Duo Li

Projective bundles and blowing ups

Volume 359, issue 9 (2021), p. 1129-1133

<https://doi.org/10.5802/crmath.249>

© Académie des sciences, Paris and the authors, 2021. Some rights reserved.

This article is licensed under the **Creative Commons Attribution 4.0 International License**.
http://creativecommons.org/licenses/by/4.0/
Projective bundles and blowing ups

Duo Lia

a School of Mathematics(Zhuhai), Sun Yat-sen University, Zhuhai, 519082, Guangdong, China.
E-mail: liduo5@mail.sysu.edu.cn

\textbf{Abstract.} We study the blowing up \tilde{X} of a smooth projective variety X along a smooth center B that is equipped with a projective bundle structure over a variety Z. If B is a point, then X is a projective space. If the Picard number $\rho(X)$ is 1, then $\dim Z = \dim X - \dim B - 1$. Moreover, when $\dim Z = \dim X - \dim B - 1$, X is a projective space and B is a linear subspace in X. If X is a projective space \mathbb{P}_n and B is a curve, then either $n = 3$ and B is a twisted cubic curve or n is an arbitrary integer and B is a line in \mathbb{P}_n. If X is a quadric Q_n and B is a curve, then n is 3 and B is a line in Q_3.

\textbf{Résumé.} Nous étudions l’éclatement \tilde{X} d’une variété projective lisse X le long d’un centre lisse B, munie d’une structure de fibré projectif. Si B est un point, X est un espace projectif. Si le nombre de Picard $\rho(X)$ est 1, alors $\dim Z = \dim X - \dim B - 1$. De plus, lorsque $\dim Z = \dim X - \dim B - 1$, X est un espace projectif et B est un sous-espace linéaire dans X. Si X est l’espace projectif \mathbb{P}_n et B est une courbe, ou n est égale à 3 et B est une courbe cubique tordue, ou n est un entier arbitraire et B est une ligne droite dans \mathbb{P}_n. Si X est une quadrique et B est une courbe, alors n est égale à 3 et B est une ligne droite dans Q_3.

\textbf{2020 Mathematics Subject Classification.} 14J45, 14E30.

\textbf{Funding.} The author is supported by National Natural Science Foundation of China (12001547) and Guangdong Basic and Applied Basic Research Foundation(2019A1515110907).

\textit{Manuscript received 16th July 2021, accepted 23rd July 2021.}

1. Introduction

Let L be a linear subspace of dimension l in a projective space \mathbb{P}_n. We consider the rational map $\pi_L : \mathbb{P}_n \dashrightarrow \Gamma$ given by the linear projection from L to Γ, where Γ is a linear subspace of dimension $n - l - 1$ disjoint from L. Then the blowing up $\text{Bl}_L(\mathbb{P}_n)$ of \mathbb{P}_n along L is the graph of π_L. More precisely, $\text{Bl}_L(\mathbb{P}_n) \subseteq \mathbb{P}_n \times \Gamma$ is the closed subvariety of $\mathbb{P}_n \times \Gamma$ defined as $\text{Bl}_L(\mathbb{P}_n) = \{(p, q) \in \mathbb{P}_n \times \Gamma \mid p \in \langle L, q \rangle\}$, where $\langle L, q \rangle$ is the linear subspace generated by L and q. The projection $p_2 : \text{Bl}_L(\mathbb{P}_n) \rightarrow \Gamma$ to the second factor is a projective bundle. Actually, for any point q in Γ, the fiber $p_2^{-1}(q)$ is the linear space $\langle L, q \rangle$. So any blowing up of a projective space along a linear subspace is equipped with a projective bundle structure. It is interesting to find more examples of blowing ups that are equipped with projective bundle structures. In [1, Section 4] and [2], there are examples of blowing ups of projective spaces along non-linear subvarieties that are equipped with projective bundle structures.

In this article, we aim to prove some classification results about (X, B) (where X and B are projective smooth varieties and B is a subvariety of X) such that the blowing up $\text{Bl}_B(X)$ is a...
projective bundle over some variety Z. In Proposition 1, we show that if B is a point, then X is a projective space. In Theorem 4, we show that if the Picard number $\rho(X)$ is 1 and $\dim Z = \dim X - \dim B - 1$, then X is a projective space and B is a linear subspace in X. Finally, in Theorem 6, we show that if X is \mathbb{P}_n and B is a curve, then either n is 3 and B is a twisted cubic curve or n is an arbitrary positive integer and B is a line in \mathbb{P}_n; if X is a quadric $Q_n (n \geq 3)$ and B is a curve, then n is 3 and B is a line in Q_3.

Convention. A complex variety is an irreducible integral scheme of finite type defined over \mathbb{C}. In this article, all varieties considered are complex projective varieties.

2. Main results

Setup. We assume that X is a smooth projective variety of dimension n and we denote the blowing up \widetilde{X} of X along a closed smooth subvariety B by $\varphi : \widetilde{X} \to X$. Assume that $\pi : \widetilde{X} \to Z$ is a projective bundle over a variety Z. We summarize all the morphisms in a diagram as follows:

\[
\begin{array}{c}
\widetilde{X} \\
\downarrow \varphi \\
X
\end{array}
\quad \rightarrow
\begin{array}{c}
Z \\
\downarrow \pi \\
\end{array}
\]

We introduce some notations here: we let E be the exceptional divisor of φ, let F_1 be a line in a fiber $\pi^{-1}(Z)$ (we have $\pi^{-1}(Z) = \mathbb{P}_{n-\dim Z}$) and let F_2 be a line in a fiber $\varphi|_E^{-1}(b)$ (we have $\varphi|_E^{-1}(b) = \mathbb{P}_{n-\dim B-1}$).

In the remaining part of this section, we keep the assumptions in the Setup and we keep using the notations there.

We firstly consider the blowing up at a point that is equipped with a projective bundle structure.

Proposition 1. If B is a point, then X is a projective space \mathbb{P}_n.

Proof. We consider the morphism $\pi|_E : E \to Z$. Since E is a projective space \mathbb{P}_{n-1}, the morphism $\pi|_E : E \to Z$ is quasi-finite. Otherwise, $\pi|_E$ will contract E to a single point. So $\dim Z = n-1$ and hence $\pi|_E$ is surjective. Note that Z is smooth and projective, by the Lazarsfeld’s theorem in [5], Z is a projective space \mathbb{P}_{n-1}. By [4, Lemma V.3.7.8], X is a projective space. \(\square\)

In the remaining part of this section, we keep an additional assumption that the Picard number $\rho(X)$ of X is 1.

Now let us prove a lemma about the lower bound of $\dim Z$.

Lemma 2. The morphism $\pi|_E : E \to Z$ is surjective and the varieties Z, \widetilde{X}, X are Fano varieties. Moreover, $\dim Z$ is at least $n - \dim B - 1$. If $\dim Z = n - \dim B - 1$, then Z is a projective space.

Proof. Note that E is a divisor in \widetilde{X}. The codimension $\text{codim}(\pi(E), Z)$ is at most 1. If $\text{codim}(\pi(E), Z)$ is 1, the divisor E is the pull-back of $\pi(E)$. Since the Picard number of Z is 1, E is a nef divisor, which contradicts to the fact that E is covered by negative curves. Then $\pi|_E$ is surjective. Now Z is a uniruled variety whose Picard number is 1, so Z is Fano.

To prove \widetilde{X} is Fano, we have the canonical bundle formulas:

\[-K_{\widetilde{X}} = \varphi^*(-K_X) - (n - \dim B - 1)E = \pi^*(-K_Z - \text{det} \mathcal{E}) + \mathcal{O}_\pi(n - \dim Z + 1)\]

where $\mathcal{O}_\pi(1)$ is the tautological line bundle of π. Since the Picard number of \widetilde{X} is 2, the cone $NE(\widetilde{X})$ is generated by two extremal rays as $\mathbb{R}_{\geq 0}[F_1] + \mathbb{R}_{\geq 0}[F_2]$, where $[F_i](i = 1, 2)$ are the numerically...
equivalent classes of F_l. By calculating the intersection numbers of $-K_X$ with F_1 and F_2, we deduce that \bar{X} is Fano. Since X is a uniruled variety whose Picard number is 1, X is Fano.

Let $Y \cong \mathbb{P}_{n-dim B - 1}$ be a fiber of $\varphi|_E : E \to B$. The morphism $\pi|_Y : Y \to Z$ is quasi-finite onto its image. Otherwise, there would be a curve C_Y contracted by π. But C_Y is numerically equivalent to a positive multiple of a line in Y, then the extremal ray of $NE(\bar{X})$ spanned by $|F_2|$ is contracted by π, which is impossible. So dim Z is at least $n - dim B - 1$. Moreover, if dim Z is $n - dim B - 1$, $\pi|_Y$ is surjective. By the Lazarsfeld's theorem in [5], Z is a projective space. \hfill \Box

Now we prove a simple lemma about the intersection numbers, which is very useful in the proof of our main results.

Lemma 3. Let H_1 be the pull-back of the ample generator H_Z of Pic(Z) and let H_2 be the pull-back of the ample generator H_X of Pic(X). We denote by a, b, c, d the intersection numbers $H_1 \cdot F_2$, $\varnothing(1) \cdot F_2$, $H_2 \cdot F_1$, $E \cdot F_1$ in the following diagram of intersection numbers:

<table>
<thead>
<tr>
<th></th>
<th>H_1</th>
<th>$\varnothing(1)$</th>
<th>H_2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>0</td>
<td>1</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>F_2</td>
<td>a</td>
<td>b</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Then a equals to c and a divides $1 + bd$.

Proof. The torsion free abelian group Pic(\bar{X}) has two bases $(H_1, \varnothing(1))$ and (H_2, E) which satisfy the relation $\begin{pmatrix} H_1 \\ \varnothing(1) \end{pmatrix} = \begin{pmatrix} da/c \\ 1+bd/c \end{pmatrix} \begin{pmatrix} H_2 \\ E \end{pmatrix}$.

The matrix $A = \begin{pmatrix} da/c \\ 1+bd/c \end{pmatrix}$ is an element of $SL_2(\mathbb{Z})$, so c divides $1 + bd$ and the determinant $\det(A) = \frac{c}{d}$ is 1. \hfill \Box

In the remaining part of this article, we keep using the notations in Lemma 3.

If dim Z is $n - dim B - 1$, we have the following classification.

Theorem 4. Let dim B be m. If dim Z is $n - m - 1$, then X is a projective space \mathbb{P}_n, $B \cong \mathbb{P}_m (\subseteq \mathbb{P}_n)$ is a linear subspace in \mathbb{P}_n and $\pi \circ \varphi^{-1} : \mathbb{P}_n \to \mathbb{P}_n$ is the linear projection from B.

Proof. Let R_z be the fiber $\pi^{-1}(z) (\cong \mathbb{P}_{m+1})$ of some general point $z \in Z$. Then the intersection $Y_z = E \cap R_z$ is a hypersurface of degree d in R_z. We claim that d must equal 1 (the proof of this claim mainly follows from [7, Lemma 2.1]). Actually, suppose that d is at least 2, then for a general line l in R_z, the intersection $l \cap Y_z$ consists of at least two distinct points y_1 and y_2. Since $\varphi|_{R_z}$ is quasi-finite onto its image, $\varphi(Y_z)$ is B. So we can assume that $b_i = \varphi(y_i) (i = 1, 2)$ are distinct points in B. By varying R_z and Y_z, we can construct a one-dimensional family of lines $\{l_t\}_{t \in C}$ in \bar{X} such that the intersection of every l_t with each $\varphi^{-1}(b_i)$ is not empty. Thus the surface $S = \cup_{t \in C} l_t$ is a ruled surface. Let $\varphi^{-1}(b_i) \cap S be C_i$. The curves $C_i (i = 1, 2)$ satisfy $C_1 \cap C_2 = \emptyset$ and $\varphi(C_i) = b_i$. By the construction of S, S is not contained in E. So $\varphi|_S$ is a birational morphism. Hence $C_i (i = 1, 2)$ are exceptional curves, which is impossible.

Now d is 1. Note that E doesn’t contain any fiber of π. Otherwise, there will be a morphism $\varphi|_{R_z} : R_z \to B$ where $R_z \cong \mathbb{P}_{m+1}$ is some fiber of π. Then φ contracts R_z to a point, which is impossible. Hence for any $z \in Z$, the intersection $E \cap R_z = Y_z \cong \mathbb{P}_m$ is a linear subspace in R_z. Since $\varphi(Y_z)$ is B, the variety B is a projective space. Then E has two projective bundle structures over projective spaces. So by [6, Theorem A], the morphism $(\varphi|_E, \pi|_E) : E \to B \times Z$ is an isomorphism.

Hence $\varphi|_Y : Y \to B$ is an isomorphism. So the intersection number $H_2 \cdot F_1 (= H_1 \cdot F_2)$ equals to 1. Suppose that $\pi : \bar{X} \to Z$ is given by $[a H_2 - \beta E]$. We have equalities $H_1 \cdot F_2 = (a H_2 - \beta E) \cdot F_2 = 1$ and $H_1 \cdot F_1 = (a H_2 - \beta E) \cdot F_1 = 0$. So both a and β equal to 1. Note the identities $m + 2 = -K_X \cdot F_2 = i_X - (n - m - 1)$ (where i_X is the index of X). We deduce that i_X is $n + 1$. By [3, Corollary of...
Theorem 1.1], X is a projective space. Since $\dim H^0(\tilde{X}, \mathcal{O}_X(H_2 - E)) = \dim H^0(X, I_B(1))$ is at least $n - m$, the subvariety B is a linear subspace in $X \cong \mathbb{P}_n$. \hfill \square

When B is a smooth curve, we have the following criterion.

Proposition 5. If B is a smooth curve and n is at least 3, the following conditions are equivalent:

1. π maps F_2 birationally to a line in Z,
2. φ maps F_1 birationally to a line in X,
3. (X, B) is one of the following cases:
 a. $(\mathbb{P}_n, \text{line}) (\pi \circ \varphi^{-1} : \mathbb{P}_n \dashrightarrow \mathbb{P}_{n-2} \text{ is the linear projection from } B).
 b. $(\mathbb{P}_3, \text{twisted cubic curve}) (\pi \circ \varphi^{-1} : \mathbb{P}_3 \dashrightarrow \mathbb{P}_2 \text{ is given by sections of } |\mathcal{O}_{\mathbb{P}_3}(2)| \text{ vanishing along } B).
 c. $(Q_3, \text{line}) (\pi \circ \varphi^{-1} : Q_3 \dashrightarrow \mathbb{P}_2 \text{ is the linear projection from } B).

Proof. By Lemma 3, conditions (1) and (2) are equivalent. It is obvious that condition (3) implies conditions (1) and (2).

Now suppose condition (1) or (2) holds. By Lemma 2, dim Z is at least $n - 2$. If dim Z is $n - 2$, then by Theorem 4, (X, B) is case (a).

If dim Z is $n - 1$, then π is a \mathbb{P}_1-bundle. So we have identities $-K_{\tilde{X}} \cdot F_1 = i_X - d(n - 2) = 2$. Then i_X is $2 + d(n - 2)$, which is at most $n + 1$. Hence there are only two possibilities: when d is 2, n is 3 and i_X is 4; when d is 1, i_X is n.

If d is 2, then it is easy to see that X is \mathbb{P}_3 and Z is \mathbb{P}_2. Note that π is given by the linear system $|2H_2 - E|$. Then dim $H^0(\mathbb{P}_3, I_B(2))$ is at least 3. We claim that B is not a plane curve. Otherwise, there exists a plane L in \mathbb{P}_3 containing B and the strict transform \tilde{L} of L is numerically equivalent to $H_2 - kE$ for some positive integer k. So we have equalities $1 = H_2 \cdot F_1 = \tilde{L} \cdot F_1 + kE \cdot F_1 = \tilde{L} \cdot F_1 + 2k$, which is impossible. If deg B is 4, then B is a complete intersection of two quadrics and dim $H^0(\mathbb{P}_3, I_B(2))$ is 2. So deg B is 3.

If d is 1, then i_X is n, hence by [3, Corollary of Theorem 2.1], X is a quadric Q_n. We consider the morphism $\pi|_E : E \to Z$. Since d is 1, $\pi|_E$ is a birational morphism. Note that π is given by the linear system $|2H_2 - E|$. So dim $H^0(Q_3, I_B(1))$ is at least n, which implies that B is a line. The exceptional divisor E of φ is isomorphic to $\mathbb{P}_1(\mathcal{O} \oplus \mathcal{O}(1)^{\oplus(n-2)})$. So the birational morphism $\pi|_E$ contracts the minimal section of $\varphi|_E$ corresponding to the surjection $\mathcal{O} \oplus \mathcal{O}(1)^{\oplus(n-2)} \to \mathcal{O} \to 0$. Since Z is smooth, the exceptional locus of $\pi|_E$ should be a divisor, which implies the equality $n - 2 = 1$. So X is Q_3 and B is a line in Q_3. \hfill \square

Now let us prove another main result of this section.

Theorem 6. Assume that X is \mathbb{P}_n and B is a curve, then either n is 3 and B is a twisted cubic curve or n is an arbitrary integer and B is a line in \mathbb{P}_n. Assume that X is Q_n and B is a curve, then n is 3 and B is a line in Q_3.

Proof. If X is \mathbb{P}_n, there are equalities: $1 = H_2^n = \varphi^*(H_X^n) = (-bH_1 + a\mathcal{O}_X(1))^n = (-b)^n H_1^n + a(\sum_{k=0}^{n-1} \mathcal{O}_X^n H_1^{n-k} C_n^k \cdot \mathcal{O}_X(n-k))$. Since H_1^n vanishes, the integer a divides 1, hence a is 1. Then by Proposition 5, either n is 3 and B is a twisted cubic curve or n is an arbitrary integer and B is a line in \mathbb{P}_n.

If X is Q_3, then there are equalities: $2 = H_2^3 = \varphi^*(H_X^3) = (-bH_1 + a\mathcal{O}_X(1))^3 = a(\sum_{k=0}^{n-1} \mathcal{O}_X^3 H_1^{3-k} C_3^k \cdot \mathcal{O}_X(3-k))$. Suppose that a is 2, then $\sum_{k=0}^{n-1} \mathcal{O}_X^3 H_1^{3-k} C_3^k \cdot \mathcal{O}_X(3-k)$ is 1. Assume that \mathcal{E} is a vector bundle such that $\pi : \tilde{X} \to Z$ is the projection of \mathcal{E}. If $\text{rk} \mathcal{E}$ is 2, then by the canonical bundle formulas:

$$-K_{\tilde{X}} = \varphi^*(-K_X) - (n - 2)E = \pi^*(-K_Z - \text{det} \mathcal{E}) + \text{rk} \mathcal{E} \cdot \mathcal{O}_Z(1),$$

we have $(i_X H_2 - (n - 2)E) \cdot F_2 = (i_Z - \text{deg} \mathcal{E}) H_2 + 2\mathcal{O}_Z(1) \cdot F_2$. By Lemma 3, n equals to $2(i_Z - \text{deg} \mathcal{E} + b + 1)$, hence n is an even number. Then $\sum_{k=0}^{n-1} \mathcal{O}_X^3 H_1^{3-k} C_3^k \cdot \mathcal{O}_X(3-k)$ is $(n-bH_1)^{n-k}$.
\[\mathcal{O}_X(1) + a \sum_{k=0}^{n-2} a^{n-k-2} C_k^n (-bH_1)^k \cdot \mathcal{O}_X(1)^{n-k}, \] which is an even number. So \(\text{rk}\mathcal{E} \) is 3. By Theorem 4, \(X \) should be a projective space, which is impossible. So \(a = 1 \). By Proposition 5, \(X \) is \(Q_3 \) and \(B \) is a line in \(Q_3 \).

\[\square \]

Acknowledgments

The author would like to thank Baohua Fu, Qifeng Li, Yi Gu and Yong Hu for many inspiring discussions and suggestions. The author would like to thank Yewon Jeong for her valuable contributions to the first version of this article and for her generosity allowing me to be the only author of this article. Especially, the referee gave the statements and proof of Theorem 4 and Proposition 5 which hugely strengthen the main results in the first version of this article.

References