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1. Introduction

Let G be a locally compact second countable group. The set Sub(G) of closed subgroups of G may
be endowed with the Chabauty topology, with which it is a compact space. The Chabauty topol-
ogy was introduced in several places, among them [3, 8]. For an overview we recommend [13].
We are interested in convergence in the Chabauty topology, which for a locally compact second
countable group can be defined as follows:

Definition 1 (See [2]). A sequence of closed subgroups {Hn} ≤G converges to H ≤G if the following
two conditions hold
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(1) For every h ∈ H, there exists a sequence of elements hn ∈ Hn so that hn → h.
(2) Given a sequence of elements hn ∈ Hn , for every convergent subsequence (hn k ) → h then

h ∈ H.

A group H ≤G converges to a group L ≤G under conjugacy if there exists a sequence pn ∈G such
that pn H p−1

n converges to L in the sense of the definition above.
A connected subgroup H locally converges to a connected subgroup L under conjugacy if there

is a sequence pn ∈G such that pn H p−1
n → L′ and L is the identity component of L′.

Limits of connected subgroups are not necessarily connected. For instance, [5, Example 2 in
Section 3.2] shows that there is a sequence of conjugates of the rotation subgroup SO(2) ≤ SL2(R)
that converges to the subgroup {(±1 x

0 ±1 ) : x ∈ R} which has two connected components. It is
therefore necessary to pass to the identity component of the limit in the definition of local
convergence.

Let G = SL3(R). Our main result is a description of the local convergence of connected
subgroups of G . Note that we consider subgroups up to conjugacy, and use the classification
of subalgebras of g up to conjugacy by Winternitz [18], their images under the exponential map
are connected subgroups of G . In Section 3, we have written a subsection for each dimension of
subgroups.

Theorem 2. The local convergence of the connected subgroups of SL3(R) of each dimension is
described by the chart of limits in the corresponding section in the paper.

The connected subgroups of SL3(R) were classified by Winternitz [18], who provided a full list
of subalgebras of sl3(R) up to conjugacy. In each section, we first list the subgroups together with
their normalizers and properties, and then we provide a chart which shows which groups locally
limit to others by conjugation. Following each chart, we prove that this is indeed the complete
chart of limits.

Theorem 2 gives a partial understanding of the closure of the connected subgroups in Sub(G)
in the following sense. The conjugacy class of each connected subgroup H ∈ Sub(G) is a subspace
homeomorphic to G/NG (H). The closure of the conjugacy class of H in Sub(G) consists of
conjugacy classes of subgroups whose identity components are the local limits of H described
by our main result.

Using work of [5, 7] we prove the following proposition which is a component of the proof of
Theorem 2.

Proposition 3. Let G = SL3(R) and let H ≤ G be a connected subgroup and L a local limit of H.
Then dim H = dimL.

Note that this fails in SL4(R) as shown in [5]. This also implies that the local limit can be seen
as a limit of the corresponding Lie subalgebras under the Ad(G) action.

The proof of Proposition 3 relies on the following Theorem 4, which we believe might be of
independent interest.

Theorem 4. Let X ∈ gld (C) be a matrix with an eigenvalue which is not purely imaginary. Then
the local conjugacy limits of the one-dimensional closed subgroup H = {exp(t X ) | t ∈ R} ≤ GLd (C)
are one-dimensional.

In all but a few cases the homeomorphism type of all of Sub(G) is still unknown. However,
progress towards understanding the topology has been made on the Heisenberg group by [1], on
R×Z by [11], on the set of Cartan subgroups of SLn(R) by [12, 16, 17], on R2 by [14], on Rn by [15],
and [5] make progress on limits of symmetric subgroups in PGLn(R).
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The Chabauty compactification Sub(G) may be used to compactify Bruhat–Tits buildings or
symmetric spaces, by identifying points in those spaces with their stabilizers in G viewed as
points in Sub(G). See [4, 9, 10].
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2. Notation and Methods

As a convention, throughout the paper: a,b, z are parameters for infinite families, s, t ,∗ are
variables. We think ofC as (∗∗ ), and C∗ as ( s t−t s ). We avoid using set builder notation as it is clunky.

Throughout this paper, we will follow the notation given by Winternitz [18] where Wd ,k
denotes the kth group in the list of subgroups of SL3(R) with Lie algebra of dimension d . Some-
times a group depends on some parameters, which we denote in the superscript; sometimes a
group is not conjugate to its transpose, and so we might list them together using the / notation.
See e.g. the 3-dimensional groups on p. 10.

We begin by proving Proposition 3. To do so, we first review some theorems which we apply
throughout the paper.

Theorem 5 ([5, Theorem 3.1]). Let G be an algebraic group (defined over C or R). Suppose that H
is an algebraic subgroup and L a conjugacy limit of H. Then L is algebraic and dimL = dim H.

A more general notion than an algebraic group is a definable group, in the sense of an O-
minimal structure, see [6]. Many of the properties of algebraic sets carry over to this more general
setting. [7, Proposition 3.1] implies that the limit of a definable group is definable, and the
dimension stays constant under taking a limit.

There are three flavors of non-algebraic groups among connected subgroups of SL3(R):eat · ·
0 ebt ·
0 0 e−(a+b)t

 : a,b ∈R fixed

e t te t ·
0 e t ·
0 0 e−2t

 (
ezt

...
0 e−2R(z)t

)
: z ∈C fixed

here the · can be zero or any element ofR. The first and last are infinite families of groups, since we
can choose any fixed a,b ∈R or z ∈C. The second item is only one group. The first two families are
definable where the O-minimal structure defined including real exponential functions, so by [7]
limits cannot increase in dimension. The last family of group is not definable, since ezt is not
definable in any O-minimal structure. There are (up to taking transpose) two families of groups
of this sort:

W z
1,2 :=

(
ezt 0
0 e−2R(z)t

)
, and W z

3,8/9 :=
(
ezt ∗
0 e−2R(z)t

)
.

We will show both these families of groups have limits which stay constant in dimension.
Lemma 7 treats the one parameter group W z

1,2 and Lemma 8 completes the proof for W z
3,8/9. Both

lemmas are corollaries of Theorem 4.
The inspiration for Theorem 4 is [5, Section 3.2] which gives the following example of a limit

pn H p−1
n → L:

H =


1 t 0 0
0 1 0 0
0 0 cos t sin t
0 0 −sin t cos t

 pn =


n−1 0 0 0

0 n 0 0
0 0 1 0
0 0 0 1

 L =


1 s 0 0
0 1 0 0
0 0 cos t sin t
0 0 −sin t cos t

 .
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This example satisfies dim(L) = 2 > 1 = dim(H). The group H is a one-parameter subgroup of
L ' R×S1 that looks like a helix. Conjugating by pn coils the helix more tightly so that the orbits
of H accumulate. One obstruction for such a phenomenon is given by Theorem 4, which we
prove next.

Proof of Theorem 4. Let us denote by B the Borel subgroup of GLd (C) of upper triangular
matrices, and let b be its corresponding Lie subalgebra. Since we work over C we can replace X
by its conjugate Jordan form, which is an upper triangular matrix. We therefore assume without
loss of generality that X ∈ b. Let us denote by α the non purely imaginary eigenvalue of X , and by
v ∈Cd its eigenvector.

The map t 7→ ‖exp(t X )v‖ = ‖e tαv‖ = e tℜ(α)‖v‖ is a homeomorphism since ℜ(α) 6= 0. It follows
that the map R→ GLd (C) given by t 7→ exp(t X ) is proper, and H is closed.

Now let gn ∈ GLd (C) be a sequence such that gn H g−1
n → L in Sub(GLd (C)), and suppose for

contradiction that dimL > dim H = 1. Denote by Hn = gn H g−1
n and Xn = gn X g−1

n . So gn H g−1
n

= {exp(t Xn)|t ∈R}. By the Iwasawa decomposition GLd (C) =Ud ·B where Ud is the unitary group.
Write gn = unbn for un ∈ Ud and bn ∈ B . Since the unitary group is compact, we may assume,
up to passing to a subsequence, that un → u. Thus bn Hb−1

n → u−1Lu. Therefore, we may assume
without loss of generality that gn ∈ B , and hence also Xn = gn X g−1

n ∈ b.
It follows from dimL > dim H that for every small enough identity neighborhood I ∈ V ⊂

GLd (C), the number of components of V ∩ Hn goes to infinity. In particular, V ∩ Hn has more
than one component for all large enough n. So Hn leaves V and returns to it, and we have

there exist 0 < sn < tn such that exp(sn Xn) ∉V but exp(tn Xn) ∈V. (1)

Fix some norm ‖ · ‖ on gld (C) and let Bε be the ball of radius ε in gld (C) around 0. Denote by
Vε = exp(Bε). The exponential map exp : gld (C) → GLd (C) is a local homeomorphism at 0.
Let ε0 be small enough so that exp : Bε0 → Vε0 is a homeomorphism and Vε0 is open. These
neighborhoods have the following trapping property: for every 0 < δ < ε0, and 0 < t and Y ∈
gld (C), if exp(sY ) ∈ Vε0 for all s ∈ [0, t ] and exp(tY ) ∈ Vδ then exp(sY ) ∈ Vδ for all s ∈ [0, t ]. The
following upgraded form of (1) follows: for every δ> 0 and large enough n,

there exist 0 < sn < tn such that exp(sn Xn) ∉Vε0 but exp(tn Xn) ∈Vδ. (2)

Let ε= ε0
2 . For every δ ∈ (0,ε), let tn > 0 be the first return of the curve t 7→ exp(t Xn) to Vδ after

leaving Vε0 .

Claim 6. exp( tn
2 Xn) ∉Vε.

Assume for contradiction that exp( tn
2 Xn) ∈ Vε. We first show that exp( tn

2 Xn) ∈ Vδ. Indeed, let
Y ∈ Bε be such that exp(Y ) = exp( tn

2 Xn). For all s ∈ [0,2], exp(sY ) ∈Vε0 (since ε= ε0/2), and

exp(2Y ) = exp(Y )2 = exp

(
tn

2
Xn

)2

= exp(tn Xn) ∈Vδ.

It follows by the trapping property that exp(Y ) = exp( tn
2 Xn) ∈Vδ.

Recall that tn is defined as the first return of t 7→ exp(t Xn) to Vδ after leaving Vε0 . Therefore
exp(sXn) ∈ Vε0 for all s ∈ [0, t0

2 ]. By the trapping property, it follows that exp(sXn) ∈ Vδ for all
s ∈ [0, t0

2 ]. Hence,

exp(sXn) = exp
( s

2
Xn

)2
∈Vδ

2 ⊆Vε0 for all ∈ [0, t0].

This contradicts the assumption that the curve leaves Vε0 , and proves the claim.
Thus we may further upgrade (2). For every δ ∈ (0,ε), and large enough n,

there exist 0 < tn such that exp

(
tn

2
Xn

)
∉Vε but exp(tn Xn) ∈Vδ. (3)
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By choosing an appropriate subsequence, assume hn = exp( tn
2 Xn) satisfies (3) for δ = 1

n . In
particular, hn 9 1 but h2

n → 1. Let α1 = α,α2, . . . , αd be the eigenvalues of X and thus also of
Xn = gn X g−1

n . By definition of hn it follows that e tnα is an eigenvalue of h2
n = exp(tn Xn). Since

h2
n → 1, we have e tnα→ 1. From the assumption ℜ(α) 6= 0 it follows that tn → 0. It follows that the

eigenvalues of hn , namely e
tn
2 α1 , . . . , e

tn
2 αd tend to 1 as well.

We get a sequence of matrices hn ∈ B satisfying

h2
n → 1,hn 9 1, and all eigenvalues of hn tend to 1. (4)

Let us suppress indices and write h = hn . The matrix h is upper triangular so we may write

h =


x11 x12 · · · x1d

0 x22 · · · x2d
...

. . .
...

0 0 · · · xdd

 h2 =



x2
11 x12(x11 +x22) · · ·

d∑
k=1

x1k xkd

0 x2
22 · · ·

d∑
k=1

x2k xkd

...
. . .

...
0 0 · · · x2

dd


.

By assumption, as n → ∞, the eigenvalues of h tend to 1, i.e xi i → 1 for all 1 ≤ i ≤ d . We
also have h2 → 1 as n → ∞. In particular, looking at the super-diagonal entries of h2 we have
xi , i+1(xi i + xi+1,i+1) → 0. But since xi i + xi+1, i+1 → 2 we can deduce that xi , i+1 → 0 for all
1 ≤ i ≤ d − 1. Proceeding by induction to next diagonal, we get xi , j → 0 for all 1 ≤ i < j ≤ d .
We conclude that h → 1 as n → ∞. However this contradicts (4), and completes the proof of
Theorem 4. �

Lemma 7. Limits of W z
1,2 are 1 dimensional.

Proof. The groupW z
1,2 is given by {exp(t X ) | t ∈R} for

X =
 a b 0
−b a 0
0 0 −2a

 ∈ sl3(R)

with a 6= 0,b ∈R. This matrix has a non-zero real eigenvalue. As a subgroup of GL3(C) this satisfies
the assumptions of Theorem 4, and therefore every local limit of this subgroup under conjugation
in GL3(C) is one-dimensional. In particular, the same conclusion also holds for conjugates of the
closed subgroup W z

1,2 in SL3(R), since SL3(R) is a closed subgroup of GL3(C). �

Lemma 8. Limits of W z
3,8/9 are 3 dimensional.

Proof. Set H = W z
3,8 for some z ∉ iR, and assume that pn H p−1

n → L we wish to show that
dimL = 3. We first claim we can reduce to the case that the pn are upper triangular. Use the
Iwasawa decomposition to write G = K B where K = SO(3) and B is the subgroup of upper
triangular matrices in SL3(R). Hence we can write pn = knbn for kn ∈ K and b ∈ B . By compactness
of K we may assume, up to passing to a subsequence, that kn → k. Thus bn Hb−1

n → k−1Lk. Since
dimk−1Lk = dimL, the claim follows.

Now, both H and B are contained in the parabolic subgroup

Q =W6,1 =
∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

 ,

and hence it suffices to look at limits in Sub(Q). Let p : Q → GL2(R) be the homomorphism
sending a matrix in Q to its upper left 2 × 2 block. The homomorphism p induces a pullback
map p∗ : Sub(GL2(R)) → Sub(Q), by p∗(Ã) = p−1(Ã). The map p∗ is a homeomorphism between

C. R. Mathématique — 2021, 359, n 4, 363-376
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Sub(GL2(R))) and {A ∈ Sub(Q)|A ≥ ker p}, as it has an inverse p∗ : {A ∈ Sub(Q)|A ≥ ker p}
→ Sub(GL2(R)) defined by p∗(A) = p(A). The group H contains

ker p =
(

1 0 ∗
0 1 ∗
0 0 1

)
.

The image of H under this homeomorphism is the 1-dimensional subgroup H̃ = (ezt )
∈ Sub(GL2(R)). By Theorem 4 limits of H̃ in Sub(GL2(R) are 1 dimensional since z 6∈ iR by as-
sumption. Let L be a limit of conjugates of H , then L ≤ p∗(L̃) for some limit L̃ of conjugates of
H̃ . Since ker p is 2-dimensional, and L̄ is 1-dimension, then p∗(L̃) is 3-dimensional. Hence L is
3-dimensional. �

We will also extensively use the following propositions from [4, 5] to identify which subgroups
cannot limit to other subgroups.

Denote the normalizer of a subgroup H ≤ G by NG (H). Denote the connected component of
the identity by H0. The next theorem says that the dimension of the normalizer increases under
taking a limit.

Proposition 9 ([5, Proposition 3.2]). Let G be an algebraic Lie group (defined over C or R), let H
be an algebraic subgroup and let L be any limit of H. Then dim NG (H0) ≤ dim NG (L0) with equality
if and only if L and H are conjugate.

The same statement works for non-algebraic groups as well as long as the dimension does
not increase when taking a limit. In this case, taking a local limit of groups by conjugation is
equivalent to taking a limit of their Lie algebras by Ad(G) action, and the same proof idea works.

Any element A ∈ gl(n) has a well defined characteristic polynomial, denoted char (A). Given a
Lie subalgebra h⊆ gl(n), we denote by C har (h) the closure of the subset {char (A) : A ∈ h} ⊂R[x].
Thus C har (h) is closed and invariant under conjugation of h. The next Proposition 10 implies
that limits have smaller sets of characteristic polynomials.

Proposition 10 ([5, Proposition 3.4]). Suppose H is a closed algebraic subgroup of GLn(R), and L
is a conjugacy limit of H. Then C har (l) ⊆C har (h), where h, l⊂ gl(n) denote the Lie algebras of H
and L respectively.

The next Proposition 11 implies that limits of abelian groups are abelian. A group H satisfies
a universal relation if there is a finitely generated free group F and a word w ∈ F such that for all
homomorphisms θ : F → H we have θ(w) = 1.

Proposition 11 ([4, Proposition 2.2] idea due to Daryl Cooper). If H ≤ G satisfies a universal
relation, w, then so does every G-conjugacy limit L of H.

To organize the local limit charts of Theorem 2, we note that by Proposition 3 we can treat
each dimension separately. In view of Proposition 9, normalizers of (non-conjugate) limits must
increase in dimension, it is therefore convenient to arrange the columns (or rows) of the chart
by the dimension of the normalizer. Arrows thus can only go to the right (or down if arranged
by rows). To complete the proof in each section, we need to provide a conjugating sequence of
matrices for each arrow in the chart, and prove nonexistence of any arrows from left to right (up
to down), which we do using the remainder of the theorems and propositions from this section.

3. The classification of local limits in SL3(R)

Dimension 1

We begin with a table of the one-parameter subgroups of SL3(R) and their properties. After the
table, the terminology singular and non-singular and other conventions used in the table are
explained.

C. R. Mathématique — 2021, 359, n 4, 363-376
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Name Group Normalizer Properties

W (a,b)
1,1

eat 0 0
0 ebt 0
0 0 e−(a+b)t


(a,b) ∈R\ {0}

W2,2 if nonsingular
W4,1 if singular

definable
algebraic

W z
1,2

(
ezt 0
0 e−2ℜ(z)t

)
z ∈C

W2,1
limits 1 dimensional

algebraic if z ∈ iR

W1,3

e t te t 0
0 e t 0
0 0 e−2t

 W2,3 definable

W1,4

1 t 0
0 1 0
0 0 1

 conjugate to W5,3 algebraic

W1,5

1 t t 2

2
0 1 t
0 0 1

 W3,7 algebraic

The group W (a,b)
1,1 depends on a choice of two real numbers a,b ∈ R. If none of the weights a,

b and −a−b match, the group is nonsingular. If any of the weights match, i.e. if a = b, a =−a−b
or b =−a −b, it is called singular. We abuse notation and denote the nonsingular case by W a 6=b

1,1
and the singular case W a=b

1,1 , and use this notation throughout the rest of the paper. Note that if

z ∈R then W z
1,2 =W (a, a)

1,1 . Therefore we abuse notation in writing W z
1,2 to assume also z ∉R.

The possible local limits of each group are represented in the following transitive chart.

W a 6=b
1,1 W a=b

1,1

W z
1,2 W1,5 W1,4

W1,3

Another way to see the local limits of one parameter groups is to take a sequence of elements
in the groups that converges to the limit. However, we wanted all the sections of the paper to be
consistent. So, we give a sequence of conjugating matrices, pn in the sense of Definition 1, for
each arrow that appears in the chart:

W1,5 →W1,4
1
n 0 0

0 1
n 0

0 0 n2


W1,3 →W1,5 :n 0 n

9
0 1 −1

3
0 0 1

n


W a 6=b

1,1 →W1,5 :1 n (a−b)2n2

2a2+5ab+2b2

0 1 (a−b)y
a+2b

0 0 1


W a=b

1,1 →W1,4 :1 0 n
0 0 1
0 −1 0


W z

1,2 →W1,5 :n 3an
b

(9a2+b2)n
b2

0 1 0

0 0 1
n


W1,3 →W a=b

1,1 :
1
n 0 0
0 n 0
0 0 1


Recall we have assumed z 6∈ R. Next we explain nonexistence of the missing arrows. The first

subscript of the group in the normalizer column is the dimension of the normalizer. Proposition 9
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explains the missing arrows except for W1,5 6→ W a=b
1,1 , W a 6=b

1,1 6→ W a=b
1,1 , and W z

1,2 6→ W a=b
1,1 which

follow from Proposition 10.

Dimension 2

Name Group Normalizer Properties

W2,1

(
C∗ 0
0 det−1

)
W2,1

∼=C∗

W2,2

∗ 0 0
0 ∗ 0
0 0 ∗

 W2,2
∼= (R2,+)

W2,3

e t ∗ 0
0 e t 0
0 0 e−2t

 conjugate to W3,1
∼= (R2,+)

W2,4

1 ∗ ∗
0 1 0
0 0 1

 W5,2
∼= (R2,+)

W2,5

1 0 ∗
0 1 ∗
0 0 1

 W5,1
∼= (R2,+)

W2,6

1 t ∗
0 1 t
0 0 1

 W (1,0)
4,6

∼= (R2,+)

W (a,b)
2,7

eat ∗ 0
0 ebt 0
0 0 e−(a+b)t

 conjugate to W3,1

∼= Aff(R)
algebraic

a = b

definable
a 6= b

W2,8

e t ∗ te t

0 e−2t 0
0 0 e t

 W3,2

∼= Aff(R)
definable

W2,9

e−2t 0 ∗
0 e t te t

0 0 e t

 W3,3

∼= Aff(R)
definable

W2,10

e t e t s e t s2

2
0 1 s
0 0 e−t

 W2,10

∼= Aff(R)
algebraic

Note that W2,3 =W a=b
2,7 .

The full chart of local limits in dimension 2 is
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W2,1 W2,3 W2,6 W2,4

W2,2 W (a,b)
2,7 W2,5

W2,10 W2,8

W2,9

We have put the abelian groups in bold to distinguish them. Excluding limits of W2,1 the com-
putations for abelian groups appear in [12, 17]. We first give the computations for the remain-
der of the arrows which do appear in the chart. To finish the limits of the abelian groups, we see
W2,1 →W2,3 by di ag 〈n,1, 1

n 〉.
Next we compute all of the limits of the nonabelian groups. The next two limits are done by

first conjugating by a permutation matrix to move the free element to the upper right corner, and
then applying the sequence shown.

W (a,b)
2,7 →W2,6 :1 n 0

0 1 −a+b
−a−2b n

0 0 1


W2,8 →W2,6 :n 0 −2n

9
0 1 −1

3
0 0 1

n

 .

W2,9 →W2,6 :
9

1−n3
3n3

1−n3 1
0 n 0

0 0 1−n3

9n


W2,10 →W2,6 :1 0 n

0 1 0
0 0 1

 .

It remains to prove nonexistence of the missing arrows. By Proposition 11 limits of W2,1 are
abelian groups.

To finish the argument, we need to explain why there are no missing arrows. It remains to
check the non-abelian groups. All the missing arrows from non-abelian groups would originate
from W2,10, and Proposition 10 does not allow an arrow to any of W2,3,W2,7,W2,8,W2,9, because
the corresponding characteristic polynomials are not contained in Char(W2,10).

Dimension 3

Name Group Normalizer Properties

W3,1

∗ 0 ∗
0 ∗ 0
0 0 ∗

 W3,1

∼= Aff(R)×R
algebraic

W3,2

e t ∗ ∗
0 e t 0
0 0 e−2t

 W4,2

∼= Aff(R)×R
algebraic

W3,3

e−2t 0 ∗
0 e t ∗
0 0 e t

 W4,3

∼= Aff(R)×R
algebraic

W3,4

1 ∗ ∗
0 1 ∗
0 0 1

 W5,3
Heisenberg

algebraic

W (a,b)
3,5

eat ∗ ∗
0 ebt 0
0 0 e−(a+b)t

 W4,2

∼=R2 oR
R acts as W1,1

definable

W (a,b)
3,6

eat 0 ∗
0 ebt ∗
0 0 e−(a+b)t

 W4,3

∼=R2 oR
R acts as W1,1

definable
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W3,7

e t e t s ∗
0 1 s
0 0 e−t

 W3,7

∼=R2 oR
R acts as W1,1

algebraic

W (z)
3,8

(
ezt C

0 e−2ℜ(z)t

)
, z ∈C W4,4

∼=R2 oR
R acts as W1,2

limits 3 dimensional

W (z)
3,9

(
e−2ℜ(z)t C

0 ezt

)
, z ∈C W4,5

∼=R2 oR
R acts as W1,2

limits 3 dimensional

W3,10

e t te t ∗
0 e t ∗
0 0 e−2t

 W (1,1)
4,6

∼=R2 oR
R acts as W1,3

definable

W3,11

e−2t ∗ ∗
0 e t te t

0 0 e t

 W (−2,1)
4,6

∼=R2 oR
R acts as W1,3

definable

W3,12

∗ ∗ 0
∗ ∗ 0
0 0 1

 W4,1

∼= SL2(R)
algebraic

W3,13 SO(2, 1) W3,13

∼= SL2(R)
algebraic

W3,14 SO(3) W3,14

∼= SO(3)
algebraic

We compactify notation to write a group and its transpose in the same line, for example:
W3,8/9. We show the full chart of local limits is as follows:

W3,1 W3,7 W3,13 W3,14

W (a,b)
3,5/6 W3,2/3 W b=0

3,5/6 W (z)
3,8/9 W (i )

3,8/9 W3,10/11 W3,12

W3,4

Recall [5] compute limits of W i
3,8 = SO(2, 1) = W3,13 and [9] calculate limits of SO(3) = W3,14.

We first give the computations of the remainder of the limits where we write computations for
the transpose in the same line.

W3,12 →W3,4 :1 0 n
0 1 0
0 0 1


W3,10/11 →W3,4 :n 0 0

0 1
n 0

0 0 1


W z

3,8/9 →W3,4 :n 0 0
0 1

n 0
0 0 1


W (a,b)

3,5/6 →W3,4 :1 0 0
0 1 n
0 0 1


the last limit includes W3,2 and W3,3 as singular cases, W3,2/3 =W (a=b)

3,5/6 →W3,4. Finally,

W3,7 →W b=0
3,5/61 0 0

0 n 0
0 0 1

n


W3,1 →W (a=b)

3,5/61 n 0
0 1 0
0 0 1

 .

Now it remains to prove nonexistence of the missing arrows. By Theorem 5 limits of W3,7 are
algebraic. Proposition 10 rules out the rest of the options for limits of W3,7 except for W3,5/6.
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Proposition 12. The only possible values of (a,b) for the groups W a,b
3,5/6 which can appear as limits

of W3,7 are conjugate to W3,5/6 with b = 0.

Proof. Using the standard Iwasawa decomposition argument, any limit of W3,7 is conjugate to
a limit under an element of the Borel, B . Conjugating by an element of B leaves the diagonal
invariant. Thus the limit must either be unipotent, or is conjugate to an upper triangular group
with diagonal 〈e t ,1,e−t 〉. In the case W3,5 the possibilities for the limit group are a+b = 0 or b = 0
which are conjugate by a permutation. For W3,6 we see a = 0 and b = 0 are conjugate. �

Next W3,1 is algebraic, and so its limits must be algebraic, and by Proposition 10 its limits must
have real weights. Thus W3,12 and W3,8/9 cannot be limits because they have complex wieghts. So
the only possible limits are the algebraic groups in W (a,b)

3,5/6 where a,b ∈ Q. By Proposition 10 the

only possibilities are the singular W (a=b)
3,5/6 .

Proposition 13. The group W3,1 limits only to singular groups among W (a,b)
3,5/6.

Proof. The subgroup W3,1 is contained in the Borel B . Since SL3(R) = SO(3)B and SO(3) is
compact, it suffices to consider conjugating only by sequences of elements gn ∈ B . Notice
B = W3,1N ′ where W3,1 contains A, the subgroup of diagonal matrices, and N ′ = {I + tE1,2 +
sE2,3|t , s ∈R} (notice N ′ is not a subgroup). So, it suffices to consider gn = I + tnE1,2+ snE2,3 ∈ N ′,
and to assume that such a sequence is unbounded, i.e tn →∞ or sn →∞. Now, if

hn =
an 0 dn

0 bn 0
0 0 cn

 with anbncn = 1

is a sequence of elements in W3,1 so that hgn
n converges then the entries

(
hgn

n
)

1,2 = sn(an −bn),
(
hgn

n
)

2,3 = tn (bn − cn)

converge. Thus either an −bn → 0 or bn − cn → 0 depending on sn →∞ or tn →∞. This shows
that on the diagonal of the limit two of the entries are the same. The only possible limits which
are algebraic, conjugate into B and have two equal entries on the diagonal are W (a=b)

3,5/6 . Indeed,

W3,1 →W a=b
3,51 n 0

0 1 0
0 0 1


W3,1 →W a=b

3,61 0 0
0 1 n
0 0 1

 .

�

It is not possible for W z
3,8/9 with z 6= i to be a limit of another group, since W z

3,8/9 for z 6= i is not
algebraic and W3,13 = SO(2, 1) and W3,14 = SO(3) are algebraic. Also W z

3,8/9 cannot be a limit of
W3,1 or W3,7 by Proposition 10. Finally, it remains to check that W3,4 is the only possible limit of
W z

3,8/9. Since Proposition 10 implies limits of W z
3,8/9 are unipotent, the only possibility is the limit

we computed above to W3,4.
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Dimension 4

Name Group Normalizer Properties

W4,1

(
GL2 0

0 det−1

)
W4,1

∼= GL2(R)
algebraic

W4,2

∗ ∗ ∗
0 ∗ 0
0 0 ∗

 W4,2

∼= Aff(R2)
algebraic

W4,3

∗ 0 ∗
0 ∗ ∗
0 0 ∗

 W4,3

∼= Aff(R2)
algebraic

W4,4

(
C∗ C

0 det−1

)
W4,4

∼=C∗nC
algebraic

W4,5

(
det−1 C

0 C∗
)

W4,5

∼=C∗nC
algebraic

W (a,b)
4,6

eat ∗ ∗
0 ebt ∗
0 0 e−(a+b)t

 W5,3

∼= Heis(R)oW1,1

a = b algebraic
a 6= b definable

The chart of local limits is as follows.

W4,1 W4,2 W4,3 W4,4 W4,5

W a 6=b
4,6 W a=b

4,6

W4,1 →W a=b
4,6 :1 0 n

0 1 0
0 0 1


W4,2 →W a=b

4,6 :1 0 0
0 1 n
0 0 1


W4,3 →W a=b

4,6 :1 n 0
0 1 0
0 0 1


W4,4 →W a=b

4,6 :n 0 0
0 1

n 0
0 0 1


W4,5 →W a=b

4,6 :1 0 0
0 n 0
0 0 1

n


By Theorem 5 W (a,b)

4,6 is the only possible limit of the first 5 groups, and limits of the first

5 groups are algebraic. Notice W (a,b)
4,6 is algebraic for a,b ∈ Q, but we claim only the singular

groups W (a=b)
4,6 are possible as limits of the first 5 groups. Apply the Iwasawa decomposition

G = K N A, and notice we only need to conjugate by elements of B = N A, since K is compact
then conjugating by elements of K will not change the limit.

To show that

W4,3 6→W (a 6=b)
4,6 ,

we note that B = W4,3U , where U = {I d + t · E1,2}. So it suffices to consider conjugating by
sequences in U . But this is what we computed in the limits of W4,2/3 above. Similarly W4,2 6→
W (a 6=b)

4,6 .

To show that W4,1 6→ W a 6=b
4,6 . Using the standard Iwasawa decomposition argument, it is easy

to verify that

G =W4,1N ′ SO(3) where N ′ =
(

1 0 ∗
0 1 0
0 0 1

)
.

Since SO(3) is compact, it suffices to check for limits of conjugates of W4,1 by elements of N ′.
However, this is exactly the limit computed above.

Finally W4,4,W4,5 6→W a 6=b
4,6 by Proposition 10, since if W4,4,W4,5 have real weights then two of

them must be equal.
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Dimension 5

Recall a subgroup is parabolic if and only if it contains the Borel subgroup. In our case, a subgroup
of G = SL3(R) is parabolic if it contains B =W5,3. The space G/B is compact and hence G/NG (H) is
compact for every subgroup H ≤G with a parabolic normaliser P = NG (H). For such a subgroup,
the subspace of its conjugates is homeomorphic to G/NG (H) and hence is compact in Sub(G),
and in particular closed. Thus subgroups with parabolic normalizers cannot locally converge to
non-conjugate subgroups. Since all subgroups of dimension 5 are have parabolic normalisers,
the chart of local limits consists of isolated points.

Name Group Normalizer Properties

W5,1

SL2
∗
∗

0 0 1

 W6,1

∼= SL2(R)nR2

algebraic

W5,2

1 ∗ ∗
0
0

SL2

 W6,2

∼= SL2(R)nR2

algebraic

W5,3

∗ ∗ ∗
0 ∗ ∗
0 0 ∗

 W5,3

∼= Borel
algebraic

Dimension 6

The subspace of conjugates of a parabolic subgroup is closed in the Chabauty compactification.
So the chart of limits is two isolated points.

Name Group Normalizer Properties

W6,1

(
GL2 ∗

0 det−1

)
W6,1 algebraic

W6,2

(
det−1 ∗

0 GL2

)
W6,2 algebraic

Dimensions 7 and 8

Only SL3(R) is of dimension 8. There are no subgroups of dimension 7.
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