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Abstract. For n ≥ 2 and 1 < p < ∞ we prove an Lp -version of the generalized Korn-type inequality for
incompatible, p-integrable tensor fields P :Ω→Rn×n having p-integrable generalized Curl and generalized
vanishing tangential trace P τl = 0 on ∂Ω, denoting by {τl }l=1, ...,n−1 a moving tangent frame on ∂Ω, more
precisely we have:

‖P‖Lp (Ω,Rn×n ) ≤ c
(∥∥symP

∥∥
Lp (Ω,Rn×n ) +

∥∥CurlP
∥∥

Lp (Ω, (so(n))n )

)
,

where the generalized Curl is given by (CurlP )i j k := ∂i Pk j −∂ j Pki and c = c(n, p,Ω) > 0

Résumé. On montre pour n ≥ 2 et 1 < p <∞ une version Lp de l’inégalité généralisée de Korn pour tous les
champs de tenseurs incompatibles et p-intégrables P :Ω→Rn×n , avec rotationnel généralisé p-intégrable et
avec zéro trace tangentielle P τl = 0 sur ∂Ω, où {τl }l=1, ...,n−1 est un repère tangent sur ∂Ω. Plus précisément
on a :

‖P‖Lp (Ω,Rn×n ) ≤ c
(∥∥symP

∥∥
Lp (Ω,Rn×n ) +

∥∥CurlP
∥∥

Lp (Ω, (so(n))n )

)
,

où les composantes du rotationnel généralisé s’écrivent (CurlP )i j k := ∂i Pk j −∂ j Pki et c = c(n, p,Ω) > 0.
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1. Introduction

In [6] we have shown that there exists a constant c = c(p,Ω) > 0 such that

‖P‖Lp (Ω,R3×3) ≤ c
(∥∥symP

∥∥
Lp (Ω,R3×3) +‖CurlP‖Lp (Ω,R3×3)

)
holds for all tensor fields P ∈ W 1, p

0 (Curl;Ω,R3×3), i.e., for all P ∈ W 1, p (Curl;Ω,R3×3) with vanish-
ing tangential trace P ×ν= 0 (⇔ P τl = 0) on ∂Ω where ν denotes the outward unit normal vec-
tor field and {τl }l=1,2,3 a moving tangent frame on ∂Ω andΩ⊂R3 is a bounded Lipschitz domain.
The crucial ingredients for our proof were the Lions lemma and Nečas estimate, the compactness
of W 1, p

0 (Ω) ⊂⊂ Lp (Ω) and an algebraic identity in terms of components of the cross product of a
skew-symmetric matrix with a vector. Recall, that for a bounded Lipschitz domain (i.e. bounded
open connected with Lipschitz boundary) Ω ⊂ Rn , the Lions lemma states that f ∈ Lp (Ω) if and
only if f ∈ W −1, p (Ω) and ∇ f ∈ W −1, p (Ω,Rn), which is equivalently expressed by the Nečas esti-
mate ∥∥ f

∥∥
Lp (Ω) ≤ c

(∥∥ f
∥∥

W −1, p (Ω) +
∥∥∇ f

∥∥
W −1, p (Ω,Rn )

)
(1)

with a positive constant c = c(p,n,Ω). In fact, such an argumentation scheme is also used to prove
the classical Korn inequalities, cf. e.g. [1–6] and the discussions contained therein. However, [1–5]
focus on the compatible case, i.e. P = Du, where we deal with general square matrices P ∈ Rn×n ,
thus, the incompatible case.

Here, we extend our results from [6] to the n-dimensional case, hence generalizing the main
result from [8] to the Lp -setting. This is, we prove

‖P‖Lp (Ω,Rn×n ) ≤ c
(∥∥symP

∥∥
Lp (Ω,Rn×n ) +

∥∥CurlP
∥∥

Lp (Ω,(so(n))n )

)
∀ P ∈W 1, p

0

(
Curl ;Ω, Rn×n)

, (2)

where the generalized Curl is given by (CurlP )i j k := ∂i Pk j −∂ j Pki and the vanishing tangential
trace condition reads P τl = 0 on ∂Ω denoting by {τl }l=1, ...,n−1 a moving tangent frame on ∂Ω.

For a detailed motivation and definitions we refer to [6] and the references contained therein.
Indeed, we follow the argumentation scheme presented in [6] closely, emphasizing only the nec-
essary modifications coming from the generalization of the vector product. The latter then pro-
vides an adequate generalization of the Curl-operator to the n-dimensional setting. Especially,
the generalized curl of vector fields can be seen as their exterior derivative, see also the discus-
sion in [8].

2. Notations

Let n ≥ 2. For vectors a,b ∈ Rn , we consider the scalar product 〈a,b〉 := ∑n
i=1 ai bi ∈ R, the

(squared) norm ‖a‖2 := 〈a, a〉 and the dyadic product a ⊗b := (ai b j )i , j=1, ...,n ∈ Rn×n . Similarly,
for matrices P,Q ∈Rn×n we define the scalar product 〈P,Q〉 :=∑n

i , j=1 Pi j Qi j ∈R and the (squared)

Frobenius-norm ‖P‖2 := 〈P,P〉. Moreover, P T := (P j i )i , j=1, ...,n denotes the transposition of the
matrix P = (Pi j )i , j=1, ...,n , which decomposes orthogonally into the symmetric part symP :=
1
2 (P +P T ) and the skew-symmetric part skewP := 1

2 (P −P T ). The Lie-Algebra of skew-symmetric
matrices is denoted by so(n) := {A ∈Rn×n | AT =−A}. The identity matrix is denoted by 1, so that
the trace of a matrix P is given by trP := 〈P,1〉.
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The cross product for vectors a,b ∈Rn generalizes to

a×b := (
ai b j −a j bi

)
i , j=1, ...,n = a ⊗b −b ⊗a = 2 · skew(a ⊗b) ∈ so(n) ∼=R n(n−1)

2 . (3)

Using the bijection axl : so(3) →R3 we obtain back the standard cross product for a,b ∈R3:

a ×b =−axl(a×b) (4)

where axl : so(3) →R3 is given in such a way that

A b = axl(A)×b ∀ A ∈ so(3), b ∈R3. (5)

Like in 3-dimensions it holds:

Observation 1. Let n ≥ 2. For non-zero vectors a,b ∈ Rn we have a×b = 0 if and only if a and b
are parallel.

Proof. Since the “if” part is obvious we show the “only if” direction:

a×b = 0 ⇔ skew(a ⊗b) = 0 ⇔ a ⊗b = b ⊗a ⇒ (a ⊗b)b = (b ⊗a)b

⇔ a ‖b‖2 = b 〈a,b〉 . �

As in the 3-dimensional case, we understand the vector product of a square-matrix P ∈ Rn×n

and a vector b ∈Rn row-wise, i.e.

P×b := ((
P T ek

)×b
)

k=1, ...,n = (
Pki b j −Pk j bi

)
i , j ,k=1, ...,n ∈ (so(n))n . (6)

For index notations we set: (P×b)i j k := Pki b j −Pk j bi .
Especially, for skew-symmetric matrices A ∈ so(n) we note the following crucial relation for

our considerations:(
A×b

)
ki j −

(
A×b

)
k j i +

(
A×b

)
j i k = A j k bi − A j i bk −

(
Ai k b j − Ai j bk

)+ Ak j bi − Aki b j(
Ai j =−A j i

)
= 2Ai j bk ∀ i , j ,k = 1, . . . n

(7)

with the direct consequence

Observation 2. Let n ≥ 2. For A ∈ so(n) and a non-zero vector b ∈Rn we have A×b = 0 if and only
if A = 0.

LetΩ⊂Rn , n ≥ 2, be a domain. As in R3 we formally introduce the generalized curl of a vector
field v ∈D ′(Ω,Rn) via

curl v := v×(−∇) =∇×v =−2 · skew(v ⊗∇) =−2 · skew(Dv) ∈ so(n). (8)

Furthermore, for (n ×n)-square matrix fields we understand this operation row-wise:

CurlP := P×(−∇) = (
curl

(
P T ek

))
k=1, ...,n = (

∂i Pk j −∂ j Pki
)

i , j ,k=1, ...,n ∈ (so(n))n . (9)

For index notations we define: (CurlP )i j k := ∂i Pk j −∂ j Pki . Of course, Curl Dv ≡ 0.
Moreover, we make use of the generalized divergence Div for matrix fields P ∈ D ′(Ω,Rn×n)

row-wise, via
DivP := (

div
(
P T ek

))
k=1, ...,n . (10)

In fact, the crucial relation (7) implies that the full gradient of a skew-symmetric matrix is
already determined by its generalized Curl , cf. also [7, p. 155]:

Corollary 3. Let n ≥ 2. For A ∈D ′(Ω,so(n)) the entries of the gradient DA are linear combinations
of the entries from Curl A.

Proof. Replacing b by −∇ in (7) we see that(
Curl A

)
ki j −

(
Curl A

)
k j i +

(
Curl A

)
j i k =−2∂k Ai j . �
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This control of all first partial derivatives of a skew-symmetric matrix field in terms of the
generalized Curl then immediately yields in all dimensions

Corollary 4. Let n ≥ 2. For A ∈ Lp (Ω,so(n)) we have Curl A ≡ 0 in the distributional sense if and
only if A = const almost everywhere inΩ.

2.1. Function spaces

Having above relations at hand we can now catch up the arguments from [6]. For that purpose let
us define for n ≥ 2 and 1 < p <∞ the space

W 1, p (
Curl ;Ω,Rn×n)

:= {
P ∈ Lp (

Ω,Rn×n) | CurlP ∈ Lp (
Ω, (so(n))n)}

(11a)

equipped with the norm

‖P‖W 1, p (Curl ;Ω,Rn×n) :=
(
‖P‖p

Lp (Ω,Rn×n ) +
∥∥CurlP

∥∥p
Lp (Ω, (so(n))n )

) 1
p

. (11b)

By definition of the norm in the dual space, we have

P ∈ Lp (
Ω,Rn×n) ⇒ CurlP ∈W −1, p (

Ω, (so(n))n)
with

∥∥CurlP
∥∥

W −1, p (Ω,(so(n))n ) ≤ c ‖P‖Lp (Ω,Rn×n ) . (12)

Furthermore, we consider the subspace

W 1, p
0

(
Curl ;Ω,Rn×n)

:= {
P ∈W 1, p (

Curl ;Ω,Rn×n) | P×ν= 0 on ∂Ω
}

= {
P ∈W 1, p (

Curl ;Ω,Rn×n) | P τl = 0 on ∂Ω for all l = 1, . . . , n −1
}

,
(13)

where ν stands for the outward unit normal vector field and {τl }l=1, ...,n−1 denotes a moving
tangent frame on ∂Ω. Here, the generalized tangential trace P×ν is understood in the sense of

W − 1
p , p (∂Ω,Rn×n) which is justified by partial integration, so that its trace is defined by

∀ k = 1, . . . n, ∀ Q ∈W
1− 1

p′ , p ′ (
∂Ω,Rn×n)

:〈(
P T ek

)×ν,Q
〉
∂Ω =

∫
Ω

〈
curl

(
P T ek

)
,Q̃

〉
Rn×n +2

〈
P T ek ,Div

(
skewQ̃

)〉
Rn dx

having denoted by Q̃ ∈ W 1, p ′
(Ω,Rn×n) any extension of Q in Ω, where, 〈· , ·〉∂Ω indicates the du-

ality pairing between W − 1
p , p (∂Ω,Rn×n) and W

1− 1
p′ , p ′

(∂Ω,Rn×n). Indeed, for P,Q ∈C 1(Ω,Rn×n)∩
C 0(Ω,Rn×n) we have

1

2

〈(
P T ek

)×ν,Q
〉
Rn×n = 〈

skew
((

P T ek
)⊗ν)

,Q
〉
Rn×n = 〈(

P T ek
)⊗ν, skewQ

〉
Rn×n

=
n∑

i , j=1
Pki ν j (skewQ)i j =−

n∑
i , j=1

ν j (skewQ) j i Pki

=−〈
ν, (skewQ)

(
P T ek

)〉
Rn ,

(14)
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so that using the divergence-theorem, for k = 1, . . . ,n we have1∫
∂Ω

〈(
P T ek

)×ν,Q
〉
Rn×n dS

(14)= −2
∫
∂Ω

〈
ν, (skewQ)

(
P T ek

)〉
Rn dS

=−2
∫
Ω

div
(
(skewQ)

(
P T ek

))
dx

=−2
∫
Ω

〈
Div

[
(skewQ)T ]

,P T ek
〉
Rn +

〈
(skewQ) ,D

(
P T ek

)〉
Rn×n dx

=
∫
Ω

〈
curl

(
P T ek

)
,Q

〉
Rn×n +2

〈
P T ek ,Div(skewQ)

〉
Rn dx.

(15)

Further, following [6] we introduce also the space W 1, p
Γ,0 (Curl;Ω,Rn×n) of functions with van-

ishing tangential trace only on a relatively open (non-empty) subset Γ ⊆ ∂Ω of the boundary by
completion of C∞

Γ,0(Ω,Rn×n) with respect to the W 1, p (Curl;Ω,Rn×n)-norm.

Remark 5 (Tangential trace condition). Note, that the vanishing of the tangential trace P×ν at
some point is equivalent to P τl = 0 for all l = 1, . . . , n −1, denoting by {τl }l=1, ...,n−1 a frame of the
corresponding tangent space. Indeed, by Observation 1 we have

P×ν= 0

⇔ skew
((

P T ek
)⊗ν)= 0, k = 1, . . . , n, ⇔ (

P T ek
)

parallel to ν for all k = 1, . . . , n

⇔ 〈
P T ek ,τl

〉= 0 ∀ l = 1, . . . , n −1, ∀ k = 1, . . . , n ⇔ P τl = 0 ∀ l = 1, . . . , n −1.

3. Main results

We will now state the results from [6] in the n-dimensional case, for details of the proofs we refer
to the corresponding results therein:

Lemma 6. Let n ≥ 2,Ω⊂Rn be a bounded Lipschitz domain and 1 < p <∞. Then P ∈D ′(Ω,Rn×n),
symP ∈ Lp (Ω,Rn×n) and CurlP ∈W −1, p (Ω, (so(n))n) imply P ∈ Lp (Ω,Rn×n). Moreover, we have the
estimate

‖P‖Lp (Ω,Rn×n ) ≤ c
(
‖skewP‖W −1, p (Ω,Rn×n ) +

∥∥symP
∥∥

Lp (Ω,Rn×n ) +
∥∥CurlP

∥∥
W −1, p (Ω, (so(n))n )

)
, (16)

with a constant c = c(n, p,Ω) > 0.

Proof. Use Corollary 3 and apply the Lions lemma and Nečas estimate, [6, Theorem 2.6] to
skewP , cf. [6, proof of Lemma 3.1]. �

The general Korn-type inequalities then follow by eliminating the first term on the right-hand
side of (16):

Theorem 7. Let n ≥ 2, Ω ⊂ Rn be a bounded Lipschitz domain and 1 < p < ∞. There exists a
constant c = c(n, p,Ω) > 0, such that for all P ∈ Lp (Ω,Rn×n) we have

inf
A∈so(n)

‖P − A‖Lp (Ω,Rn×n ) ≤ c
(∥∥symP

∥∥
Lp (Ω,Rn×n ) +

∥∥CurlP
∥∥

W −1, p (Ω, (so(n))n )

)
. (17)

1This partial integration formula slightly differs from the situation in R3 since the generalized Curl has image in
(so(n))n which corresponds to Rn×n only for n = 3.
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Proof. By Corollary 4 the kernel of the right-hand side consists only of constant skew-symmetric
matrices:

K :={
P ∈ Lp (

Ω,Rn×n)∣∣symP = 0 a.e. and CurlP = 0 in the distributional sense
}

= {P = A a.e.|A ∈ so(n)} .
(18)

Then there exist M := dimK = n(n−1)
2 linear forms `α on Lp (Ω,Rn×n) such that P ∈ K is equal

to 0 if and only if `α(P ) = 0 for all α = 1, . . . , M . Exploiting the compactness Lp (Ω,Rn×n) ⊂⊂
W −1, p (Ω,Rn×n) allows us to eliminate the first term on the right-hand side of (16) so that we
arrive at

‖P‖Lp (Ω,Rn×n ) ≤ c

(∥∥symP
∥∥

Lp (Ω,Rn×n ) +
∥∥CurlP

∥∥
W −1, p (Ω, (so(n))n ) +

M∑
α=1

|`α(P )|
)

. (19)

Considering P − AP in (19), where the skew-symmetric matrix AP ∈ K is chosen in such
a way that `α(P − AP ) = 0 for all α = 1, . . . , M , then yields the conclusion, cf. [6, proof of
Theorem 3.4]. �

Moreover, the kernel is killed by the tangential trace condition P×ν ≡ 0 (or P τl ≡ 0 for all
l = 1, . . . , n −1), cf. (18) together with Observation 2 (and also Remark 5), so that we arrive at

Theorem 8. Let n ≥ 2, Ω ⊂ Rn be a bounded Lipschitz domain and 1 < p < ∞. There exists a
constant c = c(n, p,Ω) > 0, such that for all P ∈W 1, p

0 (Curl ;Ω,Rn×n) we have

‖P‖Lp (Ω,Rn×n ) ≤ c
(∥∥symP

∥∥
Lp (Ω,Rn×n ) +

∥∥CurlP
∥∥

Lp (Ω, (so(n))n )

)
. (20)

Proof. Having Observation 2 we can closely follow the proof of [6, Theorem 3.5]. �

Similar argumentations show that (20) also holds true for functions with vanishing tangential
trace only on a relatively open (non-empty) subset Γ⊆ ∂Ω of the boundary, namely

Theorem 9. Let n ≥ 2, Ω ⊂ Rn be a bounded Lipschitz domain and 1 < p < ∞. There exists a
constant c = c(n, p,Ω) > 0, such that for all P ∈W 1, p

Γ,0 (Curl ;Ω, Rn×n) we have

‖P‖Lp (Ω,Rn×n ) ≤ c
(∥∥symP

∥∥
Lp (Ω,Rn×n ) +

∥∥CurlP
∥∥

Lp (Ω, (so(n))n )

)
. (21)

Furthermore, Theorem 9 reduces for compatible P = Du to a tangential Korn inequality
(Corollary 10) and for skew-symmetric P = A to a Poincaré inequality in arbitrary dimensions
(Corollary 12):

Corollary 10. Let n ≥ 2, Ω ⊂ Rn be a bounded Lipschitz domain and 1 < p < ∞. There exists a
constant c = c(n, p,Ω) > 0, such that for all u ∈W 1, p

Γ,0 (Ω,Rn) we have

‖Du‖Lp (Ω,Rn×n ) ≤ c
∥∥symDu

∥∥
Lp (Ω,Rn ) with Du×ν= 0 on Γ. (22)

Remark 11. On Γ the boundary condition Du×ν = 0 is equivalent to Duτl = 0 for all l =
1, . . . , n −1 and is, e.g., fulfilled if u|Γ ≡ const ., see Remark 5.

Corollary 12. Let n ≥ 2, Ω ⊂ Rn be a bounded Lipschitz domain and 1 < p < ∞. There exists a
constant c = c(n, p,Ω) > 0, such that for all A ∈W 1, p

Γ,0 (Curl ;Ω,so(n)) =W 1, p
Γ,0 (Ω,so(n)) we have

‖A‖Lp (Ω,so(n)) ≤ c
∥∥Curl A

∥∥
Lp (Ω, (so(n))n ) with A×ν= 0

∗⇔ A = 0 on Γ. (23)

Remark 13. The equivalence of condition ∗ is seen in the following way: In any dimension the
rank of the skew-symmetric matrix A is an even number, cf. [9, p. 30], and by Remark 5 the rows
AT ek are all parallel (⇔ Aτl = 0 for all l = 1, . . . , n−1) such that the rank of A is not greater then 1.
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