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Abstract. Inspired by the recent works of S. Rao–S. Yang–X.-D. Yang and L. Meng on the blow-up formulae
for de Rham and Morse–Novikov cohomology groups, we give a new simple proof of the blow-up formula
for Morse–Novikov cohomology by introducing the relative Morse–Novikov cohomology group via sheaf
cohomology theory and presenting the explicit isomorphism therein.

Résumé. Inspiré par les récents travaux de S. Rao, S. Yang, X.-D. Yang et L. Meng sur les formules donnant
le comportement des groupes de cohomologie de de Rham et Morse-Novikov dans les éclatements, nous
donnons une nouvelle preuve simple de la formule pour la cohomologie de Morse-Novikov en introduisant
le groupe de cohomologie de Morse-Novikov relatif via la cohomologie des faisceaux et en explicitant
l’isomorphisme de la formule.
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1. Introduction

Let X be a smooth manifold and A p (X ) the space of smooth p-forms on X . Over X , there is an
exterior differential operator d and the associated complex:

· · · // A p−1(X )
d // A p (X )

d // A p+1(X ) // · · · ,

whose cohomology H p
dR (X ) := H p (A •(X ),d) is called p-th de Rham cohomology group. Now we

choose a closed 1-form θ on X . For α ∈A p (X ), define

dθ : A p (X ) →A p+1(X )

as
dθα= dα+θ∧α.
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68 Yongpan Zou

Obviously, one has dθ ◦dθ = 0 and thus a complex:

· · · // A p−1(X )
dθ // A p (X )

dθ // A p+1(X ) // · · · ,

whose cohomology H p
θ

(X ) := H p (A •(X ),dθ) is called p-th Morse–Novikov cohomology group.
This cohomology was originally defined by Lichnerowicz [4, 7] and Novikov [10] in the context

of Poisson geometry and Hamiltonian mechanics, respectively. It is commonly used to study
the locally conformally Kählerian and locally conformally symplectic structures. For example, by
Poincaré Lemma, closed 1-forms correspond to local conformal changes. A Hermitian manifold
(X ;h) is a locally conformally Kähler manifold if and only if there exists a closed 1-form (Lee form)
θ such that dω= θ∧ω, whereω is the Kähler form of h. But it is not a topological invariant since it
depends on [θ] ∈ H 1

dR (X ). One significant application of locally conformally Kählerian structure
in complex geometry is the classification of compact non-Kähler complex surfaces. Here we refer
to [2] and [11] for more references therein.

For a complex manifold X and a submanifold Z ⊆ X , we consider a new complex manifold,
the blow-up X̃ of X along Z . It is interesting to find the relations between various cohomologies
of X̃ with those of X and Z . The blow-up formula for de Rham cohomology on Kähler manifolds
has been presented in [15, Theorem 7.31]. In [12], S. Rao–S. Yang–X.-D. Yang give a new proof
of the blow-up formula for de Rham cohomology by use of the relative de Rham cohomology.
In [17], X.-D. Yang–G. Zhao prove a blow-up formula of Morse–Novikov cohomology for com-
pact locally conformal Kähler manifolds with the submanifold Z ⊆ X is a compact induced glob-
ally conformal Kähler submanifold, that is, the restriction of the Lee form θ|Z is exact. In [8], L.
Meng systematically studies the behavior of Morse–Novikov cohomology under blow-up along
a connected complex submanifold Z . He uses many topological tools such as Mayer–Vietoris
sequences. Especially, he defines the weight θ-sheaf RX ,θ and reinterprets Morse–Novikov coho-
mology via sheaf theory. Meng also establishes a theorem of Leray–Hirsch type for Morse–Novikov
cohomology to prove the blow-up formulae with explicit isomorphisms.

In this paper, we mainly use the relative cohomological method in [12, 13, 14] and the sheaf
theory from [8] as in Subsection 2.3 for the crucial Proposition 6 to give a new simple proof of the
blow-up formula for Morse–Novikov cohomology with an explicit isomorphism:

Main Theorem 1. Let X be a complex manifold with dimC X = n, Z ⊆ X a closed complex
submanifold of complex codimension r ≥ 2 and i∗ the pullback of the inclusion i : Z ,→ X . Suppose
that π : X̃ → X is the blow-up of X along Z . Denote by E := π−1(Z ) ∼= P(NZ /X ) the exceptional
divisor of the blow-up. Set ĩ∗ as the pullback of the inclusion ĩ : E ,→ X̃ . Then for any 0 ≤ k ≤ 2n,
the map

φ=π∗+
r−1∑
j=1

Π j ◦ ĩ∗

gives isomorphism

H k
π∗θ(X̃ ) ∼= H k

θ (X )⊕
(

r−1⊕
j=1

H k−2 j
i∗θ (Z )

)
,

where the definition of φ is given in (15).

This blow-up formula was first proved by Meng in [8, Main Theorem 1.3]. Meng’s explicit
isomorphism is

ψ :=π∗+
r−1∑
j=1

(ĩ )∗ ◦ (h j∪)◦ (π|E )∗, (1)

where π|E : E := π−1(Z ) → Z is the projection of the projectivization E ∼= P(NZ /X ) of the normal
bundle NZ /X , and h := c1(OE (−1)) ∈ H 2

dR(E) is the first Chern class of the universal line bundle

OE (−1). This morphism maps the cohomology group H k
θ

(X )⊕ (⊕r−1
j=1 H k−2 j

i∗θ (Z )
)

to H k
π∗θ(X̃ ). The
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Yongpan Zou 69

explicit morphismφ constructed here is inspired by [13], and owns an inverse direction to Meng’s
one. Actually in [9], Meng points out that these two morphisms inverse to each other.

Moreover, the relative de Rham cohomology is isomorphic to the de Rham cohomology with
compact support, while it does not hold true for the Morse–Novikov case anymore (see [12, 18]).
So we are not able to apply the relative cohomological method via the compactly supported
cohomology directly as [12, 13].
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2. Preliminaries

2.1. The sequence associated to a closed submanifold

Assume that X is a smooth manifold with dimension n and let Z be a k-dimensional closed
submanifold of X with the inclusion i : Z ,→ X . In this paper we focus on the space of differential
forms

A •(X , Z ) = {α ∈A •(X ) : i∗α= 0}.

For any closed 1-form θ on X , i∗θ is a closed 1-form on Z . It’s easy to see that for any α ∈A •(X ),

i∗dθα= i∗(dα+θ∧α) = d(i∗α)+ i∗θ∧ i∗α= di∗θi∗α.

Therefore,

α ∈A •(X , Z ) ⇒ i∗α= 0 ⇒ i∗dθα= 0 ⇒ dθα ∈A •(X , Z ).

So A •(X , Z ) is closed under the action of the exterior differential operator dθ and we get a sub-
complex of the Morse–Novikov complex {A •(X ),dθ}, called the relative Morse–Novikov complex
with respect to Z :

0 // A 0(X , Z )
dθ // A 1(X , Z )

dθ // A 2(X , Z )
dθ // · · · .

The associated cohomology, denoted by H•
θ

(X , Z ), is called the relative Morse–Novikov cohomol-
ogy of the pair (X , Z ).

Lemma 2. The pullback i∗ : A ∗(X ) →A ∗(Z ) is surjective.

Proof. By the classical tubular neighborhood theorem [6, Theorem 6.24], we have an open
tubular neighborhood V of Z with a smooth retraction map γ : V → Z such that γ|Z is the identity
map of Z as in [6, Proposition 6.25]. As usual, we let i : Z ,→ V be the inclusion. Let ϕ : X → [0,1]
be a smooth cut-off function such that Supp(ϕ) ⊆ V and such that ϕ is constantly equal to 1 on
some open set W ⊆V with Z ⊆W . For any q-formsα ∈A q (Z ), we define α̃ := γ∗(α) ∈A q (V ) and
τ := ϕα̃. It is easy to see that τ extends trivially over the remaining part of X , that is τ ∈ A q (X ).
Therefore we can see i∗τ= i∗ϕγ∗(α) =α. �
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2.2. Blow-up

Let X be a complex manifold of complex dimension n. Suppose that i : Z ,→ X is a closed complex
submanifold of complex codimension r ≥ 2. Without loss of generality, we assume that Z is
connected; otherwise, we can carry out the blow-up operation along each connected component
of Z step by step. Recall that the normal bundle TX |Z /TZ of Z in X , denoted by NZ /X , is a
holomorphic vector bundle of rank r . Here TM denotes the holomorphic tangent bundle of the
complex manifold M and TM |N is its restriction to the submanifold N of M . The blow-up X̃ of X
with center Z is a holomorphic morphism π : X̃ → X such that

π : X̃ −E → X −Z

is a biholomorphism. Here

E :=π−1(Z ) ∼=P(NZ /X ) (2)

is the exceptional divisor of the blow-up. Then one has the following blow-up diagram

E

πE

��

� � ĩ // X̃

π

��
Z �
� i // X .

(3)

2.3. Morse–Novikov cohomology via sheaf theory

The notations and definitions follow [8]. Suppose that A k
X is the sheaf of germs of smooth k-

forms, and we call the kernel of dθ : A 0
X → A 1

X a weight θ-sheaf, denoted by RX ,θ. The weight θ-
sheaf RX ,θ is a locally constant sheaf of R-modules of rank 1. We have a resolution of soft sheaves
of RX ,θ ,

0 // RX ,θ
i // A 0

X

dθ // A 1
X

dθ // · · · dθ // A n
X

// 0,

where i is the inclusion. Let A •
X → I • be an injective resolution of complex (A •

X ,dθ) of sheaves
in the category of sheaves on X and it induces a morphism

H∗
θ (X ) = H∗(A •(X ),dθ) → H∗(Γ(X ,I •)) = H∗(X ,RX ,θ),

denoted by ρX ,θ . Since A •
X is a resolution of soft sheaves of RX ,θ , ρX ,θ is an isomorphism.

The next lemma plays an important role in our paper.

Lemma 3 ([8, Lemma 2.2]). Let X be a connected smooth manifold and θ a closed 1-form on X .
Suppose that f : Y → X is a smooth map between smooth manifolds. Then the inverse image sheaf
f ∗RX ,θ

∼=RY , f ∗θ.

Let i : Z → X be a closed submanifold and θ a closed 1-form on X . We know that i∗ : A
p
X →

i∗A
p
Z is an epimorphism of sheaves. Denote the kernel of i∗ by A

p
X ,Z . Thus one gets an exact

sequence of sheaves

0 // A p
X ,Z

// A p
X

i∗ // i∗A
p
Z

// 0.

Then there is a short exact sequence of complexes of sheaves

0 // A •
X ,Z

// A •
X

i∗ // i∗A •
Z

// 0 . (4)
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We now consider the complexes of sheaves:

0 // RX ,θ
// A 0

X

dθ // A 1
X

dθ // · · · ,

0 // RZ ,i∗θ
// A 0

Z

di∗θ // A 1
Z

di∗θ // · · · ,

0 // RX ,Z ,θ
// A 0

X ,Z

dθ // A 1
X ,Z

dθ // · · · ,

where

RZ ,i∗θ := ker(di∗θ : A 0
Z →A 1

Z ),

RX ,Z ,θ := ker(dθ : A 0
X ,Z →A 1

X ,Z ).

For the complex F• of sheaves

0 // Fp−1 // Fp // Fp+1 // · · · ,

we define the cohomology of the complex F• as

H p (F•) := ker(Fp →Fp+1)

im(Fp−1 →Fp )
.

Then (4) yields a long exact sequence of sheaves

· · · // H p−1(i∗A •
Z ) // H p (A •

X ,Z ) // H p (A •
X ) // H p (i∗A •

Z ) // · · · .

It’s easy to see

H p (A •
X ) = ker(A p

X →A
p+1
X )

im(A p−1
X →A

p
X )

=
{
RX ,θ, p = 0,

0, p 6= 0;

H p (i∗A •
Z ) = i∗H p (A •

Z ) =
{

i∗RZ ,i∗θ, p = 0,

0, p 6= 0.

So the long exact sequence actually turns into

0 // RX ,Z ,θ
// RX ,θ

// i∗RZ ,i∗θ

// H 0(A •
X ,Z ) // 0 // 0

// H 1(A •
X ,Z ) // 0 // 0

// · · ·
// H p (A •

X ,Z ) // 0 // 0

// · · · .

So H p (A •
X ,Z ) = 0, for p ≥ 1. By Lemma 3, RZ ,i∗θ

∼= i∗RX ,θ and thus the fact that Z is the closed
submanifold implies that RX ,θ → i∗RZ ,i∗θ

∼= i∗i∗RX ,θ is an epimorphism. Hence, H 0(A •
X ,Z ) = 0.

In summary, we have the short exact sequence

0 // RX ,Z ,θ
// RX ,θ

// i∗RZ ,i∗θ
// 0, (5)

and the resolution of RX ,Z ,θ

0 // RX ,Z ,θ
// A 0

X ,Z

dθ // A 1
X ,Z

dθ // · · ·

C. R. Mathématique, 2020, 358, n 1, 67-77
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by H p (A •
X ,Z ) = 0, for p ≥ 0. We know that A

p
X ,Z is a C∞

X -module where C∞
X is the sheaf of germs

of C∞ differentiable functions over X . Since C∞
X is a fine sheaf, A

p
X ,Z is a fine sheaf too. So one

can calculate the cohomology of RX ,Z ,θ by

H p (X , RX ,Z ,θ) = H p (Γ(X , A •
X ,Z ),dθ) = H•

θ(X , Z ). (6)

Now let us introduce some definitions. For a sheaf F on a topological space X and a section s
of F over the open subset U of X , we define the support Supp(s) of s to be

Supp(s) = {x ∈U : sx 6= 0}.

Consider a locally closed subspace W of X . This means that any point of W has an open
neighbourhood V in X such that W ∩V is closed relative to V . The inclusion of W in X is denoted
by h : W → X .

Definition 4. For a sheaf E on W , h!E denotes the sheaf on X whose sections over an open set U of
X is given by

Γ(U , h!E) = {
s ∈ Γ(W ∩U , E) : Supp(s) is closed relative to U

}
.

Then we turn to the complex manifold X . As usual, set U := X − Z and let j : U → X be the
inclusion. A sheaf F on X gives rise to an exact sequence,

0 // j! j∗F // F // i∗i∗F // 0. (7)

According to Lemma 3, one has RZ ,i∗θ = i∗RX ,θ . The sequences (5) and (7) yield

RX ,Z ,θ = j! j∗RX ,θ.

Hence, H p (X , RX ,Z ,θ) is precisely the relative cohomology H p (X , Z ; RX ,θ) defined in the [5,
Definition IV.8.1] and [3, Proposition II.12.3] since

H p (X , RX ,Z ,θ) ∼= H p (X , j! j∗RX ,θ) ∼= H p (X , Z ; RX ,θ). (8)

Finally, we adopt the definition of relative homeomorphism as in [3], that is a closed map f of
pairs (X , A) → (Y ,B) such that A = f −1B and the induced map X − A → Y −B is a homeomor-
phism.

Lemma 5 ([3, Corollary 12.5]). If (X , A) and (Y ,B) are two closed paracompact pairs and f :
(X , A) → (Y ,B) is a relative homeomorphism, then for any sheaf A on Y,

f ∗ : H∗(Y ,B ;A) → H∗(X , A; f ∗A)

is an isomorphism.

3. Proof of Main Theorem 1

We combine the relative cohomological method in [12, 13, 14] with the sheaf theory of [8] induced
as above, to give a new simple proof of the blow-up formula for Morse–Novikov cohomology with
an explicit isomorphism.

3.1. Relative cohomological method

From now on, we set U := X − Z and let i : Z ,→ X and j : U → X be the inclusions. Let
{A •(X , Z ),dθ} be the relative Morse–Novikov complex. Then we obtain a short exact sequence

0 // A •(X , Z ) // A •(X )
i∗ // A •(Z ) // 0

and analogously,

0 // A •(X̃ ,E) // A •(X̃ )
ĩ∗ // A •(E) // 0.

C. R. Mathématique, 2020, 358, n 1, 67-77
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In particular, the blow-up diagram (3) induces a commutative diagram of short exact sequences

0 // A •(X , Z )

π∗
��

// A •(X )

π∗
��

i∗ // A •(Z )

π∗E
��

// 0

0 // A •(X̃ ,E) // A •(X̃ )
ĩ∗ // A •(E) // 0.

(9)

Then the commutative diagram (9) gives a commutative ladder of long exact sequences

· · · // H k
θ

(X , Z )

π∗

��

// H k
θ

(X )

π∗

��

// H k
i∗θ(Z )

π∗E
��

// H k+1
θ

(X , Z )

π∗

��

// · · ·

· · · // H k
π∗θ(X̃ ,E) // H k

π∗θ(X̃ ) // H k
π∗E i∗θ(E) // H k+1

π∗θ (X̃ ,E) // · · · .

(10)

Proposition 6. The induced map π∗ : H k
θ

(X , Z ) → H k
π∗θ(X̃ ,E) is an isomorphism.

Proof. It is obtained directly from Lemma 3, the equation (6), (8) and Lemma 5. �

One needs a proposition of Meng [8, Corollary 2.9] by the projection formula and here we give
another proof following [16], which is to be postponed in the next section.

Proposition 7. Let π : X̃ → X be a proper smooth map of oriented connected smooth manifolds
with the same dimension and deg π 6= 0. If θ is a closed 1-form on X , then π∗ : H∗

θ
(X ) → H∗

π∗θ(X̃ )
is injective.

Note that since π : X̃ → X and πE : E → Z are proper surjective holomorphic maps, the
pullback π∗ : H k

θ
(X ) → H k

π∗θ(X̃ ) and π∗
E : H k

i∗θ(Z ) → H k
π∗E i∗θ(E) are injective. The next proposition

is crucial to build the isomorphism of main theorem.

Proposition 8 ([17, Proposition 3.3]). Consider a commutative ladder of abelian groups such that
its horizontal rows are exact

· · · // A1

i1

��

f1 // A2

i2

��

f2 // A3

i3

��

f3 // A4

i4

��

f4 // A5

i5

��

// · · ·

· · · // B1
g1 // B2

g2 // B3
g3 // B4

g4 // B5
// · · · .

Assume that i1 is epimorphic, i2, i3, i5 are monomorphic and i4 is isomorphic. Then there holds a
natural isomorphism

coker i2
∼= coker i3.

Based on the Proposition 8, one can get an isomorphism from the commutative ladder (10)

H k
π∗θ(X̃ )/π∗H k

θ (X ) ∼= H k
π∗E i∗θ(E)/π∗

E H k
i∗θ(Z ). (11)

Now we need to figure out the relationship between H k
π∗E i∗θ(E) and H k

i∗θ(Z ). Recall E :=
π−1(Z ) ∼= P(NZ /X ). Then we need the projective vector bundle case of Leray–Hirsch theorem.
Here we refer to [12] and [13] for the Borel spectral sequence approach.

Proposition 9 ([8, Lemma 4.4]). Let π : P(E) → X be the projectivization of a holomorphic vector
bundle E of rank r on a complex manifold X and θ a closed 1-form on X . Assume that θ̃ = π∗θ
and h = c1(OP(E)(−1)) ∈ H 2

dR (P(E)) is the first Chern class of the universal line bundle OP(E)(−1) on
P(E). Then π∗(•)∧• gives isomorphisms of graded vector spaces

H∗
θ (X )⊗R spanR{1, · · · ,hr−1}→̃H∗

θ̃
(P(E)).

C. R. Mathématique, 2020, 358, n 1, 67-77
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According to Proposition 9 and (2), one gets the isomorphism

H k
π∗E i∗θ(E)/π∗

E H k
i∗θ(Z ) ∼=

r−1⊕
j=1

H k−2 j
i∗θ (Z ). (12)

Combing (11) and (12) and observing that π∗ is injective, one can obtain the Morse–Novikov
blow-up isomorphic formula

H k
π∗θ(X̃ ) ∼= H k

θ (X )⊕
(

r−1⊕
j=1

H k−2 j
i∗θ (Z )

)
.

This completes the proof for the isomorphism part of Main Theorem 1.

Remark. In [9], Meng studies the cohomologies with values in local system on smooth mani-
folds. Our approach should be applied to the blow-up formula for local system with finite rank.

3.2. Proof of Proposition 7

First we assume that X is an oriented differentiable manifold of dimension n. Let A k
c (X ) be the

space of compactly supported differential forms in A k (X ). We define the vector space Dk (X ) of
currents of type k on X as the dual space of the topological vector space A n−k

c (X ), and let Dk
X be

the sheaf of germs of k-currents. We define d : Dk (X ) →Dk+1(X ) as follows:

dT (α) := (−1)k+1T (dα),

for T ∈Dk (X ), α ∈A n−k−1
c (X ).

For T ∈Dk (X ) and g ∈A s (X ), we can also the wedge product T ∧ g ∈Dk+s (X ) as follows:

T ∧ g (α) := T (g ∧α),

for α ∈A n−k−s
c (X ). Similarly, define dθ : Dk (X ) →Dk+1(X ) as follows:

dθT := dT +θ∧T.

According to the above definitions, a direct check shows

dθT (α) = (−1)k+1T (d−θα),

for α ∈A n−k−1
c (X ). There is another resolution of soft sheaves of RX ,θ

0 // RX ,θ
i // D0

X

dθ // D1
X

dθ // · · · dθ // Dn
X

// 0,

where i is the inclusion. Moreover, A •
X ,→D•

X induces isomorphisms

H∗
θ (X )→̃H∗

D ,θ(X ) := H∗(D•(X ),dθ).

Here we refer to [1] for more details about Hodge theory for complex manifolds with twisted
differentials.

We now turn to general differentiable manifolds. Suppose that π : X̃ → X is a surjective proper
differentiable mapping of orientable differentiable manifolds of the same dimension. Then one
has the ladder

· · · A n−k (X̃ )oo A n−k−1(X̃ )
d−π∗θoo · · ·oo

· · · A n−k (X )oo

π∗

OO

A n−k−1(X )
d−θoo

π∗

OO

· · ·oo

C. R. Mathématique, 2020, 358, n 1, 67-77
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and by duality, there is a push-out π[ of the dual ladder

· · · // Dk (X̃ )

π[
��

dπ∗θ// Dk+1(X̃ )

π[
��

// · · ·

· · · // Dk (X )
dθ // Dk+1(X ) // · · · .

Obviously A k (X ) ⊆Dk (X ) as a subspace of k-currents. Now consider the diagram

A k (X̃ )
%̃ // Dk (X̃ )

π[
��

A k (X )

π∗

OO

% // Dk (X ),

(13)

where % and %̃ are the natural injections which are compatible with the dθ and dπ∗θ respectively.

Lemma 10 ([16, Lemma 2.1]). In the above diagram (13), µ% = π[%̃π
∗ where µ is the degree of the

mapping π.

In other words, the diagram (13) is commutative up to a fixed constant multiple, which
would not affect the passage to cohomology later on. According to Lemma 13, we obtain the
commutative diagram

H k
π∗θ(X̃ )

%̃∗ // H k
D ,π∗θ(X̃ )

π[

��
H k
θ

(X )

π∗
OO

%∗ // H k
D ,θ

(X ).

(14)

Now we can prove the injection of π∗. If ξ ∈ H k
θ

(X ) such that π∗ξ = 0, then π[%̃∗π∗ξ = µ%∗ξ = 0
and since µ 6= 0 and %∗ is injective, it follows that ξ= 0. This completes the proof of Proposition 7.

3.3. Explicit isomorphisms between cohomologies

The construction of the morphism φ is inspired by [13]. In view of Proposition 9, we get

H k
π∗E i∗θ(E) ∼=

r−1⊕
j=0

h j ∧π∗
E H k−2 j

i∗θ (Z ),

where h := c1(OE (−1)) ∈ H 2
dR (E), and π∗

E is the pullback of the projection πE : E → Z . It means
that each class [α̃]k ∈ H k

π∗E i∗θ(E) admits a unique expression

[α̃]k =
r−1∑
j=0

h j ∧π∗
E [α]k−2 j ,

where [α]k−2 j ∈ H k−2 j
i∗θ (Z ). It’s natural to define the linear map

Π j : H k
π∗E i∗θ(E) → H k−2 j

i∗θ (Z )

[α̃]k 7→ [α]k−2 j .

Then we can define the desired morphism φ by setting

φ=π∗+
r−1∑
j=1

Π j ◦ ĩ∗ (15)
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which maps Vk := H k
π∗θ(X̃ ) to the space

Wk := H k
θ (X )⊕

(
r−1⊕
j=1

H k−2 j
i∗θ (Z )

)
.

Over a compact complex manifold, the Morse–Novikov cohomology group has finite dimen-
sion. Since Vk is isomorphic to Wk as proved, it suffices to verify the injectivity of φ. From (10),
one obtains a commutative diagram of short exact sequences

0 // H k
θ

(X )

i∗

��

π∗ // H k
π∗θ(X̃ )

ĩ∗
��

// coker(π∗)

j̃∗ ∼=
��

// 0

0 // H k
i∗θ(Z )

π∗E // H k
π∗E i∗θ(E) // coker(π∗

E ) // 0.

(16)

Here j̃∗ is the induced isomorphism of the quotient spaces by ĩ∗. Combining (14) with (16) gives
rise to the following diagram

H k
D ,θ

(X ) H k
D ,π∗θ(X̃ )

π[oo

0 // H k
θ

(X )

%∗ ∼=
OO

i∗

��

π∗ // H k
π∗θ(X̃ )

ĩ∗
��

%̃∗ ∼=
OO

// coker(π∗)

j̃∗ ∼=
��

// 0

0 // H k
i∗θ(Z )

π∗E // H k
π∗E i∗θ(E) // coker(π∗

E ) // 0.

Recall that π∗ = %−1∗ ◦π[ ◦ %̃∗ and φ=π∗+∑r−1
j=1Π j ◦ ĩ∗ maps H k

π∗θ(X̃ ) to

H k
θ (X )⊕

(
r−1⊕
j=1

H k−2 j
i∗θ (Z )

)
.

We already know that π∗ is surjective and a direct check shows that the kernel of π∗ is equal to
the co-kernel of π∗, i.e.,

ker(π∗) = coker(π∗)
j̃∗→

(
r−1⊕
j=1

h j ∧π∗
E H k−2 j

i∗θ (Z )

)
.

It follows that the restriction of ĩ∗ on ker(π∗) is injective. Given an element α̃ ∈ H k
π∗θ(X̃ ), suppose

φ(α̃) = 0. Then we get α̃ ∈ ker(π∗), ĩ∗(α̃) = 0 and so α̃= 0. This implies that φ is injective.
We just proved the isomorphism of φ when the manifold X is compact. And in non-compact

case, it holds too. In fact, the Morse–Novikov cohomology can be calculated by the sheaf coho-
mology of RX ,θ,

H∗
θ (X ) ∼= H∗(X ,RX ,θ).

The weight θ-sheaf RX ,θ is a locally constant sheaf of R-modules of rank 1. According to [8,
Lemma 4.3] and [9, Proposition 6.8], the morphisms φ and ψ in (1) are inverse to each other.
Since Meng has proved that the morphism ψ is isomorphic in [8, Main Theorem 1.3], φ is also an
isomorphism.
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