Miloud Mihoubi and Said Taharbouchet

Polynomials with real zeros via special polynomials
Volume 359, issue 1 (2021), p. 57-64.

<https://doi.org/10.5802/crmath.147>

© Académie des sciences, Paris and the authors, 2021.
Some rights reserved.

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte
www.centre-mersenne.org
Polynomials with real zeros via special polynomials

Polynômes à racines réelles via des polynômes spéciaux

Miloud Mihoubia and Said Taharbouchet*,a

a RECITS Laboratory, Faculty of Mathematics, USTHB, P.O. Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria
\textit{E-mails:} mmihoubi@usthb.dz, staharbouchet@usthb.dz

Abstract. In this paper, we use particular polynomials to establish some results on the real rootedness of polynomials. The considered polynomials are Bell polynomials and Hermite polynomials. To cite this article: M. Mihoubi and S. Taharbouchet, C. R. Acad. Sci. Paris, Ser. I 340 (2021).

Manuscript received 3rd November 2019, accepted 6th November 2020.

1. Introduction

The real rootedness of polynomials has attracted researchers great interest. One of the reasons is that any polynomial of real zeros implies the log-concavity and the unimodality of its coefficients, which appear in various fields of mathematics, see [4, 13].

Let $\mathbb{R} Z$ be the set of all polynomials having only real zeros and $\mathbb{N} Z$ be the set of all polynomials having only non-positive real zeros. In a previous paper, we showed that for any polynomial f, if $f(B_x) \in \mathbb{R} Z$, then $(B_x)f(B_x) \in \mathbb{R} Z$, where B_x is the generalized Bell umbra [2]. Motivated by this work, we use in this paper the umbrae of special polynomials to give new results on the real rootedness of polynomials. The tools used here are classical umbral calculus, theorem 1 of Wang and Yeh [14] and Rolle’s theorem.
To begin, let \((P_n(x))\) be a sequence of polynomials with \(\deg P_n = n\) and let \(P^n_x\) be the umbra defined by \(P^n_x := P_n(x)\). The conditions \(\deg P_n = n\) and \(P_0(x) = 1\) ensure that the system of polynomials
\[
(P_0(x), P_1(x), P_2(x), \ldots)
\]
is a free system and that any polynomial with degree \(n\) can be expressed in terms of \(1, P_x, \ldots, P^n_x\). We consider here some sequences of polynomials \((P_n(x))\) satisfying
\[
P_0(x) = 1, \quad \deg P_n = n \quad \text{and a relation of the form}
\]
\[
P_{n+1}(x) = (u_1 x + u_2) P_n(x) + (v_1 x + v_2) \frac{d}{dx} P_n(x),
\]
for some known real numbers \(u_1, u_2, v_1\) and \(v_2\).

For more information about classical umbral calculus, see [2, 7, 11, 12].

We use below the notations
\[
(x)_0 := 1, \quad (x)_n := x(x-1) \cdots (x-n+1), \quad n \geq 1,
\]
\[
\langle x \rangle_0 := 1, \quad \langle x \rangle_n := x(x+1) \cdots (x+n-1), \quad n \geq 1.
\]

The paper is organized as follows: in the following Section 2 we give the main results and in the last Section 3 we present some of their applications.

2. Real-rooted polynomials via special polynomials

Let \(B_n(x)\) and \(H_n(x)\) be, respectively, the \(n\)th Bell and Hermite polynomials defined by
\[
\sum_{n \geq 0} B_n(x) \frac{t^n}{n!} = \exp \left(x \left(\exp(t) - 1 \right) \right),
\]
\[
\sum_{n \geq 0} H_n(x) \frac{t^n}{n!} = \exp \left(2xt - t^2 \right),
\]
and let \(B_x\) and \(H_x\) be the umbrae defined respectively by
\[
B^n_x = B_n(x) \quad \text{and} \quad H^n_x = H_n(x).
\]

These polynomials satisfy the following differential recurrence relations
\[
B_{n+1}(x) - x B_n(x) = x \frac{d}{dx} B_n(x),
\]
\[
H_{n+1}(x) - 2x H_n(x) = - \frac{d}{dx} H_n(x),
\]
which can be written as
\[
B^n_{x+1} - x B^n_x = x \frac{d}{dx} B^n_x, \quad H^n_{x+1} - 2x H^n_x = - \frac{d}{dx} H^n_x.
\]

Hence, for any polynomial \(f\), these relations are equivalent to
\[
B_x f(B_x) - x f(B_x) = x \frac{d}{dx} f(B_x),
\]
\[
H_x f(H_x) - 2x f(H_x) = - \frac{d}{dx} f(H_x).
\]
2.1. *Real-rooted polynomials via Wang–Yeh’s theorem*

The results of this subsection are based on [14, Theorem 1] of Wang and Yeh and the principal result is given by the following theorem.

Theorem 1. Let f be a polynomial and m be a positive integer. Then, if $f(B_x) \in \mathbb{RZ}$, there holds

$$f(B_x) \prod_{k=1}^m (B_x + a_k x + b_k) \in \mathbb{RZ}, \quad a_k \in \mathbb{R}, \ b_k \in [0, \infty[, \quad k = 1, \ldots, m,$$

and if $f(H_x) \in \mathbb{RZ}$, there holds

$$f(H_x) \prod_{k=1}^m (H_x + a_k x + b_k) \in \mathbb{RZ}, \quad a_k \in [-2, \infty[, \ b_k \in \mathbb{R}, \quad k = 1, \ldots, m.$$

Proof. Let g be a polynomial. Relation (2) implies

$$\left(B_x + g(x) - x\right) f(B_x) = g(x) f(B_x) + x \frac{d}{dx} f(B_x). \quad (4)$$

The choice $g(x) = (a_1 + 1) x + b_1$ in the last relation gives

$$f_1(B_x) = (B_x + a_1 x + b_1) f(B_x) = ((a_1 + 1) x + b_1) f(B_x) + x \frac{d}{dx} f(B_x).$$

For $(a_1, b_1) \in \mathbb{R} \times [0, \infty[$ apply [14, Theorem 1] of Wang and Yeh to deduce that $f_1(B_x) \in \mathbb{RZ}$. So, by repeating the same process, we conclude that

$$f_2(B_x) = (B_x + a_2 x + b_2) f_1(B_x) = (B_x + a_2 x + b_2)(B_x + a_1 x + b_1) f(B_x) \in \mathbb{RZ},$$

and so on. The second result can be proved similarly on using the relation (3). \qed

Proposition 2. Let f be a polynomial such that $f(B_x) \in \mathbb{RZ}$. Then, for any polynomial $g(x) \in \mathbb{N} \mathbb{RZ}$, there holds

$$g(B_x + ax) f(B_x) \in \mathbb{RZ}, \quad a \in \mathbb{R},$$

and, when $g(x) \in \mathbb{RZ}$ and $f(H_x) \in \mathbb{RZ}$, there holds

$$g(H_x + ax) f(H_x) \in \mathbb{RZ}, \quad a \geq -2.$$

Proof. Let $g(x) = \prod_{k=1}^m (x + b_k)$. Then, for the choices $a_1 = \cdots = a_m = a$ in Theorem 1, we obtain the desired results. \qed

Proposition 3. Let g be a polynomial. Then, if $g(x) \in \mathbb{N} \mathbb{RZ}$, then there holds

$$g(B_x) \in \mathbb{RZ},$$

and if $g(x) \in \mathbb{RZ}$, then there holds

$$g(H_x) \in \mathbb{RZ}.$$

Proof. For $a_1 = \cdots = a_m = 0$ and $f(x) = x + b_0$, $b_0 > 0$, in Theorem 1 and by setting $g(x) = \prod_{k=0}^m (x + b_k)$, we obtain $g(B_x) \in \mathbb{RZ}$ when $g(x) \in \mathbb{N} \mathbb{RZ}$, and $g(H_x) \in \mathbb{RZ}$ when $g(x) \in \mathbb{RZ}$. \qed

Remark 4. Since for any non-negative integer k we have [1]

$$(B_x)_k = x^k, \quad (B_x)_k = \nabla_k (x) \text{ and } (B_x - 1)_k = (-1)^k \nabla_k (1 - x),$$

Proposition 3 shows that if one of the polynomials

$$\sum_{k=0}^m g_1(m,k)(x)_k, \quad \sum_{k=0}^m g_2(m,k)(x)_k, \quad \sum_{k=0}^m g_3(m,k)(x-1)_k$$
has only non-positive real zeros, then its correspondent polynomial given between the polynomials
\[\sum_{k=0}^{m} g_1(m, k) x^k, \sum_{k=0}^{m} g_2(m, k) L_k(x), \sum_{k=0}^{m} (-1)^k g_3(m, k) D_k(1 - x), \]
has also only real zeros, where
\[L_n(x) = \sum_{k=1}^{n} \frac{n!}{k!} \binom{n-1}{k-1} x^k, \quad n \geq 1, \quad L_0(x) = 1, \]
\[D_n(x) = \sum_{j=0}^{n} \binom{n}{j} j!(x-1)^{n-j} \]
are, respectively, the Lah and derangement polynomials.

Remark 5. Proposition 3 shows that if the polynomial \(g(x) = \sum_{k=0}^{m} g(m, k) x^k \) has only non-positive real zeros, then the polynomial
\[g(B_x) = \sum_{k=0}^{m} g(m, k) B_k(x) \]
has only real zeros, and if the polynomial \(g(x) \) has only real zeros, then the polynomial
\[g(H_x) = \sum_{k=0}^{m} g(m, k) H_k(x) \]
has only real zeros.

Remark 6. From the above remarks, it follows that the linear transformations
\[(x)_k \rightarrow x^k, \]
\[(x)_k \rightarrow L_k(x), \]
\[(x-1)_k \rightarrow (-1)^k D_k(1 - x), \]
\[x^k \rightarrow B_k(x) \]
map \(\mathbb{N} \mathbb{R} \mathbb{Z} \) onto \(\mathbb{R} \mathbb{Z} \) and \(x^k \rightarrow H_k(x) \) maps \(\mathbb{R} \mathbb{Z} \) onto \(\mathbb{R} \mathbb{Z} \).

For the choice \(g(x) = x^q (f(x))^n - 1 \) in Proposition 3 we obtain:

Corollary 7. Let \(f \) be a polynomial. If \(f(x) \in \mathbb{N} \mathbb{R} \mathbb{Z} \), then there hold
\[B_x^q \left(f(B_x) \right)^n \in \mathbb{R} \mathbb{Z}, \quad n = 1, 2, \ldots, q = 0, 1, \ldots, \]
and, if \(f(x) \in \mathbb{R} \mathbb{Z} \), then there holds
\[H_x^q \left(f(H_x) \right)^n \in \mathbb{R} \mathbb{Z}, \quad n = 1, 2, \ldots, q = 0, 1, \ldots. \]

Proposition 8. Let \(f \) be a polynomial such that \(f(B_x) \in \mathbb{R} \mathbb{Z} \). Then, for any non-negative integers \(r_1, \ldots, r_p \), there holds
\[\langle B_x + a_1 x \rangle_{r_1} \cdots \langle B_x + a_p x \rangle_{r_p} f(B_x) \in \mathbb{R} \mathbb{Z}, \quad a_1, \ldots, a_p \in \mathbb{R}. \]
Furthermore, if \(r_1 + \cdots + r_p \geq 1 \), and if \(g(x) \in \mathbb{N} \mathbb{R} \mathbb{Z} \), there holds
\[\langle B_x \rangle_{r_1} \cdots \langle B_x \rangle_{r_p} g(B_x + ax) \in \mathbb{R} \mathbb{Z}, \quad a \in \mathbb{R}. \]

Proof. For the first part of the proposition choice in Proposition 2 \(g(x) \) to be \((x)_{r_1} \) and replace \(a \) by \(a_1 \) to obtain
\[f_1(B_x) := \langle B_x + a_1 x \rangle_{r_1} f(B_x) \in \mathbb{R} \mathbb{Z}, \quad a_1 \in \mathbb{R}. \]
Now, choice in Proposition 2 the polynomial \(g(x) \) to be \((x)_{r_2} \) and replace \(a \) by \(a_2 \) and \(f \) by \(f_1 \) to obtain
\[f_2(B_x) := \langle B_x + a_2 x \rangle_{r_2} f_1(P_x) \in \mathbb{R} \mathbb{Z}, \quad a_2 \in \mathbb{R}, \]
and so on. For the second part of the proposition, by choosing $a_1 = \cdots = a_p = 0$ and $f(x) = x + i$ for such integer $i \in \{r_1, \ldots, r_p\}$, the first part of this proposition proves that

$$\langle B_x \rangle_{r_1} \cdots \langle B_x \rangle_{r_p} \in \mathbb{R},$$

with $r_1 + \cdots + r_p \geq 1$ and $n \geq 1$. So, the choice $f(x) = \langle x \rangle_{r_1} \cdots \langle x \rangle_{r_p}$ in the first part of Proposition 2 completes the proof.

One can prove similarly the following Proposition 9.

Proposition 9. Let f be a polynomial such that $f(H_x) \in \mathbb{R}$. Then, for any non-negative integers r_1, \ldots, r_p, there hold

$$\langle H_x + a_1 x \rangle_{r_1} \cdots \langle H_x + a_p x \rangle_{r_p} f(H_x) \in \mathbb{R}, a_1 \geq -2, \ldots, a_p \geq -2,$$

$$\langle H_x + a_1 x \rangle_{r_1} \cdots \langle H_x + a_p x \rangle_{r_p} f(H_x) \in \mathbb{R}, a_1 \geq -2, \ldots, a_p \geq -2.$$

Furthermore, if $r_1 + \cdots + r_p \geq 1$, $n \geq 1$, and $g(x) \in \mathbb{R}$, there hold

$$\langle H_x \rangle_{r_1} \cdots \langle H_x \rangle_{r_p} g(H_x + ax) \in \mathbb{R}, a \geq -2,$$

$$\langle H_x \rangle_{r_1} \cdots \langle H_x \rangle_{r_p} g(H_x + ax) \in \mathbb{R}, a \geq -2.$$

2.2. Real-rooted polynomials via Rolle’s theorem

The results of this subsection are based on Rolle’s theorem and the principal result is given by the following Theorem 10.

Theorem 10. Let $a_1, \ldots, a_m, b_1, \ldots, b_m$ be real numbers and let f be a polynomial. Then, if $f(B_x) \in \mathbb{R}$, there hold

$$f(B_x) \prod_{k=1}^{m} (B_x + a_k x^2 + b_k x) \in \mathbb{R}, \quad a_1 \leq 0, \ldots, a_m \leq 0.$$

Proof. Let n be the degree of the polynomial f.

The choice $g(x) = (a_1 x + b_1 + 1) x$ in (4) gives

$$\langle B_x + a_1 x^2 + b_1 x \rangle f(B_x)$$

$$= x \exp \left(-a_1 \frac{x^2}{2} - (b_1 + 1) x \right) \frac{d}{dx} \left(\exp \left(a_1 \frac{x^2}{2} + (b_1 + 1) x \right) f(B_x) \right).$$

Case $a_1 < 0$. The application of Rolle’s theorem on the function

$$T(x) = \exp \left(a_1 \frac{x^2}{2} + (b_1 + 1) x \right) f(B_x)$$

shows that the polynomial $f_1(B_x) = (B_x + a_1 x^2 + b_1 x) f(B_x)$, which is of degree $n + 2$, vanishes n times between the zeros of $f(B_x)$. But since $\lim_{x \to +\infty} T(x) = 0$ it results that $f_1(B_x)$ vanishes also on $]-\infty, x_1[$ and on $]x_n, +\infty[$, where x_1 and x_n are, respectively, the minimum and the maximum zeros of $f(B_x)$. Hence, the polynomial $f_1(B_x)$ vanishes $n + 1$ times, the missing zero must be necessarily real.

Case $a_1 = 0$: When $b_1 + 1 = 0$ the Theorem 10 is evident, otherwise, the application of Rolle’s theorem on the function

$$T(x) = \exp \left((b_1 + 1) x \right) f(B_x)$$

shows that the polynomial $f_1(B_x) = (B_x + b_1 x) f(B_x)$ vanishes $n - 1$ times between the zeros of $f(B_x)$. But since $\lim_{x \to +\infty} T(x) = 0$ or $\lim_{x \to -\infty} T(x) = 0$ it results that $f_1(B_x)$ vanishes also on $]-\infty, x_1[$ or $]x_n, +\infty[$. Hence, the polynomial $f_1(B_x)$ which is of degree $n + 1$ vanishes n times, the missing zero must be necessarily real.
To obtain the first part of the Theorem 10, one can replace \(f(B_x) \) by \(f_1(B_x) \) and proceed as above, and so on.

Proposition 11. Let \(a \) be a real number and let \(f, g \) be polynomials with \(\deg g = m \). Then, if \(f(B_x) \in \mathbb{R}Z \) and \(g(x) \in \mathbb{R}Z \), we get
\[
x^m g \left(\frac{B_x}{x} + ax \right) f(B_x) \in \mathbb{R}Z, \quad a \leq 0.
\]

Proof. The proposition 11 follows form Theorem 10 by taking \(a_1 = \cdots = a_m = a \leq 0 \) and by setting \(g(x) = \prod_{k=1}^{m} (x + b_k) \).

Remark 12. Let \(q, r_1, \ldots, r_p \) be non-negative integers not all null.

For \(f(x) = (x)_{r_1} \cdots (x)_{r_p} x^q \) we get
\[
f(B_x) = (B_x)_{r_1} \cdots (B_x)_{r_p} B_x^q = x^{r_p} A_q \left(x; r_1, \ldots, r_p \right) \in \mathbb{R}Z
\]
and for \(g(x) = \sum_{k=0}^{m} g(m, k) x^k \in \mathbb{R}Z \) and \(a = 0 \) in Proposition 11 we get
\[
x^{m-r_p} g \left(\frac{B_x}{x} \right) f(B_x) \in \mathbb{R}Z
\]
where \(A_n(x; r_1, \ldots, r_p) \) is the \(n^{th} \) Bell polynomial introduced by Mihoubi and Maamer [8, 10], see also [1].
In other words, for \(0 \leq k \leq m \), the linear transformation
\[
x^k \to x^{m-k} A_{k+q} \left(x; r_1, \ldots, r_p \right), \quad q + r_1 + \cdots + r_p \geq 1,
\]
map the set \(\mathbb{R}Z \) on to \(\mathbb{R}Z \).

3. Some applications

In this section, we present some applications of the above results.

Corollary 13. Let \(G \) be a simple graph with \(n \) vertices and let
\[
P(G,x) = \sum_{k=\chi(G)}^{n} a_k(G) x_{k}
\]
be its chromatic polynomial such that \(P(G,x) \in \mathbb{R}Z \). Then, the polynomial
\[
P(G,-B_x) = \sum_{k=\chi(G)}^{n} (-1)^{k} a_k(G) L_k(x)
\]
has only real zeros, where \(\chi(G) \) is the chromatic number of \(G \).

Proof. The chromatic polynomial \(P(G,x) \) can also be written as
\[
P(G,x) = x^{n-1} \sum_{k=1}^{n-1} (-1)^{k} t_k(G) (x-1)^{k-1},
\]
where \(t_1(G), \ldots, t_{n-1}(G) \) are non-negative integers, see [6]. This shows that the zeros of the polynomial \(P(G,x) \) are not in \([-\infty, 1[-0) \). Then, the zeros of the polynomial \(P(G,-x) \) are non-posotive real numbers. Since [1]
\[
(B_x)^{k} f(B_x) = x^{k} f(B_x + k) \quad \text{and} \quad (B_x)^{k} L_k(x), \ k = 0, 1, 2, \ldots,
\]
then, by Proposition 3, it follows that \(P(G,-B_x) \in \mathbb{R}Z \), with
\[P(G, -B_x) = \sum_{k=\chi(G)}^{n} (-1)^k \alpha_k(G) \langle B_x \rangle_k = \sum_{k=\chi(G)}^{n} (-1)^k \alpha_k(G) \mathbb{L}_k(x). \]

\[\square \]

Example 14. For \(q = 0 \), \(f(x) = x \) in Corollary 7, we get
\[\left(f(B_x) \right)^n = \mathcal{B}_n(x) \in \mathbb{RZ}, \quad \left(f(H_x) \right)^n = \mathcal{H}_n(x) \in \mathbb{RZ}, \quad n = 1, 2, \ldots. \]

Also, since \(\mathcal{B}_n(x) \) has non-negative coefficients, it follows that its zeros are non-positive and by Proposition 3, we get
\[\mathcal{B}_n(P_x) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{B}_k(x) \in \mathbb{RZ}, \]
\[\mathcal{H}_n(P_x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{2^{n-2k}n!}{k!(n-2k)!} \mathcal{B}_{n-2k}(x) \in \mathbb{RZ}, \]

where \(\lfloor x \rfloor \) is the largest integer \(\leq x \), \(\binom{n}{k} \) is the \((n,k)\)th Stirling number of the second kind, and, \(P_x^n = \mathcal{P}_n(x) \) is any one of the polynomials \(\mathcal{B}_n(x) \) and \(\mathcal{H}_n(x) \).

Example 15. For \(f(x) = x + y \) we get \(f(B_x) = f(H_x) = x + y \in \mathbb{RZ} \) and via Corollary 7, we obtain
\[B_x^q \left(f(B_x) \right)^n = \sum_{k=0}^{n} \binom{n}{k} y^{n-k} \mathcal{B}_{k+q}(x) \in \mathbb{RZ}, \quad y \geq 0, \]
\[H_x^q \left(f(H_x) \right)^n = \sum_{k=0}^{n} \binom{n}{k} y^{n-k} \mathcal{H}_{k+q}(x) \in \mathbb{RZ}, \quad y \in \mathbb{R}. \]

Example 16. From Proposition 8 it follows, for any real number \(a \) and any polynomial \(f \) such that \(f(B_x) \in \mathbb{RZ} \), that \((B_x + ax)^{n-2} f(B_x) \in \mathbb{RZ}, n \geq 2 \). Then, for \(a = -1, f(B_x) = (B_x - x)^2 = x \) we get the known result [3]
\[V_n(x) := (B_x - x)^n = \sum_{k=0}^{n} \binom{n}{k} (-x)^{n-k} \mathcal{B}_k(x) = \sum_{k=0}^{n} \binom{n}{k} \left\lfloor \frac{n}{k} \right\rfloor x^k \in \mathbb{RZ}, \]

where \(\left\lfloor \frac{n}{k} \right\rfloor \) is the number of ways to partition the set \(\{1, \ldots, n\} \) into \(k \) blocks without singletons.

More generally, for \(f(B_x) = (B_x + ax)^2 = x((a+1)^2x + 1) \) we get
\[V_{n,a}(x) := (B_x + ax)^n = \sum_{k=0}^{n} B_{n,k}(a+1,1,1,\ldots) x^k \in \mathbb{RZ}. \]

We note here that \(\sum_{n=0}^{\infty} V_{n,a}(x) \frac{t^n}{n!} = \exp(x(e^t - 1 + at)), \) where \(B_{n,k}(a_1, a_2, \ldots) \) are the partial Bell polynomials, see [5, 9].

Example 17. For \(r_p = \max\{r_1, \ldots, r_p\}, a_1 = \cdots = a_p = 0 \) and \(f(x) = x^n \) in the first identity of Proposition 8, it follows that the polynomial
\[L_{n; r_1, \ldots, r_p}(x) := \sum_{k=0}^{n+r_1+\cdots+r_p-1} (-1)^k \binom{n+r_1+\cdots+r_p}{k+r_p} x^k \in \mathbb{RZ}. \]
has only real roots. Indeed, from [1] we can write
\[
\langle B_x \rangle_{r_1} \cdots \langle B_x \rangle_{r_p} B_x^n = (-1)^{n+r_1+\cdots+r_p} (-B_x)_{r_1} \cdots (-B_x)_{r_p} (-B_x)^n
\]
\[
= (-1)^{n+r_1+\cdots+r_p} \sum_{k=0}^{n+r_1+\cdots+r_p-1} \left\{ \begin{array}{c} n + r_1 + \cdots + r_p \\ k + r_p \end{array} \right\}_{r_1,\ldots,r_p} (-B_x)^k
\]
\[
= (-1)^{n+r_1+\cdots+r_p} \sum_{k=0}^{n+r_1+\cdots+r_p-1} (-1)^k \left\{ \begin{array}{c} n + r_1 + \cdots + r_p \\ k + r_p \end{array} \right\}_{r_1,\ldots,r_p} \langle B_x \rangle^k
\]
\[
= (-1)^{n+r_1+\cdots+r_p} \sum_{k=0}^{n+r_1+\cdots+r_p-1} (-1)^k \left\{ \begin{array}{c} n + r_1 + \cdots + r_p \\ k + r_p \end{array} \right\}_{r_1,\ldots,r_p} \langle B_x \rangle^k
\]
\[
= (-1)^{n+r_1+\cdots+r_p} L_{n;r_1,\ldots,r_p}(x),
\]
where \(\{n\}_{r_1,\ldots,r_p} \) is the \((r_1,\ldots,r_p)\)-Stirling numbers of the second kind introduced by Mihoubi and Maamra \[8, 10\].

References