )si+1)d t , i = 1, · · · ,n,

we obtain

detVn (τ) = τ
n∏

k=1
(sk − sk+1)×det




n−2∑
i=0

si
1 sn−2−i

2

n−3∑
i=0

si
1sn−3−i

2 · · · s1 + s2 1
1∫

0
e−τ[s1, s2]t1 d t1

n−2∑
i=0

si
2 sn−2−i

3

n−3∑
i=0

si
2sn−3−i

3 · · · s2 + s3 1
1∫

0
e−τ[s2, s3]t1 d t1

...
...

. . .
...

...
...

n−2∑
i=0

si
n sn−2−i

n+1

n−3∑
i=0

si
n sn−3−i

n+1 · · · sn + sn+1 1
1∫

0
e−τ[sn , sn+1]t1 d t1




we get using the same linear combination as above

detVn (τ) = τ2
n∏

k=1

(
sk − sk+1

)
(s1 − s3) (s2 − s4) · · · (sn−1 − sn+1)×

det




∑
i+ j+k=n−3

i , j ,k ≥0

si
1s

j
2 sk

3
∑

i+ j+k=n−4
i , j ,k ≥0

si
1s

j
2 sk

3 · · ·
3∑

l=1
sl 1

1∫
0

1∫
0

(1− t )e−τ[s1, [s2, s3]θ]t dθd t

∑
i+ j+k=n−3

i , j ,k ≥0

si
2s

j
3 sk

4
∑

i+ j+k=n−4
i , j ,k ≥0

si
2s

j
3 sk

4 · · ·
4∑

l=2
sl 1

1∫
0

1∫
0

(1− t )e−τ[s2, [s3, s4]θ]t dθd t

...
...

. . .
...

...
...

∑
i+ j+k=n−3

i , j ,k ≥0

si
n−1s

j
n sk

n+1
∑

i+ j+k=n−4
i , j ,k ≥0

si
n−1s

j
n sk

n+1 · · ·
n+1∑

l=n−1
sl 1

1∫
0

1∫
0

(1− t )e−τ[sn−1, [sn , sn+1]θ]t dθd t




.

Repeating the same process as above, in the last step, only the term (s1 − sn+1) remains to be
recovered. Thus, the determinant is reduced to the following expression:

detVn (τ) = τn−1

(
∏

0< i− j ≤n

(
si − s j

)
)

det

[
1 Fτ,n (s1, s2, · · · , sn)
1 Fτ,n (s2, · · · , sn , sn+1)

]
.

By using Lemma 7, we get

detVn (τ) = τn




n+1∏

i< j
i , j=1

(
si − s j

)

Fτ,n (s1, s2, · · · , sn+1) ,

which is always positive since Fτ,n is positive and si > s j . �
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Proof of Lemma 9. We start first by carrying out the following factorization of ∆n by writing

∆n(s,τ) =
n∏

i=1
(s − si ).Pn(s,τ)

with

Pn (s,τ) =
[

n∏

i=1
(s − si )

]−1 (
sn +

n∑

k=1
an−k sn−k +αexp(−τs)

)
(26)

where the coefficients an , n = 0, . . . , n −1 and α satisfy (9), (10), and (11).
From the standard Vieta’s formulas, introduce now the following coefficients:

ãn−k = (−1)k

(
n∑

i1<·<ik

k∏

j=1
si j

)
, for k = 1, · · · , n.

Then by performing an Euclidean division in (26) one gets:

Pn(s,τ) = 1+

n∑
k=1

(an−k − ãn−k ) sn−k

n∏
i=1

(s − si )
+ αexp(−τs)

n∏
i=1

(s − si )
.

Let Bn be defined as follows: Bn(s) :=
n∑

k=1
(an−k − ãn−k ) sn−k , which satisfies

Bn(sk ) = sn
k +an−1 sn−1

k + ·· · +a1sk +a0, ∀ k = 1, · · · , n.

Then one performs the partial fractions corresponding to

Bn (s)
n∏

i=1
(s − si )

and
1

n∏
i=1

(s − si )
:

Bn (s)
n∏

i=1
(s − si )

=
n∑

k=1

ck

s − sk
and

1
n∏

i=1
(s − si )

=
n∑

k=1

dk

s − sk
(27)

where

ck = Bn (sk )
n∏

i=1, i 6=k
(sk − si )

=
sn

k +
n∑

i=1
an−i sn−i

k

n∏
i=1, i 6=k

(sk − si )
, k = 1, · · · , n.

dk =
[

n∏

i=1, i 6=k
(sk − si )

]−1

, k = 1, · · · , n.

Thus

Pn(s,τ) = 1+
n∑

k=1




Bn (sk )

(s − sk )
n∏

i=1, i 6=k
(sk − si )

+ αe−τs

(s − sk )
n∏

i=1,i 6=k
(sk − si )


 .

Next, one substitutes Bn(sk ) as −αe−τsk for 1 ≤ k ≤ n which allows to:

Pn(s,τ) = 1+α
n∑

k=1




e−τs −e−τsk

(s − sk )
n∏

i=1, i 6=k
(sk − si )


 .
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At this step, we use the following integral representation

e−τs −e−τsk =−τ (s − sk )

1∫

0

e−τ[s, sk ]t1 d t1 (28)

to get

Pn(s,τ) = 1−τα
n∑

k=1



[

n∏

i=1, i 6=k
(sk − si )

]−1 1∫

0

e−τ[s, sk ]t1 d t1


 . (29)

From the property

n∑

k=1

[
n∏

i=1, i 6=k
(sk − si )

]−1

= 0

which can be easily shown using the decomposition in partial fractions as illustrated in the
second equality in (27). One can extract the first term (corresponding to k = 1) of (29) in terms of
the remaining n −1-terms, and namely one gets:

[
n∏

i=2
(s1 − si )

]−1 1∫

0

e−τ[s, s1]t1 d t1 =−
n∑

k=2

[
n∏

i=1, i 6=k
(sk − si )

]−1 1∫

0

e−τ[s, s1]t1 d t1.

The expression of Pn given by (29) becomes:

Pn(s,τ) = 1−τα
n∑

k=2



[

n∏

i=1, i 6=k
(sk − si )

]−1 1∫

0

(
e−τ[s, sk ]t1 −e−τ[s, s1]t1

)
d t1


 .

From Lemma 7

1∫

0

(
e−τ[s, sk ]t1 −e−τ[s, s1]t1

)
d t1 =−τ (sk − s1)

1∫

0

1∫

0

(1− t1)e
−τ

[
s,[s1,sk ]t2

]
t1 d t2d t1, for k = 2, · · · , n

we get

Pn(s,τ) = 1+ (−τ)2α
n∑

k=2



[

n∏

i=2,i 6=k
(sk − si )

]−1 1∫

0

1∫

0

(1− t1)e
−τ

[
s,[s1,sk ]t2

]
t1 d t2d t1


 .

Observe that the coefficients

([
n∏

i=2, i 6=k
(sk − si )

]−1)

2≤k ≤n

satisfy

n∑

k=2

[
n∏

i=2, i 6=k
(sk − si )

]−1

= 0,

(and are independent of s1), hence repeating the previous step, by rewriting the first term in the
last sum as follows:

[
n∏

i=3
(s2 − si )

]−1

=−
n∑

k=3

[
n∏

i=2, i 6=k
(sk − si )

]−1
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one obtains

Pn(s,τ) = 1+ (−τ)2α
n∑

k=3




1∫
0

1∫
0

(1− t1)

(
e
−τ

[
s,[s1, sk ]t2

]
t1 −e

−τ
[

s,[s1, s2]t2

]
t1

)
d t2 d t1

n∏
i=2, i 6=k

(sk − si )




= 1+ (−τ)3α
n∑

k=3




1∫
0

1∫
0

1∫
0

(1− t1)2 (1− t2)e
−τ

[
s,

[
s1,[s2, sk ]t3

]
t2

]

t1 d t3 d t2 d t1

n∏
i=3, i 6=k

(sk − si )




.

In reiterating the same process, one observes that the order of denominator decreases by one at
each step, and one gets the general formula for the intermediate step l :

Pn(s,τ) = 1+ (−τ)l α
n∑

k=l

Fτ,l (s, s1, . . . , sl−1, sk )
n∏

i=l , i 6=k
(sk − si )

which, by induction, allows to obtain at the step n −1

Pn(s,τ) = 1+ (−τ)n−1α
Fτ,n−1 (s, s1, . . . , sn−2, sn−1)−Fτ,n−1 (s, s1, . . . , sn−2, sn)

sn−1 − sn

Finally, using the shifting formula given in Lemma 7, one gets

Pn(s,τ) = 1+ (−τ)nα

1∫

0

· · ·
1∫

0︸ ︷︷ ︸
n times

n−1∏

k=1
(1− tk )n−k e

−τ
[

s,[s1, ··· [sn−1, sn ]tn ···]t2

]
t1 d tn · · · d t1

= 1+ (−τ)nαFτ,n (s, s1, · · · , sn)

(30)

which allows deriving the following factorization of the quasipolynomial ∆n(. , τ)

∆n(s,τ) =
n∏

i=1
(s − si )

[
1+ (−τ)nα(X n+1,τ)Fτ,n (s, s1, · · · , sn)

]
.

�
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