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Abstract. In this paper, we consider the asymptotic behavior at infinity of solutions of a class of fully nonlinear
elliptic equations F (D2u) = f (x) over exterior domains, where the Hessian matrix (D2u) tends to some
symmetric positive definite matrix at infinity and f (x) = O(|x|−t ) at infinity with sharp condition t > 2.
Moreover, we also obtain the same result if (D2u) is only very close to some symmetric positive definite matrix
at infinity.
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1. Introduction

Rigidity theorem, such as Bernstein theorem, Liouville theorem and asymptotic behavior, is
an important essay in both partial differential equations and geometric problems. For Laplace
equation, lots of renowned mathematicians, such as Cauchy, Liouville and Bôcher, have done
outstanding works on it. For Monge–Ampère equation, one of the most arresting fully nonlinear
equations, Jögens [12] (n = 2), Calabi [6] (n ≤ 5) and Pogorelov [20] (n ≥ 2) established the well
known Liouville theorem (also called Jögens–Calabi–Pogorelov Theorem), which states that any
classical convex solution of

detD2u = 1 in Rn

is a quadratic polynomial. Later, Cheng and Yau [8] given an easier proof of Jögens–Calabi–
Pogorelov Theorem by geometric method; Caffarelli [3] extended it to viscosity solutions; Caf-
farelli and Li [5] reported the asymptotic behavior at infinity of viscosity solution of detD2u = 1
outside a bounded domain of Rn . Essentially, [5] provided a incisive observation to analyse the
asymptotic behavior for fully nonlinear equations.

Recently, many researchers studied the Liouville theorem and asymptotic behavior for various
types of fully nonlinear equations such as k-Hessian equations [2, 7], parabolic k-Hessian equa-
tions [19], Hessian quotient equations [13], special Lagrangian equations [14, 18], Lagrangian
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mean curvature equations [1], parabolic Monge–Ampère equations [21–23], some fully nonlin-
ear degenerate equations [15–17], and the references therein. Especially, Li et al. [14] investigated
the asymptotic behavior at infinity for general fully nonlinear elliptic equations

F
(
D2u

)= 0 in Rn\B 1,

under the boundedness condition of Hessian matrix D2u, where F is uniformly elliptic and either
concave or convex (cf. [4] for definitions).

In this paper, we continue to consider the asymptotic behavior at infinity for more general fully
nonlinear elliptic equations, say the right hand term is nontrivial. But, as a compensation for the
loss of f , we need to assume that D2u converges or is very close to some symmetric positive
definite matrix at infinity.

The following is our main result.

Theorem 1. Let u be a smooth solution of fully nonlinear equation

F
(
D2u

)= f (x) in Rn\B 1, (1)

where n ≥ 3, F ∈C m(R2n) is concave and uniformly elliptic, and f ∈C m(Rn\B 1) satisfies

f (x) =Om
(|x|−t ) as |x|→∞, (2)

where m ≥ 2 and t > 2. Suppose that

D2u → A as |x|→∞, (3)

where A is some symmetric positive definite matrix with F (A) = 0. Then there exists a unique
quadratic polynomial

Q(x) = 1

2
xT Ax +bT x + c

such that

u −Q =


Om+1

(|x|2−t
)

, if t < n,

om+1
(|x|2−s

)
for all s ∈ (2,n), if t ≥ n,

Om+1
(|x|2−n

)
, if t > n

at infinity, (4)

where b ∈ Rn is some vector, c ∈ R is some constant and ϕ(x) = Ok (|x|β)(or ok (|x|β)) means that
|D`ϕ| =O(|x|β−`) (or o(|x|β−`)) for all `= 0,1, · · · , k.

Remark 2. Theorem 1 still holds if either F is convex, or {M | F (M) = 0} is convex.

Remark 3. For any fixed e ∈ ∂B1, uee is a subsolution of the linearized equation of Equation (1)
with right term fee . Indeed, for all e, s ∈ ∂B1,

∂F

∂xe
= ∂F

∂ui j

∂ui j

∂xe
:= Fi j (ue )i j = fe (x);

∂2F

∂xe∂xs
= ∂

(
Fi j (ue )i j

)
∂xs

+Fi j (ues )i j

= ∂2F

∂ui j∂ukl

∂ui j

∂xe

∂ukl

∂xs
+Fi j (ues )i j

: = Fi j ,kl (ue )i j (us )kl +Fi j (ues )i j

= fes (x).

Thus,
Fi j

(
D2u

)
(ue )i j = fe (x); Fi j

(
D2u

)
(ues )i j = fes (x)−Fi j ,kl (ue )i j (us )kl .

In particular, if s = e,

Fi j
(
D2u

)
(uee )i j = fee (x)−Fi j ,kl (ue )i j (ue )kl ≥ fee (x),
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where the concavity of F is applied. Thus, uee is a subsolution of

Fi j
(
D2u

)
wi j (x) := ai j (x)wi j (x) := Lw = fee (x).

which is the linearized equation of Equation (1).

Next Theorem 4 states that the convergence condition (3) can be replaced by a weaker version.

Theorem 4. There exists small σ(n, A,F ) depending only on n, A and F such that if∣∣D2u − A
∣∣≤σ(n, A,F ) at infinity, (5)

but not (3), then (4) in Theorem 1 still holds with a unique quadratic polynomial

Q(x) = 1

2
xT Ãx +bT x + c,

where Ã is some symmetric positive definite matrix with F (Ã) = 0.

Remark 5. It is easy to see that Ã may not be A.

Remark 6. After proper rescaling, by (3) or (5), we can always assume that∥∥D2u
∥∥

L∞
(
Rn \B 1

) ≤ K <+∞, (6)

where K > 0 is some constant depending only on A. Therefore, in the remaining of this paper, we
will take advantage of this fact directly and repeatedly.

For general fully nonlinear elliptic equations, including Equation (1), the usual method of ob-
taining the asymptotic behavior of its solution is to find proper function such that the difference
between the function and the solution solves some kind of linear elliptic equations (we call this
step is nonlinear approach), and then to investigate the asymptotic behavior of the kind of elliptic
equations (we call this step is linear approach). Based on the nonlinear approach and the linear
one, the desired result will be deduced.

This paper is organized as follows. In Section 1, we introduce our main results. In Section 2, we
first study the first step (nonlinear approach) under weaker condition (5); and then to investigate
the second step (linear approach), we give the asymptotic behavior for a class of non-divergence
linear elliptic equations. In Section 3, combining above two approaches, the proof of Theorem 1
completes, which together with Lemma 7 follows Theorem 4.

2. Preliminaries

In this section, two parts are considered, the first one is to obtain (3) combining with (5) and
the Equation (1); the second one is to study the asymptotic behavior for some kind of elliptic
equations over exterior domains.

2.1. D2u tends to some symmetry positive definite matrix at infinity with (5)

The following Lemma 7 shows that the Hessian matrix of u in Theorem 4 tends to some sym-
metric positive definite matrix at infinity by making use of the method given by Li et al. in [14,
Lemma 2.1]. Then, the following auxiliary lemma together with Theorem 1 implies Theorem 4,
immediately.

Lemma 7. Let u be as in Theorem 4. Then there exists a symmetric positive definite matrix Ã such
that

D2u(x) → Ã as |x|→∞.

C. R. Mathématique, 2020, 358, n 11-12, 1187-1197



1190 Xiaobiao Jia

Proof. It only needs to show that for any fixed e ∈ ∂B1, uee converges to some constant at infinity.
The symmetry and the positive definiteness can be deduced by the smoothness of u and (5),
respectively.

Denote

w(x) = uee (x), w = lim
|x|→∞

w(x), w = lim
|x|→∞

w(x).

It’s enough to prove that w = w .
Now we argue this by contradiction. If it is wrong, we have w − w =: 5d > 0. Clearly, for any

0 < ε< d , there exists some large constant R = R(ε) > 1 such that

w −ε≤ w(x) ≤ w +ε
for all x ∈ BC

R/2, and also there exists a sequence of xk in BC
R/2, such that

w
(
xk

)≤ w +ε,
∣∣xk

∣∣→∞
for all k ∈Z+. Then there exists a point x on the sphere ∂B|x| for at least one x ∈ {

xk

}
, such that

w
(
x
)≥ w −ε.

Otherwise, w < w −ε on the spheres ∂B|xk | for all k ∈Z+.
By Remark 2, we have that for all k ≥ k0 large,

Lw := Fi j
(
D2u

)
wi j (x) ≥ fee in BC

|xk |,
Without loss of generality, we may assume that Fi j (A) = In , the identity matrix. Then, it follows

from (5) that

L|x|−1/2 = Fi j
(

A+ (
D2u − A

))(|x|−1/2)
i j

≤∆|x|−1/2 +σ(n, A)|x|−5/2

=
(
−1

2

(
n − 5

2

)
+σ(n, A)

)
|x|−5/2

≤−1

4

(
n − 5

2

)
|x|−5/2

≤− ∣∣ fee
∣∣ in BC

|xk |
for all |xk | large enough, say k ≥ k0.

By the comparison principle, we have that for all k ≥ k0 large,

w(x) < w −ε+|x|−1/2 in B|xk+1|\B |xk |.
Then for all |xk | ≥ (2/ε)2, say k ≥ k1, we have

w(x) < w −ε+|x|−1/2 ≤ w − 1

2
ε in BC∣∣∣xk1

∣∣∣,
which leads to a contradiction.

Applying (2) and the Evans–Krylov estimate to u in B|x|/2(x) (cf. [10]), we have

osc
Bγ|x|(x)

uee ≤C

(
2γ

∣∣x∣∣∣∣x∣∣
)α{

osc
B|x|/2(x)

D2u + ∣∣x∣∣ ∣∣D f
∣∣
0,B|x|/2(x) +

∣∣x∣∣2 ∣∣D2 f
∣∣
0,B|x|/2(x)

}
≤ 2Cγα(K +1)

≤ d ,

where α=α(n,λ,Λ), γ= γ(n,λ,Λ,K ,d) =: min{1/10,(d/(2C (K +1)))1/α}. Thus,

w(x) ≤ w +ε+d ≤ w −3d for x ∈ Bγ|x|
(
x
)

,
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which yields

w −w(x) ≥ 3d for x ∈ Bγ|x|(x).

Let v(x) = w +ε−w(x). Then

Lv ≤− f in |x| ≥ 1.

Applying the weak Harnack inequality to v in B(1+3γ)|x|\B (1−3γ)|x| (cf. [10]), we obtain that 1∣∣∣Bγ|x|
∣∣∣
∫

B(1+γ)|x|\B (1−γ)|x|
vδ

1/δ

≤C

{
inf

B(1+γ)|x|\B (1−γ)|x|
v + ∣∣x∣∣∥∥ f

∥∥
Ln

(
B(1+3γ)|x|\B (1−3γ)|x|

)}

≤C

2ε+ ∣∣x∣∣2 sup
B(1+3γ)|x|\B (1−3γ)

f


≤C

(
2ε+ ∣∣x∣∣2−t

)
≤ 3Cε

for |x| large, depending only on t and ε, as t > 2. Then 3d ≤ 3Cε, where C is independent of ε.
Letting ε→ 0, we get d = 0, a contradiction. �

2.2. Asymptotic behavior at infinity of solutions of a class of linear equations in non-
divergence form

In this subsection, the key technology of linear approach will be introduced. Precisely, we con-
sider the asymptotic behavior at infinity of solutions of

ai j (x)vi j = f in Rn\B R (7)

where ai j is uniformly elliptic, ai j (x) → a∞
i j and f = O(|x|−t ) for some t > 2 at infinity. For more

details on asymptotic behavior with f ≡ 1, one can refer to [9, Theorem 3’, Theorem 4], [14,
Theorem 2.2, Corollary 2.1], [11] and the references therein.

Firstly, let w(x) = |x|p and then one can easily check that:

(1) for any fixed p ∈ (2−n,0),

∆w = p(n +p −2)|x|p−2 < 0;

(2) for any fixed t ≥ 2 and any fixed p ∈ (2−min(n, t ),0),

Lw =∆w + (
ai j −δi j

)
Di j w ≤ p

(
n +p −2

) |x|p−2 +C
∣∣ai j −δi j

∣∣ |x|p−2

≤ 1

2
p

(
n +p −2

) |x|p−2

≤−| f |,
(8)

where |x| is large enough;
(3) if t ∈ (2,n), then for any fixed p ∈ [2− t ,0),

L(Aw) = A
(
∆w + (

ai j −δi j
)

Di j w
)≤ A

(
p

(
n +p −2

) |x|p−2 +C
∣∣ai j −δi j

∣∣ |x|p−2)
≤ 1

2
Ap

(
n +p −2

) |x|p−2

≤−| f |,
(9)

where A and |x| are large enough;

C. R. Mathématique, 2020, 358, n 11-12, 1187-1197



1192 Xiaobiao Jia

(4) additionally, if t > n and ai j (x)−a∞
i j =O(|x|−s ) at infinity for some s > 0, then

L
(
|x|2−n −|x|2−n−`

)
=−∆|x|2−n−`+ (

ai j −δi j
)(|x|2−n −|x|2−n−`

)
≤ (2−n −`)`|x|−n−`+C |x|−s

(
|x|−n +|x|−n−`

)
≤ 1

2
(2−n −`)`|x|−n−`

≤−| f |

(10)

for any fixed ` ∈ (0,min(s, t −n)), where |x| is large enough.

Now, based on above several observations on the supersolutions of Equation (7) under different
assumptions, we can state our main Theorem 8 of this section as follows.

Theorem 8. Let v be a positive solution of

Lv := ai j (x)vi j = f in Rn\B 1, (11)

where n ≥ 3, ai j (x) is uniformly elliptic with

ai j (x) → a∞
i j as |x|→∞,

and for some t > 2,
f =O

(|x|−t ) as |x|→∞.

Then, if t ∈ (2,n), there exists a constant v∞ such that

v(x) = v∞+O
(|x|2−t ) as |x|→∞; (12)

if t ≥ n, there exists a constant v∞ such that

v(x) = v∞+o
(|x|2−m)

as |x|→∞ (13)

for all m < n; if t > n and
ai j (x)−a∞

i j =O
(|x|−s) as |x|→∞ (14)

for some s > 0, there exists a constant v∞ such that

v(x) = v∞+O
(|x|2−n)

as |x|→∞. (15)

Proof. After proper rescaling, we can assume a∞
i j = δi j . The proof will be divided into two steps.

Step 1. We show that lim|x|→∞ v(x) exists and is finite.
Let

v = lim
|x|→∞

v(x), v = lim
|x|→∞

v(x).

Then v ≥ v ≥ 0.

(Step 1.1) We first prove that v <+∞.
Otherwise, we have

v(x) →+∞ as |x|→∞.

It follows from (8) that

L
(
2|x|−δ+εv

)
≤−2

∣∣ f
∣∣+ε f ≤− ∣∣ f

∣∣≤ 0 in BRε\B R ,

where R is large and we can take δ= 1
2 min(t ,n)−1.

For any ε> 0, there exists Rε > R such that εv(x) > 2 if |x| ≥ Rε. Then

0 ≤ 2
(
|x|−δ−R−δ

)
+εv on ∂BRε ∪∂BR .

By the comparison principle, we have

0 ≤ 2
(
|x|−δ−R−δ

)
+εv in BRε\B R .

C. R. Mathématique, 2020, 358, n 11-12, 1187-1197
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In particular, at x∗ = (M ,0, . . . , 0),

0 ≤ 2
(
M−δ−R−δ

)
+εv

(
x∗)≤−R−δ+εv

(
x∗)

,

where M is chosen such that M−δ ≤ 1
2 R−δ.

Letting ε→ 0, we get 0 ≤−R−δ, which is a contradiction.
(Step 1.2) Now we prove that v ≤ v .

For any ε> 0, there exists Rε > 0 such that ṽ(x) = v(x)− v +ε> 0 for all x ∈ BC
Rε

since

lim
|x|→∞

ṽ(x) = ε.

And then there exist {xk }∞k=1 such that

2Rε ≤ rk = |xk |→+∞, rk < rk+1 and ṽ (xk ) ≤ 2ε.

Applying the Krylov–Safonov’s Harnack inequality to ṽ in B(1+1/4)rk \B (1−1/4)rk , we obtain

ṽ(x) ≤C

(
ṽ (xk )+ (1+1/4)rk

∥∥ f
∥∥

Ln
(
B(1+1/4)rk

\B (1−1/4)rk

))

≤C

2ε+ r 2
k sup

B(1+1/4)rk
\B (1−1/4)rk

f


≤C

(
2ε+ r 2−t

k

)
≤ 3Cε

for all x ∈ ∂Brk and all k ∈Z+.

By the comparison principle, we have

ṽ(x) ≤ 3Cε+|x|−δ in Brk+1 \B rk

for all k ∈Z+, which yields
ṽ(x) ≤ 3Cε+|x|−δ in BC

r1
.

By letting |x|→∞ and taking limit superior, we get v − v +ε≤ 3Cε for any ε> 0. Letting ε→ 0 we
obtain v ≤ v .

Therefore,Step 1.1 and Step 1.2 follows that v(x) tends to a finite constant at infinity.

Step 2. We give a simple outline of proof of (12), (13) and (15).
Without loss of generality, we assume v∞ = 0 and |v | ≤ 1. Or, we consider v−v∞

sup
BC

1
|v | .

(Step 2.1) First we prove (12).
By (9), A|x|2−t is a supersolution of (11) in BC

R , where A and R are large constants. For
any ε> 0 small, there exists Rε > R such that

v ≤ A|x|2−t +ε on ∂
(
BRε\B R

)
.

Applying the comparison principle, we get

v ≤ A|x|2−t +ε in BRε\B R .

Letting ε→ 0, the assertion (12) is proved.
(Step 2.2) Next we prove (13).

For any fixed m < n, it only needs to show

v(x) = v∞+O
(
|x|2−m′)

as |x|→∞,

where m′ = 1
2 (n −m)+m ∈ (m,n). By (8), we have that |x|2−m′

a supersolution of (11) in
BC

R , where R is some large constant. Similar to Step 2.1, by the comparison principle, one
can obtain the desired result in this step.

C. R. Mathématique, 2020, 358, n 11-12, 1187-1197
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(Step 2.3) Finally we show (15).
By (10), for any fixed ` ∈ (0,min(s, t −n)), |x|2−n −|x|2−n−` is a supersolution of (11) in

BC
R with (14) and t > n, where R is a large constant. Then, by the comparison principle,

one can obtain
v =O

(
|x|2−n −|x|2−n−`

)
as |x|→∞,

which implies (15) immediately.

This finishes the proof of the Theorem 8. �

Theorem 8 requires that v is positive, that is, v must be bounded from below (or from above).
The following theorem shows that Theorem 8 still holds if the boundedness of v from one side is
weakened by

|Dv(x)| =O
(|x|−1) as |x|→∞.

Theorem 9. Let v be a smooth solution of

ai j (x)vi j = f in Rn\B 1,

where n ≥ 3, ai j (x) is uniformly elliptic with

ai j (x) → ai j
∞ as |x|→∞,

and f satisfies
f =O

(|x|−t ) as |x|→∞
for some t > 2. Suppose

|Dv(x)| =O
(|x|−1) as |x|→∞.

Then there exists a constant v∞ such that (12) holds if t < n, (13) if t ≥ n, and (15) if t > n with (14).

Proof. The proof of this theorem is standard (cf. [5, Theorem 4] and [14, Corollary 2.1]) and
therefore we omit it here. Notice that, to show the boundedness from one side of v , one should
apply the comparison principle between v and C +|x|−δ in Rn\B R for large R > 1, where we can
set δ= min(t −2,n −2). �

3. Proof of Theorem 1 and Theorem 4

The only aim of this section is to show Theorem 1, since which together with Lemma 7 implies
Theorem 4. The idea of showing Theorem 1 is standard (cf. [5] and [14, Theorem 2.1]). Specifically,
Lemma 7 will be used in the nonlinear approach and Theorem 9 in the linear one repeatedly.

Proof.

Step 1. Nonlinear approach
Let

v(x) = u(x)− 1

2
xT Ax,

where A was given by Lemma 7. Then for all e ∈ ∂B1, v , ve and vee satisfy

ai j vi j = f , âi j (ve )i j = fe , âi j (vee )i j ≥ fee in Rn\B 1; (16)

where

ai j (x) =
∫ 1

0
FMi j

(
tD2v(x)+ A

)
d t and âi j (x) = FMi j

(
D2v(x)+ A

)
are uniformly elliptic. Applying Lemma 7, we have

ai j (x) → FMi j (A) and âi j (x) → FMi j (A).

After proper rotation, we may assume that FMi j (A) = δi j .

C. R. Mathématique, 2020, 358, n 11-12, 1187-1197
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Then for any fixed δ ∈ (0,min(t ,n)−2),

ϕ(x) = |x|−δ

is a supersolution of

âi j (x)wi j = fee in B
C
R0

,

where R0 > 1 large. Since for any e ∈ ∂B1

âi j (vee )i j ≥ fee and vee (x) → 0 as |x|→∞,

we can use ϕ as a barrier function to obtain that

vee (x) ≤Cϕ(x) ≤C |x|−δ

for some C > 0. This together with ai j (x)vi j = f and ai j (x) is uniformly elliptic follows that∣∣D2v(x)
∣∣≤C |x|−δ,

which yields that ∣∣∣ai j (x)−a∞
i j

∣∣∣+ ∣∣∣âi j (x)− â∞
i j

∣∣∣≤C |x|−δ, x ∈ BC
1 .

In particular, if n ≥ 4, we have ∣∣D2v(x)
∣∣≤C |x|−2;

and if n = 3, we have t > 3 and then we can replace above ϕ by ϕ= |x|2−n −|x|2−n+s . Then∣∣D2v(x)
∣∣≤ |x|2−n −|x|2−n+s ≤ |x|2−n = |x|−1.

Therefore, for all n ≥ 3, we have∣∣∣ai j (x)−a∞
i j

∣∣∣+ ∣∣∣âi j (x)− â∞
i j

∣∣∣≤C |x|−1, x ∈ BC
1 .

Step 2. Linear approach Step 1 follows that

|Dve | ≤C |x|−1.

By (16) and Theorem 9, we have that there exists some constant be such that

ve (x) = be +


O

(|x|2−(t+1)
)

, if t +1 < n,

o
(|x|2−s

)
for all s ∈ (2,n), if t +1 ≥ n,

O
(|x|2−n

)
, if t +1 > n with (14)

as |x|→∞.

Let b = (
be1 , . . . , ben

)T with e1, . . . , en being the coordinate unit vector in Rn and

v(x) = v(x)−bT x = u(x)−
(

1

2
xT Ax +bT x

)
.

Then

∣∣Dv(x)
∣∣=


O

(|x|1−t
)

, if t +1 < n,

o
(|x|2−s

)
for all s ∈ (2,n), if t +1 ≥ n,

O
(|x|2−n

)
, if t +1 > n with (14)

as |x|→∞.

In particular, since t > 2, n ≥ 3 and the arbitrariness of s, we have that∣∣Dv(x)
∣∣≤C |x|−1.

By Theorem 9 and (16) again, there exists a constant c such that

v(x) = c +


O

(|x|2−t
)

, if t < n,

o
(|x|2−s

)
for all 2 < s < n, if t ≥ n,

O
(|x|2−n

)
, if t > n with (14)

as |x|→∞.
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Set Q(x) = 1
2 xT Ax +bT x + c, and then

|u(x)−Q(x)| = ∣∣v(x)− c
∣∣ =


O

(|x|2−t
)

, if t < n,

o
(|x|2−s

)
for all 2 < s < n, if t ≥ n,

O
(|x|2−n

)
, if t > n with (14)

as |x|→∞. (17)

Step 3. Complete the proof of (4)
For any fixed x with |x| sufficiently large, let

E(y) =
(

2

|x|
)2

(u −Q)

(
x + |x|

2
y

)
Then

ai j (y)Ei j (y) = F
(

A+D2E(y)
)−F (A) = f

(
x + |x|

2
y

)
, y ∈ B1

where

ai j (y) =
∫ 1

0
FMi j

(
A+ tD2E(y)

)
d t .

By the Evans–Krylov estimate and the Schauder estimate, we have that for all k ∈ [2,m +1],∥∥∥Dk E(0)
∥∥∥

Cα(B1/2)
≤Ck

{
‖E‖L∞(B1) +

∥∥∥Dk−2 f
∥∥∥

Cα(B1)

}
.

It follows from (17) and (2) that

|u −Q| =


Om+1

(|x|2−t
)

, if t < n,

om+1
(|x|2−s

)
for all 2 < s < n, if t ≥ n,

Om+1
(|x|2−n

)
, if t > n with (14)

as |x|→∞.

Step 4. Uniqueness of Q
By the comparison principle, one can obtain the uniqueness of the quadratic polynomial Q(x)
immediately, since the difference between any two asymptotic quadratic polynomial solves a
uniformly elliptic equation. �
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