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1. Introduction and main results

In this paper, we firstly describe entire solutions of the following partial differential equations in
Cn

ut +B(u)ux = L(ux ), (1)

where B(u) = ∑m
k=0 bk uk (bm 6≡ 0, m ≥ 2) is a polynomial in u and L(ux ) is a partial differential

polynomial in ux with degree at most m −1, and the coefficients of B(u) and L(ux ) are rational
functions. Equation (1) have some prototypes, such as the modified KdV-Burgers equation and
modified Zakharov–Kuznetsov (mZK) equation, which are stated in (2), (3) respectively.

ut −αu2ux =βuxx −uxxx (2)

ut +βu2ux =−(
uxxx +ux y y

)
, (3)

where α and β are nonzero constants. These PDEs are occurring in various areas of applied
mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. There
are so many approaches developed over years to analyze/solve such PDEs. For example, Hassan
in [5] obtained abundant new exact solutions of modified Zakharov–Kuznetsov (mZK) equation
arising in plasma and dust plasma are presented by using the extended mapping method and
the availability of symbolic computation. These solutions include the Jacobi elliptic function
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solutions, hyperbolic function solutions, rational solutions, and periodic wave solutions. Yuan
in [26] employed complex method to obtain all traveling meromorphic exact solutions of the
modified Zakharov–Kuznetsov (mZK) equation.

It is known that the study of complex entire and meromorphic solutions of partial differential
equations has a long history. Given a nonlinear differential equation, it is in general difficult to
find such solutions in closed form. Recently, by employing Nevanlinna theory, Li, Hu and their co-
workers considered entire solutions of some certain PDEs, see e.g., [7,10,12,15,17]. In this paper,
inspired by their ideas, we firstly consider the solutions of (1) for complex variables. Actually, we
describe entire solutions of (1) as follows.

Theorem 1. Suppose that u is an entire solution of (1). Then u is a polynomial. In particular, u
is constant if the coefficients of B(u), L(ux ) are constant and L(ux ) does not contain the constant
term.

Remark 2. From Theorem 1, we can see that all entire solutions of (2)-(3) are constant. It is also
pointed out that the conclusion of Theorem 1 is invalid for meromorphic solutions, as seen by
the following Example 3, which can be found in [26, Theorem 1].

Example 3. Consider the mZK equation (3). Substituting traveling wave transformation
u(x, t , y) = w(z), z = k(x + l y), into (3), and integrating it yields

k2 (
l 2 +1

)
w ′′+ β

3
w3 = 0. (4)

Then, the following function is a transcendental meromorphic solution of (4).

wd (z) =C

(−℘+ A
)(

4℘A2 +4℘2 A+2℘′B −℘g2 − Ag2
)((

12A2 − g2
)
℘+4A3 −3Ag2

)
℘′+4B℘3 +12AB℘2 −3B g2℘− AB g2

,

where

C =±1

2

√
−6k2

(
1+ l 2

)
β

,

B 2 = 4A3 − g2 A, g2 and A are arbitrary constants, ℘ is Weierstrass elliptic function. Therefore,
the function u(x, t , y) = w(k(x + l y)) is a meromorphic solution of (3). In fact, one can find some
other transcendental meromorphic solutions to (3) in [26].

Remark 4. We emphasize that the method in Theorem 1 does not work if the degree of L(ux ) is
m. Unfortunately, we can not handle this case and leave it for further research. The conclusion of
Theorem 1 is invalid if the degree of L(ux ) is larger than m, as seen by the following Example 5.

Example 5. The function u(x, t ) = ex+t satisfies the equation ut +u2ux = (uxx )3 +ux . But u(x, t )
is not a polynomial.

Next, we turn our attention to entire and meromorphic solutions of general inviscid Burgers’
equation. Burgers’ equation or Bateman–Burgers equation

ut +uux =βuxx (5)

is a fundamental partial differential equation occurring in various areas of applied mathematics.
This is the simplest PDE combining both nonlinear propagation effects and diffusive effects.
The Burgers’ equation has been solved by many ways. In [4], Fay derived one of the most
interesting solutions of Burgers’ equation, in a series form. Without any auxiliary conditions, a
Riccati solution for the Burgers’ equation was found by Rodin in [20]. By employing a new finite-
element method, Varoglu and Finn in [24] solved the Burgers’ equation which was based on the
combination of the space-time elements and the characteristics. When the right term of (5) is
removed, one gets the hyperbolic PDE

ut +uux = 0, (6)
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which is called inviscid Burgers’ equation. In [15], Li considered entire solutions of (6). More
generally, Li obtained the following.

Theorem A. A function u is an entire solution of the partial differential equation ut −Cumux = 0
in C2, where C 6= 0 is a constant and m ≥ 0 is an integer, if and only if u is a constant when m > 0;
and u = f (x +C t ) when m = 0, where f is an entire function in the complex plane.

Naturally, one may ask what will happen if the right side 0 of the above PDE in Theorem A
is replaced by a polynomial Q. Obviously, the equation ut −Cumux = Q has nonconstant entire
solutions when m > 0, such as u = x is a solution to ut −Cumux = −C xm . Observe that u = x is
a polynomial. This observation leads us to ask whether all entire solutions of the above PDE are
polynomials or not if m > 0. Next, we focus on these questions and consider entire solutions of
the following equation (which can be called general inviscid Burgers’ equation)

ut −Cumux =Q, (7)

where C 6= 0 is a constant, m ≥ 0 and Q is a polynomial. Actually, combining characteristic equa-
tions for quasi-linear partial differential equations, normal family and the Nevanlinna theory, we
derive that

Theorem 6. Suppose that u is an entire solution to (7). Then the following assertions hold:

(1) If m ≥ 2, then u is a polynomial;
(2) If m = 1, then either u is a polynomial or

u(x, t ) = eβ(t ) +xα(t )+ A,

where A is a constant, α(t )(6≡ 0), β(t ) are polynomials satisfying

β′(t ) =Cα(t ), x
[
α′(t )−Cα2(t )

]−C Aα(t ) =Q(x, t );

(3) If m = 0, then

u (x, t ) = F (t , x +C t )+ f (x +C t ) ,

where F (θ, s) = ∫ θ
0 Q(θ,−Cθ + s)dθ is a polynomial and f is an entire function in the

complex plane.

Remark 7. From Theorem 6(2) one can obtain that ut−Cuux =Q does not admit transcendental
entire solutions if degx Q 6= 1 with respective to the variable x. We also point out that all the
cases (1)-(3) in Theorem 6 can indeed occur.

For the special case that Q is constant, we can immediately derive the following Corollary 8 by
Theorem 6.

Corollary 8. Suppose that u is an entire solution to ut −Cumux = A, where A and C ( 6= 0) are
constant. Then the following assertions hold:

(1) If m ≥ 1, then u(t ) = At +B, where B is an arbitrary constant;
(2) If m = 0, then

u (x, t ) = At + f (x +C t ) ,

where f is an entire function in the complex plane.

Obviously, Corollary 8 is an improvement of Theorem A. It is also pointed out that (7) admits
meromorphic functions. For example, u = 1

x+t + xt is a meromorphic solution to ut −ux = x − t ;
u = x

t + t 2 is a meromorphic solution to ut +uux = 3t . In [21], Saleeby considered meromorphic
solutions of ut − Cumux = 0. Below, by the characteristic equations for quasi-linear partial
differential equations, we also describe meromorphic solutions to (7) as follows.
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Theorem 9. Suppose that u is a meromorphic solution to (7). Then the following assertions hold:

(1) If m ≥ 2, then u is a rational function;
(2) If m = 1, then u is a rational function or u = P0(t , x)+P1(t , x)u

Q0(t , x)+Q1(t , x)u , where Pi (t , x), Qi (t , x)
(i = 0, 1) are polynomials;

(3) If m = 0, then
u (x, t ) = F (t , x +C t )+ f (x +C t ) ,

where F (θ, s) = ∫ θ
0 Q(θ,−Cθ+ s)dθ is a polynomial and f is a meromorphic function in C.

Remark 10. The conclusion (2) of Theorem 9 seems unclear. Actually, the form

u = P0(t , x)+P1(t , x)u

Q0(t , x)+Q1(t , x)u

may become the trivial case u = u. Therefore, we can not get any useful information from
the equation. Indeed, the conclusion (2) does not describe the specific forms of meromorphic
solutions to (7) as in Theorem 6, and our method is invalid for this case m = 1. Here, we leave this
case for further research.

In order to prove the above results, we need some notations and results. Let f (ξ) be a mero-
morphic function inCn . We use the following Nevanlinna characteristic function (see e.g., [13,22])

T f (r, s) =
∫ r

s

A f (t )

t
d t for r ≥ s > 0

where

A f (t ) = (n −1)!

πn t 2n−2

∫
Bn (t )

i

2
(
1+| f |2)2 d f ∧d f̄ ∧ωn .

Here Bn(t ) = {
ξ ∈Cn : |ξ| < t

}
, and

ωn (ξ1, . . . , ξn) = 1

(n −1)!

{
n∑

j=1

i

2
dξ j ∧d ξ̄ j

}n−1

.

The order %( f ) of f is defined by

%( f ) = limsup
r→∞

log+ T f (r, s)

logr
, for fixed s > 0.

Below, we also write T f (r, s) as T (r, f ). It is said that f has finite (respectively infinite) order if %( f )
is finite (respectively infinite). We remark that f is rational if and only if T (r, f ) =O(logr ).

We are able to prove (2) of Theorem 6 by utilizing the following Proposition 11, which is itself
of independent interest. And the proofs of Proposition 11 are based on normal family, which is
stated in Section 3.

Proposition 11. Suppose that u is an entire solution to

ut −Cumux =Q, (8)

where C 6= 0 is a constant, m ≥ 1 and Q is a polynomial. Then u is of finite order.

Remark 12. Obviously, the conclusion is invalid if m = 0, as seen by Theorem A and the following
Example 13.

Example 13. The function u = ee(x+C t )
is an entire solution of ut −Cux = 0. But u is of infinite

order.

Before to proceed, we assume the reader’s familiarity with the basic notations of Nevanlinna
theory of meromorphic functions in Cn , such as the characteristic function T (r,u) and the
proximity function m(r,u), and utilize four results of a meromorphic function u in Cn (see e.g.,
[1, 22, 25]):
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(a) The Nevanlinna first fundamental theorem T (r, 1
u−a ) = T (r,u)+O(1) for any meromor-

phic function u and constant a;
(b) The logarithmic derivative lemma

‖m

(
r,

uz j

u

)
=O

(
logr T (r,u)

)
,

where the symbol ‖ means that the relation holds outside a set of r of finite linear
measure;

(c) Suppose that R(u) = P (u)
Q(u) , where P, Q are co-prime polynomials in u with rational

coefficients. Then

‖T (r,R(u)) = max
{
degP, degQ

}
T (r,u)+O(logr ) ;

(d) If f is a transcendental meromorphic function in C and g is a transcendental entire
function in Cn , then l i mr→∞

T (r, f (g ))
T (r,g ) =∞.

2. Proofs of main theorems

In this section, base on the ideas in [15, 21], we give the proofs of Theorems 1, 6 and 9.

Proof of Theorem 1. The proof of Theorem 1 is based on the following general Clunie Lemma 14
in Cn , which can be seen in [11]. For the case n = 1, see [6, Lemma 3.3]. For some special cases,
see [8, 9]. A general proof can be found in [14].

Lemma 14 (General Clunie Lemma.). Let f be a nonconstant meromorphic function onCn . Take
a positive integer t and take polynomials of f and its partial derivatives:

P ( f ) = ∑
p∈ I

ap f p0
(
∂i f f

)p1 · · ·
(
∂ii f

)pi
, p = (

p0, . . . , pl
) ∈Zl+1

+

Q( f ) = ∑
q∈ J

cq f q0
(
∂j1 f

)q1 · · ·
(
∂js f

)qs
, q = (

q0, . . . , qs
) ∈Zs+1

+

and

B( f ) =
t∑

k=0
bk f k ,

where I , J are finite sets of distinct elements and ap , cq , bk are rational functions onCn with bt 6≡ 0.
Assume that f satisfies the equation

B( f )Q( f ) = P ( f ).

If deg(P ( f )) ≤ t = deg(B( f )), then

‖ m
(
r,Q( f )

)=O
(
logr T (r, f )

)
.

Now, we give the proof of Theorem 1. Firstly, assume that u is transcendental. We rewrite (1)
as

B(u)ux = L(ux )−ut . (9)

Applying General Clunie Lemma 14 to equation (9) leads to ‖m(r,ux ) =O(logr T (r,u)). Then

‖T (r,ux ) = m(r,ux ) =O
(
logr T (r,u)

)
.

C. R. Mathématique, 2020, 358, n 11-12, 1169-1178
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Assume that ux 6≡ 0. Then the fact (a) yields that T (r, 1
ux

) = T (r,ux )+O(1) = O(logr T (r,u)). Note
that m ≥ 2. So, the fact (c) yields that

‖mT (r,u) = T (r,B(u))+O(logr ) ≤ m (r,B(u)ux )+m

(
r,

1

ux

)
+O(logr )

≤ m (r,L(ux )−ut )+T (r,ux )+O(logr )

≤ (m −1)T (r,u)+O
(
logr T (r,u)

)
,

(10)

which implies that T (r,u) =O(logr T (r,u)). It forces that u reduces to a polynomial, a contradic-
tion. Thus, ux ≡ 0. Then u is a function of the complex variable t only and (1) reduces to ut ≡C (t ),
a polynomial, which implies that u is also a polynomial, a contradiction. All the above discussions
yields that u is a polynomial. Moreover, suppose the coefficients of B(u) and L(ux ) are constant.
Note that u is a polynomial and L(ux ) does not contain the constant term. By comparing the de-
grees of both sides of (1), one can easily deduce that u is constant. Thus, the proof of Theorem 1
is finished. �

Proof of Theorem 6. Due to Theorem 1, Proposition 11 and the characteristic equations for
quasi-linear partial differential equations, we give the proof of Theorem 1. From Theorem 6, it
is suffice to consider the cases m = 1 and m = 0. We consider two cases.

Case 1. [m = 1]
Applying General Clunie Lemma to (7) yields that ‖m(r,ux ) = O(logr T (r,u)). By Proposi-

tion 11, one gets that f is of finite order. Then T (r,u) = O(r ρ), where ρ is a non-negative finite
number. Further,

‖T (r,ux ) = m(r,ux ) =O
(
logr T (r,u)

)=O(logr ),

which implies that ux is a polynomial. Then, one can assume that

u(x, t ) = P (x, t )+ v(t )+ A, (11)

where A is a constant, P (x, t ) is a polynomial and v(t ) is an entire function. By differentiating (11)
with respect to the variables t and x, we have

ut (x, t ) = Pt (x, t )+ v ′(t ), ux (x, t ) = Px (x, t ).

Substituting the above functions into (7) with m = 1, one has

Pt (x, t )+ v ′(t )−C [P (x, t )+ v(t )+ A]Px (x, t ) =Q(x, t ). (12)

Suppose that v(t ) is transcendental. Then, the equation (12) indicates that

v ′(t ) =C v(t )Px (x, t ), Pt (x, t )−C P (x, t )Px (x, t )−C APx (x, t ) =Q(x, t ). (13)

The former equation yields that Px (x, t ) is a polynomial of the complex variable t only. Assume
that Px (x, t ) =α(t ). Then, P (x, t ) = xα(t ). Furthermore, integrating the first equation of (13) leads
to that

v(t ) = eC
∫
α(t )d t = eβ(t ),

where β(t ) is also a polynomial with β′(t ) =Cα(t ). The latter equation of (13) yields that

x
[
α′(t )−Cα2(t )

]−C Aα(t ) =Q(x, t ),

which is the desired result.

Case 2. [m = 0] Then, (7) becomes ut −Cux =Q. Here, we employ the method in [16] to deal with
this case. Note that the characteristic equations for the above partial differential equation are of
the forms

d t

dθ
= 1,

d x

dθ
=−C ,

du

dθ
=Q.

C. R. Mathématique, 2020, 358, n 11-12, 1169-1178
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Using the initial condition: t = 0, x = s, and u = u(0, s) := f (s) with a parameter s, we obtain the
following parametric representation for the solutions of the characteristic equations: t = θ, x =
−Cθ+ s,u = F (θ, s)+ f (s), where F (θ, s) = ∫ θ

0 Q(θ,−Cθ+ s)dθ is a polynomial. Note that θ = t and
s = x +C t . Thus, we have

u (x, t ) = F (t , x +C t )+ f (x +C t ) .

Hence, the proof of Theorem 6 is finished. �

Proof of Theorem 9. Note that the characteristic equations for the above partial differential
equation are of the forms

d t

dθ
= 1,

d x

dθ
=−Cum ,

du

dθ
=Q.

As the proof in Theorem 6, using the initial condition: t = 0, x = s, and u = u(0, s) := f (s)
with a parameter s, we obtain the following parametric representation for the solutions of the
characteristic equations:

t = θ, x =−Cumθ+ s,u = F
(
θ, s,um)+ f (s) ,where F

(
θ, s,um)= ∫ θ

0
Q

(
θ,−Cumθ+ s

)
dθ.

Obviously, F is a polynomial. Note that θ = t and s = x +Cum t . Thus, we have

u (x, t ) = F
(
t , x +Cum t ,um)+ f

(
x +Cum t

)
.

For m = 0, then we can rewrite u as

u (x, t ) = F (t , x +C t )+ f (x +C t ) ,

which is the conclusion of Theorem 9(3).
Suppose that m ≥ 1. Note that F is a polynomial. By the fact (d) (which was obtained by Chang–

Li–Yang in [1, Theorem 4.1]), one gets f must be a rational function. Further, we can set u as

u = Σ
µ

i=0Pi (t , x) (um)i

Σνj=0Q j (t , x) (um) j
,

where µ, ν are two non-negative integers, Pi (t , x), Q j (t , x) are polynomials with Pµ(t , x) 6≡ 0 and
Qν(t , x) 6≡ 0. Assume that u is transcendental. Then, the fact (c) yields

T (r,u) = T

(
r,
Σ
µ

i=0Pi (t , x) (um)i

Σνj=0Q j (t , x) (um) j

)
= max{ν,µ}T

(
r,um)+O(logr ) = m max{ν,µ}T (r,u)+O(logr ),

which implies that m = 1 and max{ν,µ} = 1. Thus, we obtain that u is a rational function when
m ≥ 2. This is Theorem 9(1).

For m = 1, one has the form u = P0(t ,x)+P1(t ,x)u
Q0(t ,x)+Q1(t ,x)u . This is Theorem 9(2).

The proof of Theorem 9 is finished. �

3. Proof of Proposition 11

For the proof of Proposition 11, we need the following facts of normal family, which can be found
in [3].

A family F of holomorphic functions on a domain Ω ⊆ Cn is normal in Ω if every sequence
of functions { f j } ⊆ F contains either a subsequence which converges to a limit function f 6= ∞
uniformly on each compact subset of Ω, or a subsequence which converges uniformly to ∞ on
each compact subset.

C. R. Mathématique, 2020, 358, n 11-12, 1169-1178
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A family F is said to be normal at a point z0 ∈Ω if it is normal in some neighbourhood of z0.
A family of holomorphic functions F is normal in a domain Ω if and only if F is normal at each
point ofΩ.

For every function φ of class C2(Ω), define at each point z ∈Ω a Hermitian form

Lz (ϕ, v) :=
n∑

k, l=1

∂2ϕ

∂zk∂z̄l
(z)vk v̄l

and call it the Levi form of the function φ at z. For a holomorphic function f inΩ, set

f ](z) := sup
|v |=1

√
Lz

(
log

(
1+| f |2) , v

)
. (14)

This quantity is well defined since the Levi form Lz (log(1+| f |2), v) is non-negative for all z ∈Ω.
In particular, for n = 1, formula (14) takes the form

f ](z) :=
∣∣ f ′(z)

∣∣
1+ ∣∣ f (z)

∣∣2 ,

which is the spherical derivative of f in C.
We now recall Zalcman’s Rescalling Lemma in several complex variables, which is given by

Dovbush in [3].

Lemma 15. Suppose that a family F of functions holomorphic on Ω⊆ Cn is not normal at some
point z0 ∈Ω. Then there exist sequences f j ∈F , z j → z0, ρ j → 0, such that the sequence

g j (z) = f j
(
z j +ρ j z

)
converges locally uniformly in Cn to a nonconstant entire function g .

Remark 16. We point out that if a j → z0 and f ]j (a j ) →∞, then one can choose ρ j in Lemma 15
satisfying

ρ j ≤ M

f ]j
(
a j

) , (15)

where M is a fixed positive constant. For n = 1, some similar results can be found in [19, 27].

Proof of Proposition 11. Below, based on the idea in [18], we will give the proof. On the contrary,
we assume that u is of infinite order. Firstly, we claim that for every N > 0, there exists a sequence
wn →∞ such that, if n is sufficiently large

u](wn) > |wn |N . (16)

Assume the claim is not true. Then, there exist N > 0 and R0 > 0 such that for all z, |z| ≥ R0, one
has

u](z) < |z|N . (17)

A calculation yields that

Lz
(
log

(
1+|u|2) , v

)= |du(z)v |2(
1+|u(z)|2)2 . (18)

By combining (17) and (18), one has

|du(z)v |2(
1+|u(z)|2)2 ≤ |z|2N , f or |v | = 1. (19)
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Further, we have

Au(t ) = 1

π
t−2

∫
B2(t )

i

2
(
1+|u|2)2 du ∧dū ∧ω2

≤ K ′t−2
∫

B2(t )

1(
1+|u|2)2

[(
∂u

∂x

)2

+
(
∂u

∂t

)2]
ω2

≤ K ′′t 2N−2
∫

B2(t )
ω2 ≤ K t 2N+2,

(20)

where K ′, K ′′ and K are positive constants. Then,

Tu(r ) =
∫ r

s

Au(t )

t
d t ≤ K

r 2N+2

2N +2
,

which implies that u is of finite order. Thus, the claim holds.
Below, we employ the following Marty’s Criterion of normal families in terms of the spherical

metric on Cn , which can be found in [2, 3, 23].

Lemma 17 (Marty’s Criterion). A family F of functions holomorphic on Ω is normal on Ω⊆ Cn

if and only if for each compact subset K ⊆Ω there exists a constant M(K ) such that at each point
z ∈ K

f ](z) ≤ M(K )

for all f ∈F .

For N large enough, we choose a sequence wn satisfying (16). Define D = {z : |z| < 1} and

fn(z) = u(wn + z).

Then all fn(z) are holomorphic in D and f ]n(0) = w ](wn) →∞ as n →∞. It follows from Marty’s
criterion that ( fn)n is not normal at z = 0. Therefore, we can apply Lemma 15 and Remark 16.
Choosing an appropriate subsequence of ( fn)n if necessary, we may assume that there exist
sequence zn → 0 and ρn ≤ M

f ]n (0)
= M

u](wn )
→ 0 such that the sequence gn defined by

gn(ζ) = fn
(
zn +ρnζ

)= u
(
wn + zn +ρnζ

)
(21)

locally uniformly in C2 to a nonconstant entire function g . Further, one has

ρn ≤ M

u](wn)
≤ M |wn |−N . (22)

Then,
(gn)t (ζ) = ρn( fn)t

(
zn +ρnζ

)= ρnut
(
wn + zn +ρnζ

)→ g t (ζ),

(gn)x (ζ) = ρn( fn)x
(
zn +ρnζ

)= ρnux
(
wn + zn +ρnζ

)→ gx (ζ),
(23)

locally uniformly in C2. Note that the equation (8). Then,

ρnut
(
wn + zn +ρnζ

)−Cρnum (
wn + zn +ρnζ

)
ux

(
wn + zn +ρnζ

)= ρnQ
(
wn + zn +ρnζ

)
. (24)

Choosing N such that N > degQ. Let n → ∞. Combining (22) and (23), then (24) become the
following equation

g t −C g m gx = 0.

Then, by Theorem A, one has g is constant, a contradiction. The proof of Proposition 11 is
finished. �
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