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Abstract. The magnetohydrodynamics (MHD) problem is most often studied in a framework where Dirichlet
type boundary conditions on the velocity field is imposed. In this Note, we study the (MHD) system with
pressure boundary condition, together with zero tangential trace for the velocity and the magnetic field.
In a three-dimensional bounded possibly multiply connected domain, we first prove the existence of weak
solutions in the Hilbert case, and later, the regularity in W 1, p (Ω) for p ≥ 2 and in W 2, p (Ω) for p ≥ 6/5
using the regularity results for some Stokes and elliptic problems with this type of boundary conditions.
Furthermore, under the condition of small data, we obtain the existence and uniqueness of solutions in
W 1, p (Ω) for 3/2 < p < 2 by using a fixed-point technique over a linearized (MHD) problem.

Résumé. La plupart des travaux sur le système de la magnétohydrodynamique (MHD) considèrent une
condition aux limites de type Dirichlet pour le champ de vitesses. Dans cette Note, nous étudions le système
(MHD) avec une pression donnée au bord, ainsi qu’une trace tangentielle nulle pour la vitesse du fluide et
le champ magnétique. Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe, on
commence par prouver l’existence de solutions faibles dans le cas Hilbertien, et ensuite, nous montrons
la régularité W 1, p (Ω) pour p ≥ 2 et W 2, p (Ω) pour p ≥ 6/5 en utilisant les résultats de régularité pour
certains problèmes de Stokes avec ce type de conditions aux limites. De plus, pour des données petites, nous
démontrons l’existence et l’unicité des solutions dans W 1, p (Ω) pour 3/2 < p < 2 en utilisant un théorème de
point fixe appliqué au problème linéarisé de (MHD).
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1. Introduction

Let Ω be an open bounded set of space R3 of class C 1,1. In this paper, we consider the following
incompressible stationary magnetohydrodynamics (MHD) system: find the velocity field u, the
pressure P , the magnetic field b and constants αi such that for 1 ≤ i ≤ I :

−ν∆u + (curl u)×u +∇P −κ(curl b)×b = f and divu = 0 inΩ,

κµcurl curl b −κcurl(u ×b) = g and divb = 0 inΩ,

u ×n = 0 and b ×n = 0 on Γ,

P = P0 on Γ0 and P = P0 +αi on Γi ,

〈u ·n,1〉Γi = 0 and 〈b ·n,1〉Γi = 0,

(M HD)

where Γ is the boundary ofΩwhich is possibly multiply connected. Here Γ=⋃I
i=0Γi where Γi are

the connected components of Γwith Γ0 the exterior boundary which containsΩ and all the other
boundaries. We denote by n the unit vector normal to Γ. The constants ν, µ and κ are constant
kinematic, magnetic viscosity and a coupling number respectively. The vector functions f , g and
scalar function P0 are given. In this paper, we assume that ν=µ= κ= 1 for convenience.

We do not assume that Ω is simply-connected but we suppose that there exist J connected
open surfaces Σ j , 1 ≤ j ≤ J , called ’cuts’, contained in Ω such that each surface Σ j is an open
subset of a smooth manifold. The boundary of each Σ j is contained in Γ. The intersection Σi ∩Σ j

is empty for i 6= j , and finally the open set Ω◦ =Ω\∪J
j=1Σ j is simply-connected.

Using the identity u·∇u = (curl u)×u+ 1
2∇|u|2, the classical nonlinear term u·∇u in the Navier–

Stokes equations is replaced by (curl u)×u. The pressure P = p + 1
2 |u|2 is then the Bernoulli (or

dynamic) pressure, where p is the kinematic pressure. The boundary conditions involving the
pressure are used in various physical applications. For example, in hydraulic networks, as oil
ducts, microfluidic channels or the blood circulatory system. Pressure driven flows occur also
in the modeling of the cerebral venous network from three-dimensional angiographic images
obtained by magnetic resonance. We note that the (M HD) problem have been extensively
studied by many authors. Whereas most of the contributions are often given where Dirichlet
type boundary conditions on the velocity field are imposed. At a continuous level, we can refer,
for exemple to [5, 18] for the existence and the regularity of the solutions of (M HD) problem,
to [2, 4, 10] for the global solvability of (M HD) problem under mixed boundary conditions for
the magnetic field. Also in [1, 3], the authors have studied the stationary magnetohydrodynamic
equations of electrically and heat conducting fluid. For the discretization approaches of (M HD),
a few related contributions include mixed finite elements [13,14,16], discontinuous galerkin finite
elements [15] or iterative penalty finite element methods [12] and so on. The boundary condition
under the form P = P0 +αi on Γi , i = 1, . . . , I was first introduced in [11] for the Stokes and the
Navier–Stokes systems in steady hilbertian case. The authors studied the differences αi −α0,
i = 1 . . . I which represent the unknown pressure drop on inflow and outflow sections Γi in a
network of pipes. This work is extended to Lp -theory for 1 < p <∞ in [8]. In our work, we study
the (M HD) problem with pressure boundary condition, together with no tangential flow and no
tangential magnetic field on the boundary. Up to our knowledge, with these type of boundary
conditions, this work is the first to give a complete Lp -theory for the (M HD) problem not only
for large values of p ≥ 2 but also for small values 3/2 < p < 2 inΩ⊂R3 multiply connected domain
with a boundary Γ not necessary connected.

We introduce some notations and functions spaces which are used in this paper. The vector
fields and matrix fields as well as the corresponding spaces are denoted by bold font and
blackboard bold font respectively. For 1 < p <∞, Lp (Ω) denotes the usuel vector-valued Lp -space
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over Ω. If p ∈ [1,∞), p ′ denotes the conjugate exponent of p, i.e. 1
p ′ = 1− 1

p . For p,r ∈ [1,∞) with
1
r = 1

p + 1
3 , we introduce the following space

H r, p (curl,Ω) := {
v ∈ Lr (Ω); curl v ∈ Lp (Ω)

}
,

equipped with the norm

‖v‖r, p
H (curl, Ω) = ‖v‖Lr (Ω) +‖curl v‖Lp (Ω).

The closure of D(Ω) in H r, p (curl, Ω) is denoted by H r, p
0 (curl, Ω). Its dual space is denoted by

[H r, p
0 (curl, Ω)]′ which can be characterized as follows:[

H r, p
0 (curl,Ω)

]′ = {
F +curlψ, F ∈ Lr ′ (Ω), ψ ∈ Lp ′

(Ω)
}

. (1)

The proof of this characterization is similar to that of [17, Proposition 1.0.5]. Moreover, we have

‖ f ‖[
H r, p

0 (curl,Ω)
]′ ≤ inf

f =F+curlψ
max

{
‖F‖Lr ′ (Ω),‖ψ‖Lp′ (Ω)

}
.

Next we introduce the kernel

K p
N (Ω) = {

v ∈ Lp (Ω); div v = 0, curlv = 0, v ×n = 0 on Γ
}

.

Thanks to [9, Corollary 4.2], we know that this kernel is of finite dimension and spanned by the
functions ∇q N

i , 1 ≤ i ≤ I , where q N
i is the unique solution of the problem{

−∆q N
i = 0 inΩ, q N

i |Γ0 = 0 and q N
i |Γk = constant, 1 ≤ k ≤ I〈

∂n q N
i , 1

〉
Γk

= δi k , 1 ≤ k ≤ I , and
〈
∂n q N

i , 1
〉
Γ0

=−1.
(2)

Moreover, the functions ∇q N
i , 1 ≤ i ≤ I , belong to W 1, q (Ω) for any 1 < q <∞. We will use also the

symbolσ to represent a set of divergence free functions. In other words if X is Banach space, then
X σ = {v ∈ X ; div v = 0 inΩ}.

2. Weak solutions

The next Theorem 1 deals with the existence of weak solutions for the (M HD) system in the
Hilbert case. We use the Schauder Fixed Point Theorem for this purpose. We note that in order to
obtain the necessary estimates, the last conditions in (M HD) on the flux through the connected
components Γi are important. Indeed, let us define the space

X p
N (Ω) = {

v ∈ Lp (Ω); div v ∈ Lp (Ω), curl v ∈ Lp (Ω) and v ×n = 0 on Γ
}

.

It is well known (see [9, Corollary 3.2]) that for any vector v ∈ X p
N (Ω) we have

‖v‖W 1, p (Ω) ≤C

(
‖curlv‖Lp (Ω) +‖div v‖Lp (Ω) +

I∑
i=1

∣∣〈v ·n, 1〉Γi

∣∣) , (3)

for some constant C depending only on Ω. The same inequality remains valid for tangential
vector fields (that is v ·n = 0 on Γ) with fluxs through the cuts Σ j . Observe that if div v = 0 in
Ω and 〈v ·n, 1〉Γi = 0, we have from (3) that the norm ‖curl v‖Lp (Ω) is equivalent to the full norm
‖v‖W 1, p (Ω).

Theorem 1. Let f , g ∈ [H 6,2
0 (curl,Ω)]′ and P0 ∈ H− 1

2 (Γ) satisfying the compatibility conditions

∀ v ∈ K 2
N (Ω), 〈g , v〉Ω6,2

= 0, (4)

div g = 0 in Ω, (5)
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where 〈·, ·〉Ωr, p
denotes the duality product between [H r, p

0 (curl,Ω)]′ and H r, p
0 (curl,Ω). Then

the (M HD) problem has at least one weak solution (u,b,P,α) ∈ H 1(Ω)× H 1(Ω)×L2(Ω)×RI and
the following estimates hold:

‖u‖H 1(Ω) +‖b‖H 1(Ω) +‖P‖L2(Ω) ≤C

(∥∥ f
∥∥[

H 6,2
0 (curl,Ω)

]′ +∥∥g
∥∥[

H 6,2
0 (curl,Ω)

]′ +‖P0‖H−1/2(Γ)

)
(6)

with α= (α1, . . . , αI ) given by

αi =
〈

f ,∇q N
i

〉
Ω6,2

−〈
P0, ∇q N

i ·n
〉
Γ+

∫
Ω

(curl b)×b ·∇q N
i d x −

∫
Ω

(curl u)×u ·∇q N
i d x, (7)

where 〈·, ·〉Γ denotes the duality product between H−1/2(Γ) and H 1/2(Γ).

Remark 2. The choice of the space [H r ′,p ′
0 (curl, Ω)]′ for f and g is optimal to study the regularity

W 1, p (Ω) with p ≥ 2. Indeed, for the case p = 2, unlike the case of Dirichlet type boundary
conditions, the space H−1(Ω) is not suitable for source term in the right hand side to find
solutions in H 1(Ω). Let us analyse the case of f , it holds true also for g . Since v ∈ X p

N (Ω), then we
can firstly consider the duality pairing〈

f , v
〉[

H 2,2
0 (curl,Ω)

]′×H 2,2
0 (curl,Ω)

in view to write an equivalent variational formulation. Then, we must suppose that f belongs to
[H 2,2

0 (curl, Ω)]′. But, thanks to (3), v belongs to H 1(Ω) ,→ L6(Ω). Then, the previous hypothesis
on f can be weakened by considering the space [H 6,2

0 (curl, Ω)]′ which is a subspace of H−1(Ω)
and thanks to the characterization of this space (given in (1)), the previous duality is replaced by〈

f , v
〉[

H 6,2
0 (curl,Ω)

]′×H 6,2
0 (curl,Ω)

=
∫
Ω

F ·v d x +
∫
Ω
ψ ·curlv d x .

The case p > 2 can be analyzed in a similar way and this proves that the space [H r ′, p ′
0 (curl, Ω)]′

with 1
r = 1

p + 1
3 is optimal to obtain the regulatity W 1, p (Ω).

3. Regularity of the weak solution

The following Theorems 3 and 4 concern the Lp -regularity of the weak solution. The proof is
essentially based on the estimates obtained in the Hilbert case and the Stokes regularity results
in [9] and [8]. We note that the Inf-Sup conditions involving the curl operator play a fundamental
role. It is important to mention that there is no necessary compatibility condition for the data f
in order to apply the regularity of the Stokes problem. In fact, by the defintion of the constants αi

in (7), the necessary condition for the existence of solution of the Stokes system is verified.

Theorem 3 (regularity W 1,p (Ω) with p > 2). Let p > 2. Suppose that f , g ∈ [H r ′, p ′
0 (curl,Ω)]′,

P0 ∈W 1− 1
r ,r (Γ) satisfying (5) and the compatibility conditions

∀ v ∈ K p ′
N (Ω), 〈g , v〉Ωr ′ , p′ = 0. (8)

Then the weak solution for the (M HD) system given by Theorem 1 satisfies

(u,b,P,α) ∈W 1, p (Ω)×W 1, p (Ω)×W 1,r (Ω)×RI .

Moreover, we have the following estimate:

‖u‖W 1, p (Ω)+‖b‖W 1, p (Ω)+‖P‖W 1,r (Ω)

6C

(∥∥ f
∥∥(

H r ′ , p′
0 (curl,Ω)

)′+∥∥g
∥∥(

H r ′ , p′
0 (curl,Ω)

)′+‖P0‖W 1/r ′ ,r (Γ)

)
(9)
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Next, the existence of a strong solution for more regular data is given in the following Theo-
rem 4.

Theorem 4 (regularity W 2, p with p ≥ 6
5 ). Let us suppose that Ω is of class C 2,1 and p ≥ 6

5 . Let f ,
g and P0 satisfy (8), (5) and

f ∈ Lp (Ω), g ∈ Lp (Ω) and P0 ∈W 1− 1
p , p (Γ).

Then the weak solution (u,b,P,α) for the (M HD) system given by Theorem 1 belongs to W 2, p (Ω)×
W 2, p (Ω)×W 1, p (Ω)×RI and satisfies the following estimate:

‖u‖W 2, p (Ω) +‖b‖W 2, p (Ω) +‖P‖W 1, p (Ω)6C

(∥∥ f
∥∥

Lp (Ω) +
∥∥g

∥∥
Lp (Ω) +‖P0‖

W
1− 1

p , p
(Γ)

)
(10)

4. Linearized MHD system

We consider the following linearized (M HD) system: Find (u, b, P , ci ) such that
−∆u + (curlw )×u +∇P − (curl b)×d = f and divu = h inΩ,

curl curl b −curl(u ×d ) = g and divb = 0 inΩ,

u ×n = 0 and b ×n = 0 on Γ, P = P0 on Γ0 and P = P0 + ci on Γi ,

〈u ·n,1〉Γi = 0 and 〈b ·n,1〉Γi = 0, 1 ≤ i ≤ I ,

(11)

where w and d are given. The aim of this section is to study the Lp regularity of the weak solution
for the linearized problem (11). We consider the cases p ≥ 2 and 3

2 < p < 2 for regularity in
W 1, p (Ω). These results will be used in the following to show the regularity W 1, p (Ω) of weak
solution for the nonlinear (M HD) problem for 3/2 < p < 2.

Theorem 5. Let p > 2. Suppose that

f , g ∈
[

H r ′, p ′
0 (curl,Ω)

]′
,P0 ∈W 1− 1

r ,r (Γ),h ∈W 1,r (Ω)

satisfying the compatibility conditions (8), (5) together with curl w ∈ Ls (Ω), d ∈ L3
σ(Ω) and ∇d

∈Ls (Ω) where s is given by

s = 3

2
if 2 ≤ p < 3, s > 3

2
if = 3 and s = r if p > 3. (12)

Then, the linearized problem (11) has a unique solution (u,b,P,c) ∈W 1, p (Ω)×W 1, p (Ω)×W 1,r (Ω)
×RI . Moreover, we have the estimate:

‖u‖W 1, p (Ω) +‖b‖W 1, p (Ω) +‖P‖W 1,r (Ω)

≤C
(
1+‖curlw‖Ls (Ω) +‖d‖L3(Ω) +‖∇d‖Ls (Ω)

)(∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +‖P0‖
W 1− 1

r ,r (Γ)

+∥∥g
∥∥[

H r ′ , p′
0 (curl,Ω)

]+ (
1+‖curlw‖Ls (Ω) +‖d‖L3(Ω) +‖∇d‖Ls (Ω)

)‖h‖W 1,r (Ω)

)
and c = (c1, · · · , cI ) satisfying for 1 ≤ i ≤ I :

ci =
〈

f ,∇q N
i

〉
Ω6,2

+〈
h −P0,∇q N

i ·n
〉
Γ−

∫
Ω

(curl w )×u ·∇qn
i d x +

∫
Ω

(curl b)×d ·∇q N
i d x. (13)
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Sketch of the proof

The existence and uniqueness of a weak solution for p = 2 follows from the Lax–Milgram Lemma.
For p > 2, we use the same construction as in [8, Theorem 3.6] with some further changes in order
to deal with the magnetic field. Note that the choice of spaces for curl w and ∇d with s defined
in (12) is necessary in order to give sense to the terms

∫
Ω(curl w ×u) · v d x and

∫
Ω(u · ∇)d · v d x

respectively.

Remark 6. We also need to study the problem where the second equation in (11) is replaced by
curl curl b − curl(u × d ) +∇τ = g inΩ with τ = 0 on Γ. The scalar τ represents the Lagrange
multiplier associated with magnetic divergence constraint. This problem appears as the dual
problem associated to (MHD) in the study of weak solutions for p < 2. Note that, taking the
divergence in the above equation, τ is a solution of the following Dirichlet problem:

∆τ= div g inΩ and τ= 0 on Γ. (14)

In particular, if the function g is divergence-free, we have τ= 0. Nevertheless, the introduction of
τ will be useful to enforce zero divergence condition over the magnetic field.

Theorem 7. Let 3
2 < p < 2. Assume that

f , g ∈
[

H r ′, p ′
0 (curl,Ω)

]′
, h = 0, P0 ∈W 1− 1

r ,r (Γ)

satisfying the compatibility conditions (8), (5) together with curlw ∈ L3/2(Ω) and d ∈ W 1,3/2
σ (Ω).

Then the linearized problem (11) has a unique solution (u,b,P,c) ∈W 1, p (Ω)×W 1, p (Ω)×W 1,r (Ω)
×RI with c = (c1, · · · , cI ) given in (13). Moreover, we have the following estimates:

‖u‖W 1, p (Ω) +‖b‖W 1, p (Ω) ≤C
(
1+‖curl w‖L3/2(Ω) +‖d‖W 1,3/2(Ω)

)
×

(∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +∥∥g
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +‖P0‖
W 1− 1

r ,r (Γ)

)
(15)

and

‖P‖W 1,r (Ω) ≤C
(
1+‖curl w‖L3/2(Ω) +‖d‖W 1,3/2(Ω)

)2

×
(∥∥ f

∥∥[
H r ′ , p′

0 (curl,Ω)
]′ +∥∥g

∥∥[
H r ′ , p′

0 (curl,Ω)
]′ +‖P0‖

W 1− 1
r ,r (Γ)

)
. (16)

Proof. The linearized problem (11) is equivalent to find (u,b,P,ci ) ∈ W 1,p
σ (Ω) × W 1,p

σ (Ω) ×
W 1,r (Ω)×Rwith u×n = 0 and b×n = 0 on Γ, 〈u ·n,1〉Γi = 0 and 〈b ·n,1〉Γi = 0, 16 i 6 I such that:
For any (v , a,θ,τ) ∈V (Ω),

〈u,−∆v − (curl w )×v + (curl a)×d +∇θ〉Ωp∗, p −
∫
Ω

P div v d x

+〈b,curl curl a +curl(v ×d )+∇τ〉Ωp∗, p = 〈
f , v

〉
Ωr ′, p ′ +

〈
g , a

〉
Ωr ′, p ′ −

∫
Γ

P0v ·n dσ, (17)

ci =
〈

f ,∇q N
i

〉
Ωr ′, p ′ −

∫
Γ

P0∇q N
i ·n dσ+

∫
Ω

(curl b)×d ·∇q N
i d x −

∫
Ω

(curl w )×u ·∇q N
i d x, (18)

where the space V (Ω) is defined by:

V (Ω) :=
{

(v , a,θ,τ) ∈W 1, p ′
(Ω)×W 1, p ′

(Ω)×W 1,(p∗)′ (Ω)×W
1,(p∗)′

0 (Ω);

div v ∈W
1,(p∗)′

0 (Ω), v ×n = a ×n = 0 on Γ, θ = 0, on Γ0

and θ = constant on Γi ,〈v ·n,1〉Γi = 〈a ·n,1〉Γi = 0, ∀ 16 i 6 I
}

,
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with 1
p∗ = 1

p − 1
3 . Since 2 < p ′ < 3, for any (F ,G ,φ) ∈ [H p∗, p

0 (curl,Ω)]′× [H p∗, p
0 (curl,Ω)]′⊥K p

N (Ω)×
W 1,(p∗)′

0 (Ω), the following problem
−∆v − (curlw )×v +∇θ+ (curla)×d = F and div v =φ inΩ,

curl curla +curl(v ×d )+∇τ=G and div a = 0 inΩ,

v ×n = 0, a ×n = 0 and τ= 0 on Γ, θ = 0 on Γ0 and θ =βi on Γi ,

〈v ·n,1〉Γi = 0 and 〈a ·n,1〉Γi = 0, 1 ≤ i ≤ I .

(19)

has a unique solution (v , a,θ,τ,β) ∈ W 1, p ′
(Ω) ×W 1, p ′

(Ω) ×W 1,(p∗)′ (Ω) ×W 1,(p∗)′
0 (Ω) ×RI with

div v ∈W 1,(p∗)′
0 (Ω) and β= (β1, · · · , βI ) such that:

βi =
〈

F ,∇q N
i

〉
Ωp∗ , p

+〈
(curla)×d ,∇q N

i

〉
Ωp∗ , p

−〈
(curlw )×v ,∇q N

i

〉
Ωp∗ , p

+
∫
Γ
φ∇q N

i ·n d s.

Indeed, thanks to Remark 6, the scalar potential τ is decoupled from the system and is a solution
of (14), where the right hand side div g is replaced by div G . Since div G belongs to W −1,(p∗)′ (Ω),
we deduce the existence and uniqueness of

τ ∈W 1,(p∗)′
0 (Ω) satisfying ‖τ‖W 1,r (Ω) ≤C ‖G‖[

H r ′ , p′
0 (curl,Ω)

]′ .

With τ known, we set G ′ =G−∇τ and then the system (19) becomes involving only v and a. Since
G ′ belongs to [H p∗, p

0 (curl,Ω)]′ and satisfies the compatibility condition (8), thanks to Theorem 5,
we have the existence and uniqueness of the pair (v , a). Moreover, we know that

‖v‖W 1, p′ (Ω) +‖a‖W 1, p′ (Ω) +‖θ‖W 1,(p∗)′ (Ω)6C
(
1+‖curlw‖L3/2(Ω) +‖d‖W 1,3/2(Ω)

)
×

(
‖F‖[

H p∗ , p
0 (curl,Ω)

]′+‖G‖[
H p∗ , p

0 (curl,Ω)
]′+(

1+‖curl w‖L3/2(Ω)+‖d‖W 1,3/2(Ω)

)∥∥φ∥∥
W 1,(p∗)′ (Ω)

)
.

(20)

We note that, from Theorem 5 for 2 < p ′ < 3, the value of s is 3/2. Therefore, using (20), we have∣∣∣∣〈 f , v〉Ωr ′,p ′ +〈g , a〉Ωr ′,p ′ −
∫
Γ

P0 v ·n dσ

∣∣∣∣
6

∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ ‖v‖
H r ′ , p′

0 (curl,Ω)
+∥∥g

∥∥
[H r ′ , p′

0 (curl,Ω)]′
‖a‖

H r ′ , p′
0 (curl,Ω)

+‖P0‖
W 1− 1

r ,r (Γ)
‖v ·n‖

W
1− 1

p′ , p′
(Γ)

6C
(∥∥ f

∥∥[
H r ′ , p′

0 (curl,Ω)
]′ +∥∥g

∥∥[
H r ′ , p′

0 (curl,Ω)
]′ +‖P0‖

W 1− 1
r ,r (Γ)

)(
‖v‖W 1,p′ (Ω) +‖a‖W 1,p′ (Ω)

)
6C

(∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +∥∥g
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +‖P0‖
W 1− 1

r ,r (Γ)

)(
1+‖curlw‖

L
3
2 (Ω)

+‖d‖
W 1, 3

2 (Ω)

)
×

(
‖F‖

H p∗ , p
0 (curl,Ω)

+‖G‖
H p∗ , p

0 (curl,Ω)
+

(
1+‖curl w‖

L
3
2 (Ω)

+‖d‖
W 1, 3

2 (Ω)

)∥∥φ∥∥
W 1,(p∗)′ (Ω)

)
.

We deduce that the linear mapping

(F ,G ,φ) →〈 f , v〉Ωr ′ , p′ +〈g , a〉Ωr ′ , p′ −
∫
Γ

P0 v ·n dσ

defines an element (u,b,P ) of H p∗, p
0 (curl,Ω)× H p∗, p

0 (curl,Ω)×W −1, p∗
(Ω) solution of (17) and

satisfies the estimate:

‖u‖
H p∗ , p

0 (curl,Ω)
+‖b‖

H p∗ , p
0 (curl,Ω)

+ (
1+‖curl w‖L3/2(Ω) +‖d‖W 1,3/2(Ω)

)−1 ‖P‖W −1, p∗ (Ω)

6C
(
1+‖curl w‖L3/2(Ω)+‖d‖W 1,3/2(Ω)

)(∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′+∥∥g
∥∥[

H r ′ , p′
0 (curl,Ω)

]′+‖P0‖
W 1− 1

r ,r (Γ)

)
.

(21)
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In order to recover the solution of (11), it stays us to prove that u,b ∈ W 1, p
σ (Ω), P ∈ W 1,r (Ω),

that 〈u ·n,1〉Γi = 0, 〈b ·n,1〉Γi = 0 for all 16 i 6 I and to recover the relation (18). To show that
〈u ·n,1〉Γi = 0, we choose (0,0,θ,0) with θ ∈ W 1,(p∗)′ (Ω) satisfying θ = 0 on Γ0 and θ = δi j on Γ j

for all 16 j 6 I and a fixed 16 i 6 I . Then:

0 = 〈u,∇θ〉Ωp∗ , p
=

∫
Ω

u ·∇θd x =
∫
Γ
θu ·n dσ−

∫
Ω

divu θd x =
∫
Γi

u ·n dσ.

For the condition 〈b ·n,1〉Γi = 0 for all 16 i 6 I , we set

b̃ = b −
I∑

i=1
〈b ·n,1〉Γi ∇q N

i .

Observe that by the definition of q N
i , b̃ is also solution of (17) and satisfies the condition

〈b̃ · n,1〉Γi = 0. Next, taking test functions (0,0,θ,0) and (0,0,0,τ) with θ ∈ W 1,(p∗)′ (Ω) and

τ ∈D(Ω), we respectively recover divu = 0 and divb = 0 inΩ. Besides, since u,b ∈ H p∗, p
0 (curl,Ω),

we have u and b belong to X p
N (Ω). Thanks to (3), we deduce that u,b ∈ W 1, p (Ω). Thus, the

estimate (15) follows from (3) and (21).
Finally, in order to prove that P ∈W 1,r (Ω), we take the test functions (v ,0,0,0) with v ∈D(Ω).

Then, by De Rham’s theorem there exists P ∈ Lp (Ω) such that:

∇P = f +∆u − (curl w )×u + (curl b)×d inΩ.

Then taking the divergence of the above equation, P is solution of the following problem

∆P = div f +div((curl b)×d − (curl w )×u) in Ω,

P = P0 on Γ0 and P = P0 + ci on Γi .
(22)

Since curl w ∈ L
3
2 (Ω) and u ∈ W 1, p (Ω) ,→ Lp∗

(Ω), then (curl w ) × u ∈ Lr (Ω). Besides, curl b
∈ Lp (Ω) and d ∈W 1, 3

2 (Ω) ,→ L3(Ω). So (curl b)×d ∈ Lr (Ω). Hence, we obtain that ∆P ∈W −1r (Ω).
Since P0 belongs to W 1−1/r,r (Γ), we deduce that the solution P of (22) belongs to W 1,r (Ω).
Moreover, it satisfies the estimate

‖P‖W 1,r (Ω)6
∥∥div f

∥∥
W −1,r (Ω) +‖div((curl b)×d − (curl w )×u)‖W −1,r (Ω) +‖P0‖W 1−1/r,r (Γ) .

Applying the characterization of [H r ′, p ′
0 (curl,Ω)]′ given in (1), we obtain∥∥div f
∥∥

W −1,r ′ (Ω)6
∥∥ f

∥∥[
H r ′ , p′

0 (curl,Ω)
]′ . (23)

Next, we have

‖div((curlb)×d )‖W −1,r (Ω)6 ‖(curl b)×d‖Lr (Ω) ≤ ‖curl b‖Lp (Ω) ‖d‖L3 (Ω)

≤Cd ‖b‖W 1, p (Ω) ‖d‖
W 1, 3

2 (Ω)
, (24)

where Cd is the constant related to the Sobolev embedding W 1, 3
2 (Ω) ,→ L3(Ω). Finally, we have

‖div((curlw )×u)‖W −1,r (Ω)6 ‖(curlw )×u‖Lr (Ω)6 ‖curlw‖
L

3
2 (Ω)

‖u‖Lp∗ (Ω)

≤C ‖curlw‖
L

3
2 (Ω)

‖u‖W 1, p (Ω) ,
(25)

where we have used the Sobolev embedding W 1, p (Ω) ,→ Lp∗
(Ω). Using estimates (23), (24), (25)

combining with the estimate (15), we obtain the estimate (16) for the pressure. With the same
arguments used in [8, Theorem 3.2], we can prove that the constants ci , 1 ≤ i ≤ I satisfy the
relation (18). �
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5. Existence and uniqueness results of (M HD) for 3
2 < p < 2

The next Theorem 8 tells us that it is possible to extend the regularity of the solution of the
nonlinear (M HD) problem for 3

2 < p < 2 in W 1, p (Ω). For this, we apply Banach’s fixed-point
theorem over the linearized problem (11).

Theorem 8 (regularity W 1, p with 3
2 < p < 2). Assume that 3

2 < p < 2 and r with 1
r = 1

p + 1
3 .

Let us consider

f , g ∈
[

H r ′, p ′
0 (curl,Ω)

]′
and P0 ∈W 1− 1

r ,r (Γ)

satisfying the compatibility conditions (8), (5).

(i) There exists a constant δ1 such that, if∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +∥∥g
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +‖P0‖
W 1− 1

r ,r (Γ)
≤ δ1

Then, the (M HD) problem has at least a solution (u,b,P,α) ∈ W 1,p (Ω) × W 1,p (Ω) ×
W 1,r (Ω)×RI . Moreover, we have the following estimates:

‖u‖W 1, p (Ω)+‖b‖W 1, p (Ω)6C1

(∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′+∥∥g
∥∥[

H r ′ , p′
0 (curl,Ω)

]′+‖P0‖
W 1− 1

r ,r (Γ)

)
, (26)

‖P‖W 1,r (Ω) 6C1
(
1+C∗η

)(∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +∥∥g
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +‖P0‖
W 1− 1

r ,r (Γ)

)
, (27)

where δ1 = (2C 2C∗)−1, C1 =C (1+C∗η) with C > 0, C∗ > 0 are the constants given in (29),
(31) respectively and η defined by (32). Furthermore, we have for all 16 i 6 I

αi =
〈

f ,∇q N
i

〉
Ω−

∫
Ω

(curl u)×u ·∇q N
i d x +

∫
Ω

(curl b)×b ·∇q N
i d x −

∫
Γ

P0∇q N
i ·n d s

(ii) Moreover, if the data satisfy that∥∥ f
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +∥∥g
∥∥[

H r ′ , p′
0 (curl,Ω)

]′ +‖P0‖
W 1− 1

r ,r (Γ)
≤ δ2,

for some δ2 ∈ [0, δ1], then the weak solution of (M HD) problem is unique.

Proof. Let us define the space Z p (Ω) =W 1, p
σ (Ω)×W 1, p

σ (Ω). For given (w ,d ) ∈ Bη×Bη, define the
operator T by T (w ,d ) = (u,b) with (u,b) is the component of the solution (u,b,P,c) of (11) given
by Theorem 7 and the neighbourhood Bη is defined by

Bη =
{
(w ,d ) ∈ Z p (Ω), ‖(w ,d )‖Z p (Ω) ≤ η

}
, η> 0

which is equipped with the norm

‖(w ,d )‖Z p (Ω) = ‖w‖W 1, p (Ω) +‖d‖W 1, p (Ω).

We have to prove that T is a contraction from Bη to itself, i.e., let (w 1,d 1), (w 2,d 2) ∈ Bη, we show
that there exists θ ∈ (0,1) such that:

‖T (w 1,d 1)−T (w 2,d 2)‖Z p (Ω) = ‖(u1,b1)− (u2,b2)‖Z p (Ω)6 θ‖(w 1,d 1)− (w 2,d 2)‖Z p (Ω) (28)

Since each (ui ,bi ), i = 1,2 is a solution of (11) with h = 0, thanks to Theorem 7, we have the
estimates

‖(ui , bi )‖
Z p (Ω)

≤C
(
1+‖curlw i‖L3/2(Ω) +‖d i‖

W 1,3/2(Ω)

)
γ1 (29)

where

γ1 =
∥∥ f

∥∥[
H r ′ , p′

0 (curl,Ω)
]′ +∥∥g

∥∥[
H r ′ , p′

0 (curl,Ω)
]′ +‖P0‖

W 1− 1
r ,r (Γ)

.
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Next, the differences u = u1 −u2, b = b1 −b2, P = P1 −P2 and c 1 −c 2 satisfies

−∆u + (curl w 1)×u +∇P −curlb ×d 1 = f 2 and divu = 0 inΩ

curl curl b −curl(u ×d 1) = g 2 and divb = 0 inΩ

u ×n = 0 and b ×n = 0 on Γ

P = 0 on Γ0 and P = c j on Γ j

〈u ·n,1〉Γ j = 0 and 〈b ·n,1〉Γ j = 0 ∀ 16 j 6 I

(30)

with f 2 =−(curl w )×u2 + (curl b2)×d and g 2 = curl(u2 ×d ). Using (29), we obtain

‖(u,b)‖Z p (Ω) ≤C 2C∗ (
1+C∗η

)2
γ1 ‖(w , d )‖Z p (Ω) , (31)

where C∗ = Cw +Cd with Cw > 0 and Cd > 0 are such that, ‖curl w‖L3/2(Ω) ≤ Cw ‖w‖W 1, p (Ω) and
‖d‖L3(Ω) ≤Cd ‖d‖W 1, p (Ω). Therefore, we can obtain estimate (28) if we choose, for example

η= (C∗)−1
((

2C 2C∗γ1
)−1/2 −1

)
and γ1 <

(
2C 2C∗)−1

. (32)

We conclude that T has a fixed point (u∗,b∗) ∈ Z p (Ω) satisfying:∥∥(
u∗,b∗)∥∥

Z p (Ω) ≤C
(
1+C∗η

)
γ1, (33)

which gives the estimate (26). The pressure estimate (27) and the uniqueness can be deduced as
in [6, Theorem 19] and [7, Theorem 3.1]. �

Remark 9.
(i) Since the pressure is decoupled from the system, we can improve the regularity given in

the previous results by choosing a convenient boundary condition P0.
(ii) To obtain strong solutions for the (M HD) problem, we can consider the case where

f ∈ Lp (Ω) and g less regular in Lq (Ω).
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