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Abstract. For any complete C-algebraic variety Y and its underlying compact C-analytic space Y , it follows
from the well known GAGA principle that the algebraic Picard group Pi c(Y ) and the analytic Picard group
Pi c(Y ) are isomorphic. Our main purpose here is to provide a simple proof of an analogous situation for non
complete C-algebraic varieties, namely C-algebraic affine hypersurfaces with at most isolated singularities.
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1. Introduction

Unless the contrary is explicitly stated, all C-analytic spaces X are assumed to be equipped with
an analytic structural sheaf OX . For any C-algebraic variety X , let us denote by Pi c(X ) (resp.
by Pi c(X ) = H 1(X ,O∗

X
)), the algebraic (resp. analytic) Picard group of X (resp. of X ), where X

is the C-analytic space associated to X . Any 1-dimensional C-analytic spaces will be referred to
as curves. Assume that a given compact C-analytic space Y is biholomorphic to an underlying
topological space of some complete C-algebraic variety Y; since there is a 1-1 correspondence
between linear equivalent classes of Cartier divisors and locally free sheaves of rank 1, it follows
from Serre G AG A principle, (see e.g. [7, Chapitre XII, Théorème 4.4] that the analytic Picard group
Pi c(Y ) and the algebraic Picard group Pic(Y ) are isomorphic.

On the other hand, let X be a C-analytic space which is an underlying topological space of
some affine algebraic variety X defined over C. Then it is well known that

(1) X is Stein.
(2) we have the following exact sequence

0 →Z→OX →O∗
X → 0

(3) Pi c(X ) = H 1(X ,O∗
X

) ' H 2(X , Z).

In that direction, we have the following well known result:

∗Corresponding author.
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Theorem 1. LetAn (resp. Cn) be the affine n-space (resp. the complex n-space). Then

Pi c
(
An)

and Pi c
(
Cn)

are trivial.

As far as reduced non-singular affine curves are concerned, a glimpse of GAGA principle does
enter into this picture, namely

Proposition 2 ([16, Corollary 2.2]). Biholomorphically equivalent non-singular affine algebraic
curves are algebraically isomorphic.

Unfortunately, all the similarities cease from there; indeed, one has

Example 3. Let C be a fixed non-singular projective curve of genus g ≥ 0 together with a finite
set of points p j ∈C and let A :=C \∪ j≥1p j be the affine curve. By abuse of notations, let us denote
also by A its associated (non compact) Riemann surface.

Therefore, since H 2(A,Z) = 0, we infer from (3) that

Pi c(A) = 0

On the other hand, one has

Proposition 4 ([8, Corollary 1.3]). Pi c(A) = 0 iff g = 0.

Example 5. Let X :=A1 \ {0}×A1 \ {0} and X 'C\ {0}×C\ {0}. Then it is easy to see that

Pi c(X ) = 0 and Pi c(X ) 'Z.

Example 6. Let B be a fixed non-singular affine curve of genus g > 0. For i = 1,2, let Li ∈ Pi c(B)
be 2 non-equivalent algebraic line bundles. Let Xi be the total space of Li and let Xi be its
associated Stein surfaces. Then, from [16], one obtains the following biholomorphisms

X1 'C×B 'X2 (1)

Therefore, from (1) one has
Pi c (X1) 'Pi c (X2)

However, in contrast with Proposition 2, it is known that Xi are not algebraically isomorphic [16,
Proposition 3.1]. In spite of this fact and against all expectations, we have the following interesting
result which was communicated to us by the referee which we gratefully acknowledge.

Theorem 7. Pi c(X1) ' Pi c(B) ' Pi c(X2)

Proof. Let V be an algebraic variety over an algebraically closed field k. Let k∗
V be the constant

sheaf on V associated to k∗, letGm,V be the units sheaf on V , and let Uk,V := the presheaf cokernel
of (k∗

V →Gm,V ). Then it is known [14, Lemma 2] that

(1) Uk,V is a sheaf on V ,
(2) Pic(V ) = H 1(V , Uk,V ) = H 1(V , Gm.V ), and
(3) for a smooth curve B and a Zariski fibration [14, Definition 3] f : E −→ B with fibre F , one

has [14, Theorem 5] the following exact sequence

0 −−−−−→ Uk,B (B) −−−−−→ Uk,E (E) −−−−−→ Uk,F (F ) −−−−−→ Pi c(B) −−−−−→
−−−−−→ Pi c(E) −−−−−→ Pi c(F ) −−−−−→

(2)

provided, for all sufficiently small open sets W of B the natural map

Pi c(F )×Pi c(W ) −→ Pi c(F ×W ) is an isomorphism. (3)

Now, from a more general result in [4, Corollary 6, p. 11] we have, for any smooth algebraic
variety V ,

Pi c
(
An ×V

)' Pi c(V ) (4)

C. R. Mathématique — 2022, 360, 103-110



Vo Van Tan 105

From (4) it follows that, the assumption (3) is fulfilled for any line bundle E −→ B ; in particular
for Xi with i = 1 or 2. Therefore the exact sequence (2) can be applied. Furthermore in our case
F =A1, the groups Uk,F (F ) and Pic(F ) are trivial. Hence one obtains

Pi c (X1) ' Pi c(B) ' Pi c (X2) �

Remark 8. Confronted with this state of affairs, we are looking at a class of affine algebraic
hypersurfaces X with dim.X ≥ 3.

2. The non-singular hypersurfaces

Despite such an adverse situation, one has the following important result:

Theorem 9 ([11, Corollary 2.3]). Let Y ⊂ Pn+1 with n ≥ 3, be a non-singular hypersurface, let
Γ⊂ Y be a transverse hyperplane section and let X := Y \Γ. Then one has

H i (X ,Z) = 0 for i 6= 0, n.

Since the underlyingC-analytic variety of X =: X is a Stein manifold, we infer from Theorem 9,
the following:

Corollary 10. Let X be as in Theorem 9. Then

Pi c(X ) := H 1 (
X ,O∗

X

)' H 2(X ,Z) is trivial.

Dimensionwise, this result is optimal. In fact, let us look at the following

Example 11. Let Y0 ⊂ P3 be a non-singular hypersurface and let Γ ⊂ Y0 be a transverse hyper-
plane section. Then it is known [2, Lemma 1.2] that X0 := Y0 \Γ is homeomorphic to the Milnor
fiber of the singularity (C ,0) where C is the affine cone over Γ with 0 as its vertex. Consequently

Pi c
(
X0

)= H 2 (X0,Z) =Zµ
where µ is the Milnor number of (C ,0).

As far as an algebraic analogue of Corollary 10 is concerned, we have the following result:

Proposition 12. Let Y ⊂Pn+1 be a non-singular hypersurface, letΓ⊂ Y be a transverse hyperplane
section and let X := Y \Γ. Then

Pi c(X ) = 0

provided n = dim.Y ≥ 3.

Proof. By [9, Chapter IV, Corollary 3.2] one has Pi c(Y ) ' Z[Γ]. Then from the following exact
sequence [10, Chapter II, Proposition 6.5(c)]

Z−→ Pi c(Y ) 'Z δ−→ Pi c(X ) −→ 0

1 7−→ 1.Γ

and the surjectivity of δ, we infer the exact sequence

0 −→ Pi c(X ) −→ 0

Hence our desired conclusion will follow. �

Remark 13. The proof of Theorem 9 relies heavily on Poincare duality forΓ and Alexander duality
for the pair (Y , Y \Γ) [5] which depend entirely on the fact that both Γ and Y are non singular and
the transversal intersection of Γ. In this situation, it is natural to wonder how such results could
be generalized to the context of an ambient space Y ⊂ Pn+1 with only mild singularities; that is
the purpose of the next section.
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3. Hypersurfaces with isolated singularities

With those examples as guidelines, various endeavors were devoted to generalize Theorem 9
within the framework of hypersurfaces Y ⊂ PN with only isolated singularities and with N ≥ 4.
In the same spirit as Theorem 9, we are now in a position to provide an elementary and complete
proof of the following result:

Theorem 14. Let Y ⊂ Pn+1 be an irreducible hypersurface, with only isolated singularities, say
{p j }1≤ j ≤k and with n ≥ 3. Let Γ ⊂ Y be a transverse hyperplane section, in particular p j ∉ Γ for
1 ≤ j ≤ k and let X := Y \Γ. Then one has

(1) Hi (X , Z) = 0 for 1 ≤ i ≤ n −2.
(2)

Hn−1(X , Z) =
{

0 if n is odd.

0 or finite cyclic if n is even.

Proof.

(Step 1) For simplicity, let us assume that Y has only 1 isolated singularity, say {p}.
Now let h :Cn+2 →Cbe a homogeneous polynomial of degree d, defining theC-projective
hypersurface

Y = {
x ∈Pn+1

∣∣h(x) = 0
}

In view of the Sard theorem, there exist ε> 0 and a general homogeneous polynomial of
degree d, say hd , so that for any s ∈∆ := {s ∈C | 0 ≤ |s| < ε}, the total space of the pencil

M = {
(x, t ) ∈Pn+1 ×∆

∣∣h+ shd = 0
}

is a one-parameter smoothing of degree d, for Y .
From the second projection

pr2 :Pn+1 ×∆→∆

let π := pr2|M : M →∆ be its restriction. Then one can check that
(a) π−1(0) = Y and
(b) Ys :=π−1(s) is a smooth C-projective hypersurface of degree d , for any s 6= 0.

Now by identifying the unique singular point {p} with the origin 0 ∈ Cn+1, the singu-
larity (Y, 0) can be defined by { f = 0} where f : (Br ⊂ Cn+1,0) → (C,0) is an analytic func-
tion germ with an isolated critical point at 0 ∈ Cn+1 and Br is a ball centered at 0 with
sufficiently small radius r . Then [3, § 3].
(c) For t 6= 0, Ξ := f −1(t )∩Br is the Milnor fibre of the isolated singularity germ (Y ,0).
(d) Ξ has the homotopy type of a bouquet of n-spheres Sn say,

∨µSn , where

mu := dimC

O0
(
Cn+1

)
J f

,

O0(Cn+1), is the local ring of holomorphic functions at

0 ∈Cn+1 and J f := (
∂ f /∂x0, . . . .., ∂ f /∂xn

)
is the Jacobian ideal of the singularity of f.

(e) The ball Br has Y ∩Br as a deformation retract.

(Step 2) Now let r be such a retraction and let i be the inclusion [15, § I.7]

f −1(t )∩Br ,→Br

Then the composite r ◦ i gives a map

f −1(t )∩Br → Y ∩Br
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which contracts Ξ to {p}.
Now let B ⊂ M be a sufficiently small ball centered at {p}. Then π−1(s) ∩ B can be
identified with the Milnor fibre of the isolated hypersurface singularity germ (Y ,0), for
s 6= 0.

Notice that such a contraction can be extended [18, Chapter V, § 14, Exercices(3) p. 332]
to a continuous map

Φ : Ys → Y

(Step 3) Now let φ := Φ|Xs , Xs := Ys \ φ−1(Γ) and let us consider the following commutative
diagram of integral homology groups with exact rows

−−−−−→ Hk
({

p
}) −−−−−→ Hk (X )

δ∗−−−−−→ Hk
(
X ,

{
p

}) −−−−−→ Hk−1
({

p
}) −−−−−→x xφ∗ '

x x
−−−−−→ Hk (Ξ) −−−−−→ Hk (Xs ) −−−−−→ Hk (Xs ,Ξ) −−−−−→ Hk−1(Ξ) −−−−−→

Since, for any k > 1, δ∗ is an isomorphism, we deduce from the above commutative
diagram, the following exact sequence

Hk (Ξ) −→ Hk (Xs )
φ∗−→ Hk (X ) −→ Hk−1(Ξ) (5)

Now it follows from (2)(b), that

H j (Ξ) ' 0 for 1 ≤ j ≤ n −1.

Therefore we infer from (5) that φ∗ is an isomorphism, provided 2 ≤ k ≤ n − 1 and our
conclusion follows from [11, Theorem 9].

(Step 4) Since H0(X ) ' Z' H0(Xs ), we infer from the above commutative diagram, the following
exact sequence

H1(Ξ) −→ H1 (Xs )
α−→ H1(X ) −→ H0(Ξ)

γ−→ H0
({

p
})−→ 0 (6)

Notice that
(a) In view of (2)(b), α is injective.
(b) Since H0(Ξ) 'Z' H0({p}), γ is bijective; consequently α is also surjective.

Therefore we infer from (6) that

H1(X ) ' H1(Xs ) = 0.

(Step 5) Now let Y with arbitrary isolated singularities {p j }. Then exactly as in (Step 1), one can
exhibit [1, § 3] a family

π : M →∆

such that
(a) π−1(0) = Y and
(b) Ys :=π−1(s) for any s 6= 0, is a smooth C-projective hypersurface of degree d which is

a smooth deformation of Y .

(Step 6) Then a construction of the specialization map

Φ : Ys −→ Y

which contracts each Milnor fibre Ξ j to p j , will be proceeded exactly as carried out
in detail in [1, § 3]. Finally the same arguments as in (Step 3) and (Step 4) above will
complete our proof. �
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By using the Universal coefficient Theorem, we infer from Theorem 14 the following result

Corollary 15. Let X be as in Theorem 14 and let X be its associated C-analytic space. Then one
has

(1) H i (X , Z) = 0 if 1 ≤ i ≤ n −1.
(2) Pi c(X ) is trivial.

Remark 16. Notice that, the transversal hypothesis of Γ in Theorem 14 is crucial here, as shown
by the following

Example 17 ([11, § 4 p. 213]). Let Y2 := {x2 + y2 + z2 +w2 = 0} ⊂ P4{x : y : z : w : t } be a quadric
hypersurface with a single (isolated) singular point q := (0 : 0 : 0 : 0 : 1) and let A2 := Y2 ∩ {x 6= 0}.
Then it is clear that A2 ' {ζ2+ξ2+ν2 =−1} ⊂C4(ξ,ζ,ν,τ) is a non-singular affine algebraic variety,
where ζ := y

x ,ξ := z
x ,ν := w

x , and τ := t
x . Certainly A2 is homotopically equivalent to A2 ∩ {τ = 0}

which has the same homotopy type as the 2-sphere S2; consequently, one has

Pi c (A2) ' H 2 (
S2,Z

)'Z
where A2 is the Stein 3-fold associated to A2.

3.1. Question

Let X be as in Theorem 14. Does one also have

Pi c(X ) = 0 ?

In this direction, we would like to provide a positive answer to this question. i.e. an algebraic
analogue to our Corollary 15.

Theorem 18 ( [17]). Let X and Y be as in Theorem 14. Then one has

Pi c(X ) is trivial.

Consequently, by using Corollary 15, we obtain the following

Corollary 19. Let Y ⊂ Pn+1 with n ≥ 3, be a non-singular hypersurface, let Γ ⊂ Y be a transverse
hyperplane section and let X := Y \Γ. Then one has

Pi c(X ) and Pi c(X ) are trivial.

4. Proper hyperplane sections

Motivated by Example 17, throughout this section, let us consider the following:

Definition 20. Let Y ⊂ Pn+1 be an irreducible hypersurface and let H ⊂ Pn+1 be a non-singular
hyperplane. Then

H := Y ∩H
will be referred to as a proper hyperplane section, if C−dimx H = n −1, for any x ∈H .

Example 21. Let Y2 ⊂ P4(z0 : z1 : z2 : z3 : z4) be a singular quadric hypersurface defined by∑3
i=0 z2

i = 0 with a single isolated singular point p := (0 : 0 : 0 : 0 : 1). Let C l (Y2) := the Divisor
class group of Y2. It is known [10, Example 6.5, p. 147] that

C l (Y2) ' H4
(
Y2,Z

)'Z⊕Z (7)

On the other hand
Pi c (Y2) ' H 2(Y2,Z

)'Z (8)

From (7) and (8), we have a well known fact that the local ring OY2, p is notQ-factorial.
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Remark 22. In sharp contrast with Example 21, one has the following important result

Theorem 23 ([6, Chapter XI, p. 314]). Let Y ⊂ Pn+1 be a hypersurface with only isolated singu-
larities {p j }. Assume that dim.Y ≥ 4. Then the local rings OY , p j are factorial for any j (i.e. any Weil
divisor on Y is also Cartier).

Now we infer from this result, the Universal Coefficient Theorem and the proof of Theorem 18
the following

Theorem 24 ([17]). Let Y ⊂ Pn+1 be an irreducible hypersurface with only isolated singularities
and let H ⊂ Y be a pr oper hyperplane section. Let X := Y \H and let X be its associated analytic
space. Then

Pi c(X ) and Pi c(X ) are trivial (9)

provided n ≥ 4.

Remark 25. Example 17 shows that the bound given in this Theorem is quite sharp.

5. The transverse hypersurface sections

Throughout this section, let us consider exclusively a non-singular hypersurface Y ⊂ Pn+1 and
its transverse hypersurface section H ⊂ Y i.e. H := Y t Hν, for some non-singular hypersurface
Hν ⊂ Pn+1, of degree ν ≥ 1. Then, from seminal works by Kato in [12] and [13], one derives from
his far reaching result [13, Theorem 6.3], the following

Theorem 26. Let Y ⊂ Pn+1 be a non-singular hypersurface with n ≥ 3, let H ⊂ Y be a transverse
hypersurface section and let X := Y \H . Then one has

Hi (X , Z) =
{
Zν if i is odd and 1 ≤ i ≤ n −1.

0 if i is even and 2 ≤ i ≤ n −1.

We are now in a position to provide the following result which generalizes Corollary 19.

Theorem 27 ([17]). Let Y ⊂ Pn+1 be a non-singular hypersurface with n ≥ 3 and let H ⊂ Y be a
transverse hypersurface section. Let X := Y \ H and let X be its associated Stein manifold. Then
one has

Pi c(X ) 'Pi c(X ) 'Zν
provided n ≥ 3.

Remark 28. Notice that, dimensionwise, Theorem 27 is optimal; indeed besides Example 3 and
Proposition 4, let us consider the following:

Example 29. Let C ⊂ P2 be a non-singular cubic plane curve (i.e. g (C ) = 1) and let X = P2 \ C .
Then [10, Chapter II, Example 6.5.1] one has

Pi c(X) 'Z3

On the other hand, from the following exact sequence of integral cohomology groups of the pair
(P2,X)

H 2(X)
λ−→ H 3(P2, X

)−→ H 3 (P2) ' 0

since H 3(P2, X) ' H1(C ) and Rank of H1(C ) = 2g (C ) = 2, we infer from the surjectivity of λ, that

Pi c(X) ' H 2(X, Z) 6=Z3 ' Pi c(X)
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