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1. Motivation and main results

For z ∈C and n ∈ {0}∪N, the rising factorial (z)n is defined [17] by

(z)n =
n−1∏
`=0

(z +`) =
{

z(z +1) · · · (z +n −1), n ≥ 1;

1, n = 0.

It can also be called the Pochhammer symbol or shifted factorial. The hypergeometric function
F (a,b;c; z) is defined [23, p. 108, (5.3)] by

F (a,b;c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, |z| < 1 (1)

for a,b,c ∈C with c 6= 0,−1,−2, . . . .
The complete elliptic integrals of the first and second kinds K (r ) and E (r ) can be ex-

pressed by

K (r ) =
∫ π/2

0

dφ√
1− r 2 sin2φ

= π

2
F

(
1

2
,

1

2
;1;r 2

)
and

E (r ) =
∫ π/2

0

√
1− r 2 sin2φdφ= π

2
F

(
−1

2
,

1

2
;1;r 2

)
.

See [14, Section 3.4] and [23, p. 128, Exercise 5.2].
Let Fp,q : [0,1] → [

0,
πp,q

2

]
be defined [10, 21] by

Fp,q (x) = arcsinp,q (x) =
∫ x

0

(
1− t q )−1/p dt , x ∈ [0,1]

and let πp,q = 2arcsinp,q (1). Then

πp,q = 2

q

∫ 1

0

t 1/p−1

(1− t )1/q
dt = 2

q
B

(
1− 1

p
,

1

q

)
= 2π

q sin
(
π
p

) ,

where

B(x, y) =
∫ 1

0
t x−1(1− t )y−1dt , ℜ(x),ℜ(y) > 0

denotes the classical beta function. The inverse function F−1
p,q :

[
0,

πp,q

2

] → [0,1] is called general-
ized (p, q)-sine function, denoted by sinp,q . It is clear that sin2,2 = sin.

The complete (p, q)-elliptic integrals of the first and second kinds were defined in [12, 22] by

Kp,q (r ) =
∫ πp,q /2

0

(
1− r q sinq

p,q t
)1/p−1dt and Ep,q (r ) =

∫ πp,q /2

0

(
1− r q sinq

p,q t
)1/p dt

for p, q ∈ (1,∞) and r ∈ [0,1). It is obvious that K2,2(r ) = K (r ) and E2,2(r ) = E (r ) are classical
complete elliptic integrals of the first and second kinds.

For p, q ∈ (1,∞) and r ∈ [0,1), the complete (p, q)-elliptic integrals of the first and second kinds
can be represented [11, 12, 22] in terms of the hypergeometric functions F (a,b;c; z) by

Kp,q (r ) = πp,q

2
F

(
1− 1

p
,

1

q
;1− 1

p
+ 1

q
;r q

)
;

Kp,q (0) = πp,q

2
, Kp,q (1) =∞

(2)

and 
Ep,q (r ) = πp,q

2
F

(
− 1

p
,

1

q
;1− 1

p
+ 1

q
;r q

)
;

Ep,q (0) = πp,q

2
, Ep,q (1) = 1.

(3)
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In [3], the double inequality

π

2

(
arctanhr

r

)1/2

<K (r ) < π

2

arctanhr

r
(4)

was obtained, where arctanhr denotes the inverse of hyperbolic tangent function. In [20], the
double inequality (

α+ π

2r

)
arctanhr <K (r ) <

(
β+ π

2r

)
arctanhr (5)

was proved to be valid if and only if α≤ 1− π
2 and β≥ 0. In [15] and [16, Section 9], among other

things, the inequalities
πarcsinr

2r
<K (r ) < π

4r
ln

1+ r

1− r
(6)

and

E (r ) < 16−4r 2 −3r 4

4
(
4+ r 2

) K (r ) (7)

were derived from the Čebyšev integral inequality [18]. In [1], the double inequality

π

2

(
arctanhr

r

)α1

<K (r ) < π

2

(
arctanhr

r

)β1

(8)

was sharpened by α1 = 3
4 and β1 = 1. In [7], among other things, it was obtained that

π

2
− 1

2
ln

(1+ r )r−1

(1− r )r+1 < E (r ) < π−1

2
+ 1− r 2

4r
ln

1+ r

1− r
. (9)

In [35], the double inequalities

π
√

6+2
p

1− r 2 −3r 2

4
p

2
≤ E (r ) ≤ π

√
10−2

p
1− r 2 −5r 2

4
p

2
(10)

and
π
p

32− r 4 −32r 2

8
p

2 4
√(

1− r 2
)3

≤K (r ) ≤ π
p

r 4 −32r 2 +32

8
p

2 4
√(

1− r 2
)3

(11)

were established. In [24], we discussed monotonicity and some inequalities related to complete
elliptic integrals of the second kind E (r ).

We observe that

(1) because arctanhr = 1
2 ln 1+r

1−r , the upper bounds in (4) and (6) and the best possible
bounds in (5) and (8) are the same one which cannot compare with the upper bound
in (11) on (0,1);

(2) the lower bound in (8) is clearly better than the corresponding one in (4), the lower
bounds in (5) and (6) cannot compare with each other on (0,1), the lower bounds in (5)
and (8) cannot compare with each other on (0,1), the lower bound in (8) is better than
the corresponding one in (6), and the lower bound in (11) cannot compare with the
corresponding ones in (4) to (8);

(3) the lower bound in (10) is better than the corresponding one in (9) and the upper bounds
in (10) and (9) cannot compare with each other on (0,1).

These observations can be verified by plotting via the Wolfram Mathematica 11.1.
In [36], it was obtained that, for p ∈ (1,∞),

arctanhp r

r
<Kp (r ) < πp

2

arctanhp r

r
, (12)

where Kp (r ) =Kp,p (r ) and

arctanhp r = r F

(
1

p
,1;1+ 1

p
;r p

)
. (13)
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964 Fei Wang and Feng Qi

In [25], we investigated monotonicity and some inequalities related to generalized Grötzsch ring
function

π

2sin(πq)

K1/q,1/q
((

1− r 2
)q )

K1/q,1/q
(
r 2q

) , q ∈
(
0,

1

2

]
.

Let γ = 0.57721566. . . stands for Euler–Mascheroni’s constant, let ψ(z) = [lnΓ(z)]′ = Γ′(z)
Γ(z) be

the logarithmic derivative of the classical Euler gamma function which can be defined (see [13]
and [23, Chapter 3]) by

Γ(z) =
∫ ∞

0
t z−1e−t dt , ℜ(z) > 0 or by Γ(z) = lim

n→∞
n!nz∏n

k=0(z +k)
, z ∈C\ {0,−1,−2, . . . },

and let

R(x, y) =ψ(x)−ψ(y)−2γ, x, y ∈ (0,∞)

denote the Ramanujan constant function [6]. In [2, Theorem 2.2], the function K (r )

ln
[

c/
p

1−r 2
] is

showed to be decreasing if and only if 1 < c ≤ 4 and to be increasing if and only if c ≥ e2.
In this paper, with the aid of the monotone L’Hôpital rule, we will use a new and concise

method to generalize the above inequalities and monotonicity for functions involving K (r )
and E (r ) to those involving complete (p, q)-elliptic integrals Kp,q (r ) and Ep,q (r ), to reveal
monotonicity of several functions involving Kp,q (r ), Ep,q (r ), and the inverse of generalized
hyperbolic tangent function, and to improve inequalities (4), (5), (8), and (12).

Our main results can be stated as the following theorems.

Theorem 1. For r ∈ (0,1) and p, q ∈ (1,∞), let F (r ) = Kp,q (r )

ln[c/(1−r q )1/q ]
. Then the function F (r )

(1) increases on (0,1) if and only if c ≥ exp
(

q(p−1)+p
q(p−1)

)
;

(2) decreases on (0,1) if and only if 1 ≤ c ≤ exp
(

R(1−1/p,1/q)
q

)
;

and, consequently, when 1 ≤ c ≤ exp
(

R(1−1/p,1/q)
q

)
,

ln
c

(1− r q )1/q
<Kp,q (r ) < πp,q

2lnc
ln

c

(1− r q )1/q
. (14)

Theorem 2. For r ∈ (0,1) and q ∈ (1,∞),

(1) when p ≥ 2, the function G(r ) = rK 2
p,q (r )

arctanhq r increases and maps (0,1) onto
(
π2

p,q

4 ,∞
)
. Conse-

quently, for r ∈ (0,1), p ∈ [2,∞), and q ∈ (1,∞), we have

πp,q

2

(
arctanhq r

r

)1/2

<Kp,q (r ); (15)

(2) when p > 1, the function W (r ) = rKp,q (r )
arctanhq r decreases and maps (0,1) onto

(
1,

πp,q

2

)
. Conse-

quently, for r ∈ (0,1) and p, q ∈ (1,∞), we have

arctanhq r

r
<Kp,q (r ) < πp,q

2

arctanhq r

r
. (16)

Theorem 3. For r ∈ (0,1) and p, q ∈ (1,∞), the function H(r ) =
πp,q

2 arctanhq r−rKp,q (r )
r q arctanhq r increases

and maps (0,1) onto
(
πp,q

2
1

pq(q+1) ,
πp,q

2 −1
)
. Consequently, for r ∈ (0,1) and p, q ∈ (1,∞), we have

πp,q

2

arctanhq r

r

(
1−α2r q )<Kp,q (r ) < πp,q

2

arctanhq r

r

(
1−β2r q )

, (17)

where α2 = 1− 2
πp,q

and β2 = 1
pq(q+1) are the best possible constants in the sense that they can not

be replaced by any bigger and smaller constants respectively.
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2. Lemmas and their proofs

For proving our main results, we need the following known results and lemmas.
In [22], the following two derivatives were given:

dKp,q (r )

dr
= Ep,q (r )− (

1− r q
)
Kp,q (r )

r (1− r q )
(18)

and
dEp,q (r )

dr
=−q

p

Kp,q (r )−Ep,q (r )

r
. (19)

Lemma 4 (cf. [4]). For a,b ∈ R with a < b, let f and g be continuous on [a,b], differentiable on

(a,b), and g ′ 6= 0 on (a,b). If the ratio f ′
g ′ is increasing on (a,b), then both of the functions f (x)− f (a)

g (x)−g (a)

and f (x)− f (b)
g (x)−g (b) are increasing with respect to x ∈ (a,b).

Lemma 5 (cf. [1]). Suppose that the power series

R(x) =
∞∑

n=0
r (n)xn and S(x) =

∞∑
n=0

s(n)xn

converge for |x| < 1. If s(n) > 0 for n ≥ 0 and the sequence r (n)
s(n) increases with respect to n ≥ 0, then

the ratio R(x)
S(x) increases with respect to x ∈ (0,1).

Lemma 6 (cf. [11, Theorem 1]). For r ∈ (0,1) and p, q ∈ (1,∞), the following conclusions are valid:

(1) the function
Ep,q (r )−

(
1−r q

)
Kp,q (r )

r qKp,q (r ) is decreasing and maps from (0,1) onto
(
1, (p−1)q

pq+p−q

)
;

(2) the function
Kp,q (r )−Ep,q (r )

r qKp,q (r ) is increasing and maps (0,1) onto
(

p
pq+p−q ,1

)
. Consequently,

1− r q < Ep,q (r )

Kp,q (r )
< 1− p

(p −1)q +p
r q . (20)

Lemma 7. For r ∈ (0,1) and p, q ∈ (1,∞), the function f (r ) = 1
q ln

(
1− r q

)+ r qKp,q (r )
Ep,q (r )−(1−r q )Kp,q (r )

decreases and maps (0,1) onto
(

R(1−1/p,1/q)
q , q(p−1)+p

q(p−1)

)
. Consequently,

R(1−1/p,1/q)

q
< 1

q
ln

(
1− r q )+ r qKp,q (r )

Ep,q (r )− (1− r q )Kp,q (r )
< q(p −1)+p

q(p −1)
. (21)

Proof. By virtue of (18) and (19), differentiating f (r ) gives

f ′(r ) =− r q

r (1− r q )
+ r q

r (1− r q )


q
(
1− r q )

Kp,q
[
Ep,q (r )− (

1− r q )
Kp,q (r )

]
+[

Ep,q (r )− (
1− r q )

Kp,q (r )
]2

−(1−q/p)
(
1− r q )

Kp,q
[
Kp,q (r )−Ep,q (r )

]
−(q −1)r q (

1− r q )
K 2

p,q (r )


[
Ep,q (r )− (1− r q )Kp,q (r )

]2

= r qKp,q (r )

r
[
Ep,q (r )− (1− r q )Kp,q (r )

]2

 q
[
Ep,q (r )− (

1− r q )
Kp,q (r )

]
−(1−q/p)

[
Kp,q (r )−Ep,q (r )

]
−(q −1)r qKp,q (r )


= r qKp,q (r )

r
[
Ep,q (r )− (1− r q )Kp,q (r )

]2

(
r qKp,q − q(p −1)+p

p

[
Kp,q (r )−Ep,q (r )

])

=
(
r qKp,q (r )

)2

r
[
Ep,q (r )− (1− r q )Kp,q (r )

]2

[
1− q(p −1)+p

p

Kp,q −Ep,q

r qKp,q (r )

]
.
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From the second item of Lemma 6, it follows that f ′(r ) < 0 which means that f (r ) decreases.
By the first item in Lemma 6 and [11, Theorem 3], we acquire the limits f (0+) = q(p−1)+p

q(p−1) and

f (1−) = lim
r→1−

[
ln

(
1− r q

)
q

+ r qKp,q (r )

Ep,q (r )− (1− r q )Kp,q (r )

]
= lim

r→1−
r q

Ep,q (r )− (1− r q )Kp,q (r )

[
Kp,q + ln

(
1− r q

)
q

]
+ lim

r→1−

[
1− r q

Ep,q (r )− (1− r q )Kp,q (r )

]
ln

(
1− r q

)
q

= R(1−1/p,1/q)

q
+ lim

r→1−

[
Ep,q (r )− (

1− r q )
Kp,q − r q

]
ln

(
1− r q

)
q

= R(1−1/p,1/q)

q
+ lim

r→1−
Ep,q (r )− r q

(1− r q )1/q

(
1− r q )1/q ln

(
1− r q

)
q

= R(1−1/p,1/q)

q
.

The double inequality (21) follows from monotonicity of f (r ). The proof of Lemma 7 is
complete. �

Lemma 8. For r ∈ (0,1) and q ∈ (1,∞), the function Φ(r ) = (1−r q )arctanhq r
r decreases and maps

(0,1) onto (0,1).

Proof. In [36], it was obtained that
(
arctanhq r

)′ = 1
1−r q . Employing this result and the for-

mula (13) yields

rΦ′(r ) = −q
(
r q−1 arctanhq r +1

)
r − (

1− r q
)

arctanhq r

r
= 1− [

(q −1)r q +1
]arctanhq r

r
< 0.

Therefore, the functionΦ(r ) decreases.
It is straightforward to deriveΦ(0+) = 1 andΦ(1−) = 0. The proof of Lemma 8 is complete. �

Lemma 9. For r ∈ (0,1), q ∈ (1,∞), and p ∈ [2,∞), the function φ(r ) = 2Ep,q (r )− (
1− r q

)
Kp,q (r )

increases and maps (0,1) onto
(πp,q

2 ,2
)
. Consequently,

πp,q

4
< Ep,q (r )− 1− r q

2
Kp,q (r ) < 1.

Proof. Utilizing the derivative formulas (18) and (19) and differentiating give

φ′(r ) =
(
1− 2q

p

)
Kp,q (r )−Ep,q (r )

r
+ (q −1)

r qKp,q (r )

r
= r qKp,q (r )

r
ϕ(r ),

where

ϕ(r ) =
(
1− 2q

p

)
Kp,q (r )−Ep,q (r )

r qKp,q (r )
+q −1.

When p ≥ 2q , from the second item of Lemma 6, it follows readily that ϕ(r ) > 0.
When 2 ≤ p < 2q , by the second item of Lemma 6, it follows that

ϕ(r ) > 0 ⇐⇒ inf
0<r<1

[(
1− 2q

p

)
Kp,q (r )−Ep,q (r )

r qKp,q (r )
+q −1

]
> 0 ⇐⇒ q

(
1− 2

p

)
≥ 0.

Accordingly, when p ≥ 2 and q > 1, the function φ(r ) is increasing.
By virtue of (2) and (3), it is easy to deduce the limits φ(0+) = πp,q

2 and φ(1−) = 2. The proof of
Lemma 9 is complete. �
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3. Proofs of main results

Now we start out to prove our main results.

Proof of Theorem 1. By (18), direct differentiating F (r ) gives[
ln

c

(1− r q )1/q

]2

F ′(r ) = Ep,q (r )− (
1− r q

)
Kp,q (r )

r (1− r q )
ln

c

(1− r q )1/q
− r qKp,q (r )

r (1− r q )

= Ep,q (r )− (
1− r q

)
Kp,q (r )

r (1− r q )

[
lnc −

(
1

q
ln

(
1− r q )+ r qKp,q (r )

Ep,q (r )− (1− r q )Kp,q (r )

)]
By Lemma 7, we have

F ′(r ) < 0 ⇐⇒ inf
0<r<1

[
lnc −

(
ln

(
1− r q

)
q

+ r qKp,q (r )

Ep,q (r )− (1− r q )Kp,q (r )

)]
< 0

⇐⇒ c ≤ inf
0<r<1

exp

(
ln

(
1− r q

)
q

+ r qKp,q (r )

Ep,q (r )− (1− r q )Kp,q (r )

)
⇐⇒ c ≤ exp

(
R(1−1/p,1/q)

q

)
and

F ′(r ) > 0 ⇐⇒ sup
0<r<1

[
lnc −

(
ln

(
1− r q

)
q

+ r qKp,q (r )

Ep,q (r )− (1− r q )Kp,q (r )

)]
> 0

⇐⇒ c ≥ sup
0<r<1

exp

(
ln

(
1− r q

)
q

+ r qKp,q (r )

Ep,q (r )− (1− r q )Kp,q (r )

)
⇐⇒ c ≥ exp

(
q(p −1)+p

q(p −1)

)
The double inequality (14) follows from monotonicity of F (r ). The proof of Theorem 1 is

complete. �

Proof of Theorem 2. Let g1(r ) = rK 2
p,q (r ) and g2(r ) = arctanhq r . Then G(r ) = g1(r )

g2(r ) and g1(0) =
g2(0) = 0. Making use of [36] and (18), we have

g ′
1(r )

g ′
2(r )

= (
1− r q )

Kp,q (r )

[
Kp,q (r )+2

Ep,q (r )− (
1− r q

)
Kp,q (r )

(1− r q )

]
=Kp,q (r )

[
2Ep,q (r )− (

1− r q )
Kp,q (r )

]
.

From Lemma 9, it follows that the function G(r ) is increasing on (0,1). By the L’Hôpital rule, it

follows that G(0+) = π2
p,q

4 and G(1−) =∞.
It is obvious that inequality (15) follows from monotonicity of G(r ).
Let g3(r ) = rKp,q (r ) and g4(r ) = arctanhq r . Then W (r ) = g3(r )

g4(r ) and g3(0) = g4(0) = 0. Since

g ′
3(r )

g ′
4(r )

= Kp,q (r )+ [
Ep,q (r )− (

1− r q
)
Kp,q (r )

]/(
1− r q

)
1/(1− r q )

= Ep,q (r ),

by Lemma 4, the function W (r ) is decreasing on (0,1). By Lemma 4, those formulas in (3), and the
L’Hôpital rule, we can obtain readily that W (0+) = πp,q

2 and W (1−) = 1.
The double inequality (16) follows from monotonicity of W (r ) directly. �

Proof of Theorem 3. Let the functions h1(r )= πp,q

2 arctanhq r−rKp,q (r ) and h2(r )=r q arctanhq r .

Then H(r ) = h1(r )
h2(r ) and h1(0) = h2(0) = 0. Using (18) and differentiating yield

h′
1(r )

h′
2(r )

=

 πp,q

2
− (

1− r q )
Kp,q (r )

−[
Ep,q (r )− (

1− r q )
Kp,q (r )

]


r q

1

1+q
(1−r q )arctanhq r

r

= h3(r )

h4(r )
,
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where

h3(r ) =
πp,q

2 − (
1− r q

)
Kp,q (r )− [

Ep,q (r )− (
1− r q

)
Kp,q (r )

]
r q

and h4(r ) = 1+q
(1−r q )arctanhq r

r . By Lemma 8, the function h4(r ) is decreasing on (0,1).

Let a = 1− 1
p , b = 1− 1

p + 1
q , an = (a)n

(
1
q

)
n

(b)n n! , and bn = an
n+b . By virtue of (1) to (3), we have

Ep,q (r )− (
1− r q )

Kp,q (r ) = πp,q

2

[ ∞∑
n=0

(− 1
p

)
n

( 1
q

)
n

(b)nn!
r qn −

∞∑
n=0

(a)n
( 1

q

)
n

(b)nn!
r qn +

∞∑
n=0

(a)n
( 1

q

)
n

(b)nn!
r q(n+1)

]

= πp,q

2

∞∑
n=1

[
(a)n−1

( 1
q

)
n−1

(b)n−1(n −1)!
−

(a)n−1
( 1

q

)
n

(b)nn!

]
r qn

= aπp,q

2

∞∑
n=1

n(a)n−1
( 1

q

)
n−1

(b)nn!
r qn = aπp,q

2

∞∑
n=0

bnr q(n+1)

and

πp,q

2
− (

1− r q )
Kp,q (r ) = πp,q

2
− (

1− r q )πp,q

2

∞∑
n=0

(a)n
( 1

q

)
n

(b)nn!
r qn

= πp,q

2

[
1−

∞∑
n=0

(a)n
( 1

q

)
n

(b)nn!
r qn +

∞∑
n=0

(a)n
( 1

q

)
n

(b)nn!
r q(n+1)

]

= πp,q

2

[
−

∞∑
n=1

(a)n
( 1

q

)
n

(b)nn!
r qn +

∞∑
n=0

bnr q(n+1)

]

= πp,q

2

[
−

∞∑
n=0

(a)n+1
( 1

q

)
n+1

(b)n+1(n +1)!
r q(n+1) +

∞∑
n=0

bnr q(n+1)

]

= πp,q

2

∞∑
n=0

cnr q(n+1),

where cn =
[

1− (n+a)
(

n+ 1
q

)
(n+b)(n+1)

]
bn . Furthermore, by (1), we have

h3(r ) = πp,q

2

∞∑
n=0

(bn + cn)r qn = πp,q

2

∞∑
n=0

1

p

(
n + 1

q

)
r qn > 0.

By Lemma 7, the function h3(r ) is increasing on (0,1). By Lemmas 4 to 6, the function H(r ) is
increasing.

By the L’Hôpital rule, it follows that

H(0+) = lim
r→0+

H(r ) = lim
r→0+

h′
1(r )

h′
2(r )

= lim
r→0+

h3(r )

h4(r )
= πp,q

2

b0 + c0

1+q
= πp,q

2pq(q +1)

and

H(1−) = lim
r→1−

H(r ) = lim
r→0+

h′
1(r )

h′
2(r )

= lim
r→0+

h3(r )

h4(r )
= πp,q

2
−1.

Thus, the double inequality (17) holds. The proof of Theorem 3 is complete. �

4. Remarks

Remark 10. When p = q = 2, Theorem 1 reduces to [2, Theorem 2.2(5)].

Remark 11. When p = q = 2, inequalities (15) and (16) in Theorem 2 become (4). When p = q ,
inequality (16) becomes (12).
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Remark 12. When p = q , the double inequality (17) improves the double inequality (12).
If setting p = q = 2 in the double inequality (17) in Theorem 3, then

π

2

arctanhr

r

[
1−

(
1− 2

π

)
r 2

]
<K (r ) < π

2

arctanhr

r

(
1− 1

12
r 2

)
for r ∈ (0,1). This double inequality improves the double inequalities (4) and (5).

Remark 13. When p = q = 2, the inequality (20) becomes

1− r 2 < E (r )

K (r )
< 1− r 2

2
whose upper bound is worse than (7). This means that the inequality (7) is much better.

Remark 14. Interested readers who are curious about this paper not only just want to know the
main research content of this paper, but also want to know the research background and research
progress in this field. Enriching references as many as possible is very important for these readers.
So we list several recently published papers [5,8,9,19,26–34], which are closely related to the topic
of this paper, to the list of references of this paper.
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